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Abstract

Let M is a unitary R-module over R be a commutative ring with identity and let
X be a fuzzy module of an R-module M . Our aim in this paper is studing small
T-ABSO fuzzy submodules and classical T-ABSO fuzzy submodules. Many new
basic properties and characterizations of these concepts are given and relationship
these concepts with T-ABSO fuzzy submodules.

AMS subject classification: 06D72, 08A72.
Keywords: small fuzzy submodule, small prime fuzzy submodule, small T-ABSO
fuzzy ideal, small T-ABSO fuzzy submodule, classical prime fuzzy submodule,
classical T-ABSO fuzzy ideal, classical T-ABSO fuzzy submodule.

1. Introduction

In this paper all ring are commutative with 1 �= 0 and all modules are unitary. Prime
submodule presented by C. P. Lu in [4] where “A prime submodule N of an R-module
M over a commutative ring R, N �= M with property a ∈ R, x ∈ M , ax ∈ N implies
that x ∈ N or a ∈ (N : M)”. This concept is generalized to concept of prime fuzzy
submodule by Rabi H.J. (see[11]). Layla S. Mahmood in [15] presented the definition
of small prime submodule where "a proper submodule N of an R-module M is called
small prime submodule if whenever r ∈ R and x ∈ M with < x >� M and rx ∈ N
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implies that either x ∈ N or r ∈ (N :R M). In [13] presented the concept of fuzzy small
submodule where “let M be a module over a ring R, and let A ∈ F (M). Then A is said
to be fuzzy small submodule of M if for any B ∈ F (M) satisfying B �= XM implies
A + B �= XM . The notation A �F M indicates that A is fuzzy small submodule of
M . Where F (M) is a set of all fuzzy submodule of M . A. Badawi in[2] presented the
concept of 2-absorbing ideal where “A proper ideal I �= 0 of R is said to be a 2-absorbing
ideal if whenever r , b, z ∈ R and rbz ∈ I then rb ∈ I or rz ∈ I or bz ∈ I”. Rabah K. in
[14] generalized this concept to 2-absorbing fuzzy ideal where “A nonzero proper fuzzy
ideal I of R is called 2-absorbing fuzzy ideal if for each f. singletons as , bl , rk of R,
∀s, l, k ∈ L, and asblrk ⊆ I , then either asbl ⊆ I or asrk ⊆ I or blrk ⊆ I”. while A.Y.
Darani, F. Soheilnia in [3]. presented the definition of 2-absorbing submodule where
“let N < M , N is called 2-absorbing submodule of M if whenever r , b ∈ R, x ∈ M

and rbx ∈ N , then rx ∈ N or bx ∈ N or rb ∈ (N : M)”. Abdulrahman A.H. in
[1] presented two concepts:small 2-absorbing submodule where “A proper submodule
N of an R-module M is called a small 2-absorbing submodule, if whenever a, b ∈ R

and < m >� M , abm ∈ N implies that am ∈ N or bm ∈ N or ab ∈ (N :R M)
and small 2-absorbing ideal where “A proper ideal I of a ring R is small 2-absorbing
if it is small 2-absorbing submodule of the R-module R. A classical prime submodule
presented by M. Behboodi in [12] where “A proper submodule N of an R-module M is
called a classical prime submodule, if for each m ∈ M and elements a, b ∈ R, abm ∈ N

implies that am ∈ N or bm ∈ N . H. Mostafanasab gave a generalization of classical
prime submodule to a classical 2-absorbing submodule where “A proper submodule N

of an R-module M is called a classical 2-absorbing submodule, if whenever a, b, c ∈ R

and m ∈ M with abcm ∈ N , then abm ∈ N or acm ∈ N or bcm ∈ N”.
This paper be composed of two sections.

In sec. (1) we present the definitions: T-ABSO fuzzy submodules, small prime fuzzy
submodules, small T-ABSO fuzzy ideals and small T-ABSO fuzzy submodules and we
give some characterizations of small T-ABSO fuzzy submodules. Also many properties
and outcomes of these concepts are given.
In sec. (2) we present the definitions: classical prime submodule and classical T-ABSO
fuzzy submodule, many basic properties and outcomes are studied.
Note that we denote to fuzzy: f., module:m., submodule:subm., [0,1]: L , otheroiwse:
o.w. and example: ex.

2. Small T-ABSO F. Subm.

In this sec., we introduce the concepts small prime f. subm., T-ABSO f. subm., small
T-ABSO f. ideal. and small T-ABSO f. subm. and some of propostions and relationship
between small T-ABSO f. subm. with small prime f. subm. and T-ABSO f. subm.

Now, we shall fuzzify the definitions: small prime subm., T-ABSO subm., small
T-ABSO ideal and small T-ABSO subm. as follows:

Definition 2.1. A proper f. subm. A of f. m. X of an R-m. M is called small prime f.
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subm. if whenever f. singleton as of R and xv ⊆ X with < xv >� X and asxv ⊆ A

implies either xv ⊆ A or as ⊆ (A :R X).

The following proposition specificates small prime f. subm. in terms of its level
subm.

Proposition 2.2. Let A is small prime f. subm. of f. m. X of an R-m. M . if and only
if the level subm. Av is small prime subm. of Xv, ∀v ∈ L.

Proof. ( ⇒ ) Let ax ∈ Av and < x >� Xv for a ∈ R, then A(ax) ≥ v and < x >v� X

hence (ax)v ⊆ A. So that asxk ⊆ A, ∀s, k ∈ L, and < xk >� X where v = min{s, k}.
Since A is small prime f., then either xk ⊆ A or as ⊆ (A :R X). Hence either x ∈ Av or
a ∈ (Av :R Xv) since (A :R X)v = (Av :R Xv) by [7]. Thus Av is small prime subm. of
Xv.
( ⇐ ) Let asxk ⊆ A and < xk >� X for f. singleton as of R, ∀s, k ∈ L. Hence
(ax)v ⊆ A and < x >v� X where v = min{s, k}, so that ax ∈ Av and < x >� Xv.
But Av is small prime, then either x ∈ Av or a ∈ (Av :R Xv), hence either xk ⊆ A or
as ⊆ (A :R X). Thus A is small prime f.subm. of X. �

Definition 2.3. Let X be f. m. of an R-m. M . A proper f. subm. A of X is called
T-ABSO f. subm. if whenever as , bl be f. singletons of R, and xv ⊆ X, ∀s, l, v ∈ L,
such that asblxv ⊆ A then either asbl ⊆ (A :R X) or asxv ⊆ A or blxv ⊆ A.

The following proposition specificates T-ABSO f. subm. in terms of its level subm.

Proposition 2.4. Let A is T-ABSO f. subm. of f. m. X of of an R-m. M if and only if
the level subm. Av is T-ABSO subm. of Xv, ∀v ∈ L.

Proof. ( ⇒ )Let abx ∈ Av for each a, b ∈ R and x ∈ Xv, then A(abx) ≥ v, so
(abx)v ⊆ A implies that asblxk ⊆ A where v = min{s, l, k}. Since A be a T-ABSO f.
subm., then either asbl ⊆ (A :R X) or asxk ⊆ A or blxk ⊆ A. hence (ab)v ⊆ (A :R X)
or (ax)v ⊆ A or (bx)v ⊆ A. So that ab ∈ (Av :R Xv) since (A :R X)v = (Av :R Xv) by
[7] or ax ∈ Av or bx ∈ Av. Thus Av is a T-ABSO subm. of Xv.
( ⇐ ) Let asblxk ⊆ A for f. singletons as , bl of R and xk ⊆ X, ∀s, l, k ∈ L, hence
(abx)v ⊆ A where v = min{s, l, k} so that abx ∈ Av. But Av is T-ABSO subm., then
either ab ∈ (Av :R Xv) or ax ∈ Av or bx ∈ Av ,since (Av :R Xv) = (A :R X)v by [7],
hence ab ∈ (A :R X)v. Then either (ab)v ⊆ (A :R X) or (ax)v ⊆ A or (bx)v ⊆ A,
implies either asbl ⊆ (A :R X) or asxk ⊆ A or blxk ⊆ A. Thus A be T-ABSO f. subm.
of X. �

Definition 2.5. A proper f. subm. A of f. m. X of an R-m. M is called small T-ABSO
f. subm. if whenever f. singletons as , bl of R and xv ⊆ X such that < xv >� X,
asblxv ⊆ A implies either asxv ⊆ A or blxv ⊆ A or asbl ⊆ (A :R X).

Definition 2.6. A proper f. ideal I of a ring R is a small T-ABSO f. if it is small T-ABSO
f. subm. of the R-m. R, equivalent; a proper f. ideal I of a ring R is small T-ABSO f.
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if whenever f. singletons as , bl , rk of R such that < rk >� R, asblrk ⊆ I , then either
asrk ⊆ I or blrk ⊆ I or asbl ⊆ I .

The following proposition specificates small T-ABSO f. subm. in terms of its level
subm.

Proposition 2.7. Let A is small T-ABSO f. subm. of f. m. X of an R-m. M . if and
only if the level subm. Av is small T-ABSO subm. of Xv, for all v ∈ L.

Proof. ( ⇒ ) Let abx ∈ Av and < x >� Xv for a, b ∈ R, then A(abx) ≥ v and
< x >v� X hence (abx)v ⊆ A. So that asblxk ⊆ A, ∀s, l, k ∈ L, and < xk >� X

where v = min{s, l, k}. Since A is small T-ABSO f., then either asxk ⊆ A or blxk ⊆ A

or asbl ⊆ (A :R X). Hence either (ax)v ⊆ A or(bx)v ⊆ A or (ab)v ⊆ (A :R X), so
either (ax) ∈ Av or bx ∈ Av or ab ∈ (Av :R Xv) since (A :R X)v = (Av :R Xv) by [7].
Thus Av is small T-ABSO subm. of Xv.
( ⇐ ) Let asblxk ⊆ A and < xk >� X for f. singletons as , bl of R, ∀s, l, k ∈ L. Hence
(abx)v ⊆ A and < x >v� X where v = min{s, l, k}, so that abx ∈ Av and < x >� Xv.
But Av is small T-ABSO, then either ax ∈ Av or bx ∈ Av or ab ∈ (Av :R Xv), hence
either asxk ⊆ A or blxk ⊆ A or asbl ⊆ (A :R X). Thus A is small T-ABSO f.subm.
of X. �

Remark 2.8. There are many remarks and ex. as follows:

1. if A is a small prime f. subm. of f. m. X of an R-m. M , then A is a small T-ABSO
f. subm. of X.

Proof. Let asblxv ⊆ A for f. singletons as , bl of R and < xv >� X, hence as <

blxv >⊆ A and < blxv >� X. Since A is a small prime f. subm., then either blxv ⊆ A

or as ⊆ (A :R X). So either blxv ⊆ A or asxv ⊆ A. Thus A is small T-ABSO f. subm.
�

The converse incorrect for ex.:

Let X : Z24 −→ L such that X(y) =
{

1 if y ∈ Z24

0 o.w.
It is obvious that X be a f. m. of Z24 as Z-m.

Let A : Z24 −→ L such that A(y) =
{

v if y ∈ (1̄2)
0 o.w.

∀v ∈ L

Let B : Z24 −→ L such that B(y) =
{

v if y ∈ (6̄)
0 o.w.

∀v ∈ L

Let C : Z24 −→ L such that C(y) =
{

v if y ∈ (0̄)
0 o.w.

∀v ∈ L

It is obvious that A, B and C are f. subm. of X.
Now, Av = (1̄2), Bv = (6̄), Cv = (0̄) and Xv = Z24 as Z-m.
where Av is small T-ABSO subm. since Av, Bv and Cv are only small subm. in Xv. and
2.1.(6̄) ∈ Av and 2.(6̄) ∈ Av.
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2.4.(6̄) ∈ Av and 4.(6̄) ∈ Av.
3.2.(2̄) ∈ Av but (2̄) not small in Xv
However Av is not small prime since 2.(6̄) ∈ Av but (6̄) /∈ Av and 2 /∈ (Av :R Xv) = 12Z.
Hence A is small T-ABSO f. subm. but A is not small prime f. subm.

1. It is obvious that every T-ABSO f. subm. is small T-ABSO f. subm. However the
converse incorrect, for ex.:

Let X : Z −→ L such that X(y) =
{

1 if y ∈ Z

0 o.w.
It is obvious that X be f. m. of Z as Z-m.

Let A : Z −→ L such that A(y) =
{

v if y ∈ 20Z

0 o.w.
∀v ∈ L

It is obvious that A is f. subm. of X.
Av = 20Z and Xv = Z as Z-m. where Av is a proper subm. of Xv, if abx ∈ Av
for a, b ∈ Z and < x >� Z. Since (0) is only small subm. in Xv = Z, so that
x = 0. Then ax = 0 and bx = 0. Hence Av is small T-ABSO this satisfies for
each proper subm. of Z. But Av is not T-ABSO subm. since 2.2.5 ∈ Av but
2.5 /∈ Av and 2.2 /∈ Av. So that A is small T-ABSO f. subm., but it is not T-ABSO
f. subm.

The following theorem is a characterization of small T-ABSO f.subm.

Theorem 2.9. Let A be a proper f. subm. of f. m. X of an R-m. M . Then A is a
small T-ABSO f. subm. if and only if whenever for singletons as , bl of R, B � X,
asblB ⊆ A, then either asB ⊆ A or blB ⊆ A or asbl ⊆ (A :R X).

Proof. ( ⇒ ) Suppose that asblB ⊆ A, but asB � A and blB � A, so there exist
f. singletons xv, yh ⊆ B such that asxv � A, blyh � A. Then < xv >� X and
< yh >� X since xv, yh ⊆ B and B � X by[13]. Now asblxv ⊆ A and asxv � A,
hence either blxv ⊆ A or asbl ⊆ (A :R X). If asbl ⊆ (A :R X) then we are done. If
blxv ⊆ A. Meditate asbl(xv + yh) ⊆ A and < xv + yh >� X since < xv >� X and
< yh >� X by[5]. Since A is a small T-ABSO f. subm., then either as(xv + yh) ⊆ A

or bl(xv + yh) ⊆ A or asbl ⊆ (A :R X). If asbl ⊆ (A :R X), then we are done. If
as(xv + yh) ⊆ A. Since asxv � A, hence asyh � A. But asblyh ⊆ A, asyh � A and
blyh � A so that asbl ⊆ (A :R X). If bl(xv + yh) ⊆ A, then similary asbl ⊆ (A :R X).
( ⇐ ) It is obvious. �

Proposition 2.10. Let A be a proper f. subm. of f. m. X of an R-m. M , then the
following expressions are equivalent:

1. A is a small T-ABSO f. subm. of X.

2. (A :X I ) is a small T-ABSO f. subm. for each f. ideal I of R, IX � A.

3. (A :X as) is a small T-ABSO f. subm. for each f. singleton as of R, asX � A.
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Proof. (1) ⇒ (2) Let rkblxv ⊆ (A :X I ) and < xv >� X for f. singletons rk, bl of R

and xv ⊆ X, so rkbl < xv >⊆ (A :X I ), hence rkblI < xv >⊆ A. But < xv >� X

then < Ixv >� X and since A is a small T-ABSO f. subm., then either rk < Ixv >⊆ A

or bl < Ixv >⊆ A or rkbl ⊆ (A :R X) by theorem(5). So that rkxv ⊆ (A :X I ) or
blxv ⊆ (A :X I ) or rkbl ⊆ (A :R X).
(2) ⇒ (3) It is obvious.
(3) ⇒ (1) It follows directly since A = (A :X 1v)

where 1v : R −→ L such that 1v(y) =
{

1 if y = 1
0 if y �= 1

≤
{

1 if y ∈ R

0 o.w.
= λR(y) = 1

by [16]
then A is a small T-ABSO f. subm. of X. �

Proposition 2.11. Let f : M1 −→ M2 be an epimorphism and X1, X2 are f. m. of an
R-m. M1, M2 respectively. Let A be a small T-ABSO f. subm. of X2, then f −1(A) is a
small T-ABSO f. subm. of X1.

Proof. It is obvious that f −1(A) a proper f. subm. of X1 since A is a proper f. subm. of
X2. Let rkblxv ⊆ f −1(A) and < xv >� X1 for f. singletons rk, bl of R and xv ⊆ X1,
then rkblf (xv) ⊆ A. But < f (xv) >� X2 by [5]. Since A is a small T-ABSO f. subm.,
then either rkf (xv) ⊆ A or blf (xv) ⊆ A or rkbl ⊆ (A :R X2). Hence rkxv ⊆ f −1(A) or
blxv ⊆ f −1(A) or rkbl ⊆ (f −1(A) :R X1). �

Remark 2.12. A homorphic image of small T-ABSO f. subm. may be not small T-
ABSO f. subm. we can show by the following ex.:

Let X : Z24 −→ L such that X(y) =
{

1 if y ∈ Z24

0 o.w.
It is obvious that X be a f. m. of Z24 as Z-m.

Let A : Z24 −→ L such that A(y) =
{

v if y ∈ (2̄)
0 o.w.

∀v ∈ L

It is obvious that A are f. subm. of X.
Now, Av = (2̄), Xv = Z24 as Z-m.
where f : Z24 −→ Z24 such that f (y) = 4y ∀y ∈ Z24, AV is a small T-ABSO
subm. But f (Av) =< 8̄ > is not small T-ABSO subm. since 2.2. < 6̄ >∈< 8̄ > and
< 6̄ >� Xv, but 2. < 6̄ >/∈< 8̄ > and 2.2 /∈ (Av :Z Xv) = 8Z. So that A is small
T-ABSO f. subm., but f (A) is not small T-ABSO f. subm.

Proposition 2.13. Let A be a small T-ABSO f. subm. of f. m. of an R-m. M , then
(A :R X) is a small T-ABSO f. ideal of R.

Proof. Let asblrk ⊆ (A :R X) and < rk >� R for f. singletons as , bl , rk of R. Suppose
that asrk � (A :R X) and blrk � (A :R X). Now for any f. singleton xv ⊆ X, define
f : R −→ X by f (dn) = dnxv. It is obvious that f is well-defined and homomorphism.
Since< rk >� R, then< rkxv >� X ...(1). By assumption there existyh, gm ⊆ X such
that asrkyh � A and blrkgm � A. But asbl(rkyh + rkgm) ⊆ A and by(1) < rkyh >� X,
< rkgm >� X, then < rkyh + rkgm >� X by [5]. Then either as(rkyh + rkgm) ⊆ A
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or bl(rkyh + rkgm) ⊆ A or asbl ⊆ (A :R X). If asbl ⊆ (A :R X) then we are done.
If as(rkyh + rkgm) ⊆ A, asrkyh � A, we get asrkgm � A. But asblrkgm ⊆ A,
< rkgm >� X and blrkgm � A. Thus asbl ⊆ (A :R X). By the same method, if
bl(rkyh + rkgm) ⊆ A, then asbl ⊆ (A :R X). �

The definitions of faithful f. m. see [11], the finitely generated f. m. see [9] and the
multiplication f. m. see [7].

The converse of proposition (2.13) is true under certain conditions as we show by
following proposition.

Proposition 2.14. Let A be a proper f. subm. of a faithful finitely generated multipli-
cation f. m. X of an R-m. M . If (A :R X)is a small T-ABSO f. ideal, then A is a small
T-ABSO f. subm.

Proof. Let asblxv ⊆ A and < xv >� X for f. singletons as , bl of R and xv ⊆ X. But
X is a faithful finitely generated multiplication f. m., then < xv >= IX for some f.
ideal I of R and I � R(since if I + J = R for f. ideal j of R, IX + JX = RX,
hence < xv > +JX = X. But < xv >� X, so that JX = X. Thus J = R). Hence
asblIX ⊆ A, so asblI ⊆ (A :R X). Then either asI ⊆ (A :R X) or blI ⊆ (A :R X) or
asbl ⊆ (A :R X) by theorem (3.5). So that asIX ⊆ A or blIX ⊆ A or asbl ⊆ (A :R X).
Thus asxv ⊆ A or blxv ⊆ A or asbl ⊆ (A :R X). �

3. Classical T-ABSO F. Subm.

In this sec. we present the concept of a classical prime f. subm. and a classical T-ABSO f.
subm. A classical T-ABSO f. subm. as a generalization of a classical prime, many basic
properties, results and relationships between a classical T-ABSO f. subm., T-ABSO f.
subm. and a classical prime f. subm. are given.
M. Behboodi presented a classical prime submodule in [12] and H. Mostafanasab gave
a generalization of classical prime submodule to a classical 2-absorbing submodule. In
this sec. we shall fuzzify these concepts as follows:

Definition 3.1. Let X be f. m. of an R-m. M . A proper f. subm. is called a classical
prime f. subm. if for f. singletons as , bl of R and xv ⊆ X with asblxv ⊆ A, then either
asxv ⊆ A or blxv ⊆ A.

Definition 3.2. Let X be f. m. of an R-m. M . A proper f. subm. is called a classical
T-ABSO f. subm. if for f. singletons as , bl , rk of R and xv ⊆ X with asblrkxv ⊆ A, then
either asblxv ⊆ A or asrkxv ⊆ A or blrkxv ⊆ A.

The following proposition specificates a classical prime f. subm. in terms of its level
subm.

Proposition 3.3. Let A is a classical prime f. subm. of f. m. X of an R-m. M . if and
only if the level subm. Av is a classical prime subm. of Xv, ∀v ∈ L.
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Proof. ( ⇒ ) Let abx ∈ Av for a ∈ R, then A(abx) ≥ v, hence (abx)v ⊆ A. So that
asblxk ⊆ A, ∀s, k ∈ L where v = min{s, l, k}. Since A is a classical prime f., then either
asxk ⊆ A or blxv ⊆ A, hence either ax ∈ Av or bx ∈ Av. Thus Av is classical prime
subm. of Xv.
( ⇐ ) Let asblxk ⊆ A for f. singletons as , bl of R and xv ⊆ X, ∀s, l, k ∈ L. Hence
(abx)v ⊆ A where v = min{s, l, k}, so that abx ∈ Av. But Av is a classical prime, then
either ax ∈ Av or bx ∈ Av, hence either asxk ⊆ A or blxv ⊆ A. Thus A is classical
prime f.sunm. of X. �

Now, we give the following proposition specificates classical T-ABSO f. subm. in
terms of its level subm.

Proposition 3.4. Let A is a classical T-ABSO f. subm. of f. m. X of of an R-m. M if
and only if the level subm. Av is a classical T-ABSO subm. of Xv, ∀v ∈ L.

Proof. ( ⇒ )Let abrx ∈ Av for each a, b, r ∈ R and x ∈ Xv, then A(abrx) ≥ v,
so (abrx)v ⊆ A implies that asblrkxh ⊆ A where v = min{s, l, k, h}. Since A be a
classical T-ABSO f. subm., then either asblxh ⊆ A or asrkxh ⊆ A or blrkxh ⊆ A.
hence (abx)v ⊆ A or (arx)v ⊆ A or (brx)v ⊆ A. So that abx ∈ Av or arx ∈ Av or
brx ∈ Av. Thus Av is aclassical T-ABSO subm. of Xv.
( ⇐ ) Let asblrkxh ⊆ A for f. singletons as , bl , rk of R and xh ⊆ X, ∀s, l, k, h ∈ L,
hence (abrx)v ⊆ A where v = min{s, l, k, h} so that abrx ∈ Av. But Av is classical
T-ABSO subm., then either abx ∈ Av or arx ∈ Av or brx ∈ Av. Then either (abx)v ⊆ A

or (arx)v ⊆ A or (brx)v ⊆ A, implies either asblxh ⊆ A or asrkxh ⊆ A or blrkxh ⊆ A.
Thus A is a classical T-ABSO f. subm. of X. �

Theorem 3.5. Let f : M1 −→ M2 be an epimorphism and X1, X2 are f. m. of an R-m.
M1, M2 respectively.

1. If B is a classical T-ABSO f. subm. of X2, then f −1(B) is a classical T-ABSO f.
subm. of X1.

2. If A is a classical T-ABSO f. subm. of X1 such that ker(f ) ⊆ A, then f (A) is a
classical T-ABSO f. subm. of X2.

Proof.

(1) Since f is epimorphism, f −1(B)is a proper f. subm. of X1. Let asblrkxv ⊆
f −1(B) for f. singletons as , bl , rk of R and xv ⊆ X1. Hence asblrkf (xv) ⊆ B,
then either asblf (xv) ⊆ B or asrkf (xv) ⊆ B or blrkf (xv) ⊆ B, hence asblxv ⊆
f −1(B) or asrkxv ⊆ f −1(B) or blrkxv ⊆ f −1(B). Thus f −1(B) is a classical
T-ABSO f. subm. of X1.

(2) Let asblrkyh ⊆ f (A) for f. singletons as , bl , rk of R and yh ⊆ X2, then there
exists xv ⊆ X1 such that yh = f (xv) since f is onto, hence f (asblrkxv) ⊆ f (A).
Since ker(f ) ⊆ A, we get asblrkxv ⊆ A. So that asblxv ⊆ A or asrkxv ⊆ A or
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blrkxv ⊆ A. Hence asblyh ⊆ f (A) or asrkyh ⊆ f (A) or blrkyh ⊆ f (A).Thus
f (A) is a classical T-ABSO f. subm. of X2. �

Proposition 3.6. Let X be f. m. of an R-m. M and A, B be classical prime f. subm. of
X. Then A ∩ B is a classical T-ABSO f. subm. of X.

Proof. Let asblrkxv ⊆ A ∩ B for f. singletons as , bl , rk of R and xv ⊆ X. Since A and
B are classical prime f. subm., then we can assume that asxv ⊆ A and blxv ⊆ B. Then
asblxv ⊆ A ∩ B. So that A ∩ B is a classical T-ABSO f. subm. of X. �

Proposition 3.7. Let A be a proper f. subm. of f. m. X of an R-m. M .

1. If A is T-ABSO f. subm. of X, then A is a classical T-ABSO f. subm. of X.

2. A is a classical prime subm. of X if and only if A is T-ABSO f. subm. of X and
(A :R X) is a prime f. ideal of R.

Proof.

(1) Let asblrkxv ⊆ A for f. singletons as , bl , rk of R and xv ⊆ X. Since A is T-ABSO
f. subm., then either asrkxv ⊆ A or blrkxv ⊆ A or asbl ⊆ (A :R X). If asrkxv ⊆ A

or blrkxv ⊆ A, then we are done. If asbl ⊆ (A :R X), then asblX ⊆ A, hence
asblxv ⊆ A. Thus is a classical T-ABSO f. subm. of X.

(2) ( �⇒ ) Let A is a classical prime f. subm., then A is T-ABSO f. subm. Now, let
asbl ⊆ (A :R X), then asblX ⊆ A, hence asblxv ⊆ A for f. singleton xv ⊆ X.
Since A is a classical prime f. subm., asxv ⊆ A or blxv ⊆ A, hence as ⊆ (A :R X)
or bl ⊆ (A :R X). So that (A :R X) is prime f. ideal.
( ⇐� ) Let asblxv ⊆ A for f. singletons as , bl of R and xv ⊆ X. But A is T-ABSO
f. subm., then either asxv ⊆ A or blxv ⊆ A or asbl ⊆ (A :R X). Assume that
asxv � A and blxv � A. Then asbl ⊆ (A :R X) and hence as ⊆ (A :R X) or
bl ⊆ (A :R X). So that asxv ⊆ A or blxv ⊆ A which is a contradication!. Thus A

is classical prime f. subm. �

Remark 3.8. There are some remarks and ex. as follows:

1. The converse of proposition(11)part(1), incorrect for ex.:

Let X : Z3 ⊕ Z4 −→ L such that X(x, y) =
{

1 if (x, y) ∈ Z3 ⊕ Z4

0 o.w.
It is obvious that X be a f. m. of Z3 ⊕ Z4 as Z-m.

And A : Z3 ⊕ Z4 −→ L such that A(x, y) =
{

v if (x, y) = (0̄, 0̄)
0 o.w.

∀v ∈ L

It is obvious that A are f. subm. of X.
Now, Av = (0̄, 0̄) and Xv = Z3 ⊕ Z4 as Z-m.
where Av is a classical T-ABSO subm. since 2.3.1(2̄, 2̄) = (0̄, 0̄) then 2.3(2̄, 2̄) =
(0̄, 0̄), but Av is not T-ABSO subm. since 2.3(2̄, 2̄) = (0̄, 0̄), but 2(2̄, 2̄) = (1̄, 0̄) �=
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(0̄, 0̄), 3(2̄, 2̄) = (0̄, 2̄) �= (0̄, 0̄) and 2.3 /∈ annXv = 12Z. So that A is a classical
T-ABSO f. subm., but A is not T-ABSO f. subm.

2. However the converse is correct if X is cyclic f. m. this fact they are coincide
as follows: Let A be a classical T-ABSO f. subm. and let asblxv ⊆ A. Since X

is cyclic f. m., X =< yh > for some f. singleton yh ⊆ X, then xv = rkyh for
some f. singleton rk of R. So that asblrkyh ⊆ A and hence either asblyh ⊆ A

or asrkyh ⊆ A or blrkyh ⊆ A, implies that asbl ⊆ (A :R X) or asxv ⊆ A or
blxv ⊆ A. Thus A is T-ABSO f. subm. of X.

3. Every quasi-prime f. subm. see[7], is a classical T-ABSO f., but the converse in
general incorrect for ex.:

Let X : Z −→ L such that X(y) =
{

1 if y ∈ Z

0 o.w.
It is obvious that X be a f. m. of Z as Z-m.

Let A : Z −→ L such that A(y) =
{

v if y ∈ 6Z

0 o.w.
∀v ∈ L

It is obvious that A are f. subm. of X.
Now, Av = 6Z is T-ABSO subm. of Z , since if x, y, z, r ∈ Z and xyzr ∈ 6Z = Av
then at least one of x, y, z and r is even or one of them is 6. Then either xyr ∈ Av or
xzr ∈ Av or yzr ∈ Av. By[8] then Av is classical T-ABSO subm. of Z .But Av is
not quasi-prime, since 2.3.1 ∈ 6Z = Av but 2.1 /∈ 6Z = Av and 3.1 /∈ 6Z = Av.
So that A is classical T-ABSO f. subm., but A is not quasi-prime f. subm.

The following theorem gives a characterization of classical T-ABSO f. subm.

Theorem 3.9. Let X be f. m. of an R-m. M and A be a proper f. subm. of X. The
following expressions are equivalent:

1. A is a classical T-ABSO f. subm.;

2. For every f. singleton as , bl , rk of R, (A :X asblrk) = (A :X asbl) ∪ (A :X
asrk) ∪ (A :X blrk);

3. For every f. singleton as , bl of R and xv ⊆ X with asblxv � A, (A :R asblxv) =
(A :R asxv) ∪ (A :R blxv);

4. For every f. singleton as , bl of R and xv ⊆ X with asblxv � A, (A :R asblxv) =
(A :R asxv) or (A :R asblxv) = (A :R blxv);

5. For every f. singleton as , bl of R, xv ⊆ X and every f. ideal I of R with asblIxv ⊆
A, then either asblxv ⊆ A or asIxv ⊆ A or blIxv ⊆ A;

6. For every f. singleton as of R, xv ⊆ X and every f. ideal I of R with asIxv � A,
(A :R asIxv) = (A :R asxv) or (A :R asIxv) = (A :R Ixv);
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7. For every f. singleton as of R, xv ⊆ X and every and every f. ideal I , J of R with
asIJxv ⊆ A, then either asIxv ⊆ A or asJxv ⊆ A or IJxv ⊆ A;

8. For every f. ideal I , J of R and xv ⊆ X with IJxv � A, (A :R IJxv) = (A :R Ixv)
or (A :R IJxv)(A :R Jxv);

9. For every f. ideal I , J , H of R and xv ⊆ X with IJH ⊆ A, then either IJxv ⊆ A

or IHxv ⊆ A or JHxv ⊆ A;

10. For every f. singleton xv ⊆ X \ A, (A :R xv) is T-ABSO f. ideal of R.

Proof. (1) �⇒ (2) Assume that A is a classical T-ABSO f. subm. of X. Let xv ⊆
(A :X asblrk) for f. singleton xv ⊆ X, hence asblrkxv ⊆ A, Then either asblxv ⊆ A

or asrkxv ⊆ A or blrkxv ⊆ A. Thus xv ⊆ (A :X asbl) or xv ⊆ (A :X asrk) or
xv ⊆ (A :X blrk). So that (A :X asblrk) = (A :X asbl) ∪ (A :X asrk) ∪ (A :X blrk).
(2) �⇒ (3) Let asblxv � A for some f. singletons as , bl of R and xv ⊆ X. Suppose that
rk ⊆ (A :R asblxv), hence asblrkxv ⊆ A and so xv ⊆ (A :X asblrk). Since asblxv � A,
xv � (A :X asbl). Then by part(1), xv ⊆ (A :X asrk) or xv ⊆ (A :X blrk), hence
rk ⊆ (A :R asxv) or rk ⊆ (A :R blxv). Thus (A :R asblxv) = (A :R asxv) ∪ (A :R blxv);
(3) �⇒ (4) Since (A :R asblxv) is f. ideal of R and (A :R asblxv) = (A :R asxv)∪ (A :R
blxv). So that either (A :R blxv) ⊆ (A :R asxv) or (A :R asxv) ⊆ (A :R blxv). Thus
(A :R asblxv) = (A :R asxv) or (A :R asblxv) = (A :R blxv).
(4) �⇒ (5) Let for some f. singletons as , bl of R, xv ⊆ X and for f. ideal I of R,
asblIxv ⊆ A. Then I ⊆ (A :R asblxv). If asblxv ⊆ A, then the proof is complete.
Suppose that asblxv � A. Hence by part(4), we have that I ⊆ (A :R asxv) or I ⊆ (A :R
blxv); that is asIxv ⊆ A or blIxv ⊆ A.
(5) �⇒ (6) �⇒ (7) �⇒ (8) �⇒ (9) The proofs are similar to the previous implications.
(9) �⇒ (10) It is obvious.
(9) �⇒ (1) It is obvious.
(10) �⇒ (1) Is fiddling. �

Proposition 3.10. Let X be f. m. of an R-m. M and {Bi : i ∈ I } be a chain of classical
T-ABSO f. subm. of X. Then ∩i∈IBi is a classical T-ABSO f. subm. of X.

Proof. Assume that asblrkxv ⊆ ∩i∈IBi for some f. singletons as , bl , rk of R and xv ⊆ x.
Suppose that asblxv � ∩i∈IBi and asrkxv � ∩i∈IBi . Hence there are n, m ∈ I where
asblxv � Bn and asrkxv � Bm. Then for every Bh ⊆ Bn and every Bd ⊆ Bm, we have
that asblxv � Bh and asrkxv � Bd . So that for every f. subm. Bu such that Bu ⊆ Bn

and Bu ⊆ Bm we have blrkxv ⊆ Bu. Thus blrkxv ⊆ ∩i∈IBi . �

The product AB = IJX where I , J f. ideal of R and A, B f. subm. of a multiplica-
tion f. m. of an R-m. M such that A = IX and B = JX see[6].
By using this definition of product of f. subm., we give the following characterization of
classical T-ABSO f. subm. under conditions a finitely generated faithful multiplication
f. m.
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Proposition 3.11. Let X be a multiplication f. m. of an R-m. M and A be a proper f.
subm. of X. The following expressions are equivalent:

1. A is a classical T-ABSO f. subm. of X;

2. If A1A2A3xv ⊆ A for some f. subm. A1, A2, A3 of X and f. singleton xv ⊆ X,
then either A1A2xv ⊆ A or A1A3xv ⊆ A or A2A3xv ⊆ A.

Proof. (1) �⇒ (2) Let A1A2A3xv ⊆ A for some f. subm. A1, A2, A3 of X and f.
singleton xv ⊆ X. Since X is multiplication f. m., there are f. ideals I , J , K of R such
that A1 = IX, A2 = JX and A3 = KX. Then IJKxv ⊆ A and so either IJxv ⊆ A or
IKxv ⊆ A or JKxv ⊆ A. Thus either A1A2xv ⊆ A or A1A3xv ⊆ A or A2A3xv ⊆ A.
(2) �⇒ (1) Assume that IJKxv ⊆ A for f. ideals I , J , K of R and f. singleton xv ⊆ X.
It is adequate to set A1 = IX, A2 = JX and A3 = KX in part(2), we get A is a classical
T-ABSO f. subm. of X. �

In [10] Quartararo and Butts called that” A commutative ring R is a u-ring provided
R has the property that an ideal contained in a finite union of ideals must be contained
in one of those ideals; and a um-ring is a ring R with the property that an R-m. which
is equal to a finite union of subm. must to equal to one of them.”

Now, we shall fuzzify this concept as follows:

Definition 3.12. A commutative ring R is a u-ring provided R has the property that f.
ideal contained in a finite union of f. ideals must be contained in one of those f. ideals;
and a um-ring is a ring R with the property that an R-m. which is equal to a finite union
of f. subm. must to equal to one of them.

Theorem 3.13. Let R be a um-ring, X be f. m. of an R-m. M and A be a proper f.
subm. of X. The following expressions are equivalent:

1. A is a classical T-ABSO f. subm.;

2. For every f. singleton as , bl , rk of R, (A :X asblrk) = (A :X asbl) or (A :X
asblrk) = (A :X asrk) or (A :X asblrk) = (A :X blrk);

3. For every f. singleton as , bl , rk of R and every f. subm. B of X with asblrkB ⊆ A

implies that asblB ⊆ A or asrkB ⊆ A or blrkB ⊆ A;

4. For every f. singleton as , bl of R and every f. subm. B of X with asblB � A,
(A :R asblB) = (A :R asB) or (A :R asblB) = (A :R blB);

5. For every f. singleton as , bl of R, every f. ideal I of R and every f. subm. B of X

with asblIB ⊆ A implies that asblB ⊆ A or asIB ⊆ A or blIB ⊆ A;

6. For every f. singleton as of R, every f. ideal I of R and every f. subm. B of X

with asIB � A, (A :R asIB) = (A :R asB) or (A :R asIB) = (A :R IB);
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7. For every f. singleton as of R, every f. ideal I , J of R and every f.subm. B of X,
asIJB ⊆ A implies that asIB ⊆ A or asJB ⊆ A or IJB ⊆ A;

8. For every f. ideal I , J of R and every f. subm. B of X with IJB � A, (A :R
IJB) = (A :R IB) or (A :R IJB) = (A :R JB);

9. For every f. ideal I , J , H of R and every f. subm. B of X with IJHB ⊆ A

implies that IJB ⊆ A or IHB ⊆ A or JHB ⊆ A;

10. For every f. subm. B of X not contained in A, (A :R B) is T-ABSO f. ideal of R.

Proof. By the same method to the proof of theorem (3.9). �

Proposition 3.14. Let R be a um-ring and A be a proper f. subm. of f. m. X of an
R-m. M . Then A is a classical T-ABSO f. subm. of X if and only if A is 3-ABSO f.
subm. of X and (A :R X) is T-ABSO f. idealof R.

Proof. ( �⇒ ) Let A is a classical ABSO f. subm., then A is 3-ABSO f. subm. and
(A :R X) is T-ABSO f. ideal of R by theorem(11).
( ⇐� ) Let asblrkxv ⊆ A for f. singletons as , bl , rk of R and xv ⊆ X. such that
asblxv � A, asrkxv � A and blrkxv � A. Thus asblrk ⊆ (A :R X). Hence either
asbl ⊆ (A :R X) or asrk ⊆ (A :R X) or blrk ⊆ (A :R X) this is a contradication!. So
that A classical T-ABSO f. subm. �

Proposition 3.15. Let X be f. m. of an R-m. M and A be a classical T-ABSO f. subm.
of X. The following expressions hold:

1. For every f. singleton as , bl , rk of R and xv ⊆ X, (A :R asblrkxv) = (A :R
asblxv) ∪ (A :R asrkxv) ∪ (A :R blrkxv);

2. If R is a u-ring, then for every f. singleton as , bl , rk of R and xv ⊆ X, (A :R
asblrkxv) = (A :R asblxv) or (A :R asblrkxv) = (A :R asrkxv) or (A :R
asblrkxv) = (A :R blrkxv).

Proof.

(1) Let f. singletons as , bl , rk of R and xv ⊆ X. Assume that cn ⊆ (A :R asblrkxv),
hence asblrk(cnxv) ⊆ A, then either asbl(cnxv) ⊆ A or asrk(cnxv) ⊆ A or
blrk(cnxv) ⊆ A. Thus cn ⊆ (A :R asblxv) or cn ⊆ (A :R asrkxv) or cn ⊆ (A :R
blrkxv). So that (A :R asblrkxv) = (A :R asblxv) ∪ (A :R asrkxv) ∪ (A :R blrkxv).

(2) By using part(1). �

Proposition 3.16. Let R be a um-ring, X be a multiplication f. m. of an R-m. M and
Abe a proper f. subm. of X. The following expressions are equivalent:

1. A is a classical T-ABSO f. subm. of X;
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2. If A1A2A3A4 ⊆ A for some f. subm.A1, A2, A3, A4 of X, then either A1A2A4 ⊆
A or A1A3A4 ⊆ A or A2A3A4 ⊆ A;

3. If A1A2A3 ⊆ A for some f. subm.A1, A2, A3 of X, then either A1A2 ⊆ A or
A1A3 ⊆ A or A2A3 ⊆ A;

4. A is T-ABSO f. subm. of X;

5. (A :R X) is T-ABSO f. ideal of R.

Proof. (1) �⇒ (2) Let A1A2A3A4 ⊆ A for some f. subm.A1, A2, A3, A4 of X. Since X

is a multiplication f. m., there are f. ideals I , J , K of R such that A1 = IX, A2 = JX,
A3 = KX. Hence IJKA4 ⊆ A, then either IJA4 ⊆ A or IKA4 ⊆ A or JKA4 ⊆ A.
Hence either A1A2A4 ⊆ A or A1A3A4 ⊆ A or A2A3A4 ⊆ A by theorem (3.13).
(2) �⇒ (3) Is simple.
(3) �⇒ (4) Assume that IJB ⊆ A for some f. ideals I , J of R and some f. subm. B of
X. It is adequate to set A1 = IX, A2 = JX, A3 = B in part(3).
(4) �⇒ (1) By part(1) of proposition (3.7).
(4) �⇒ (5) Let asblrk ⊆ (A :R X) for f. singletons as , bl , rk of R. If asrk � (A :R X)
and blrk � (A :R X), then there exist f. singletons xv, yh ⊆ X \ A such that asrkxv � A

and blrkyh � A. Since asbl(rk(xv + yh)) ⊆ A and A is T-ABSO f. subm., then either
asbl ⊆ (A :R X) or asrk(xv + yh) ⊆ A or blrk(xv + yh) ⊆ A. If asrk(xv + yh) ⊆ A and
asrkxv � A, then we have asrkyh � A. So that asbl(rkyh) ⊆ A and blrkyh � A, hence
asbl ⊆ (A :R X). By the same method if blrk(xv + yh) ⊆ A, we get asbl ⊆ (A :R X).
Thus (A :R X) is T-ABSO f. ideal of R.
(5) �⇒ (4) Let IJB ⊆ A for some f. subm. B of X. Since X is multiplication f. m.,
then there is f. ideal K of R such that B = KX. So that IJK ⊆ (A :R X), then either
IJ ⊆ (A :R X) or IK ⊆ (A :R X) or JK ⊆ (A :R X). If IJ ⊆ (A :R X), then the
proof is complete. If IK ⊆ (A :R X), then IKX = IB ⊆ A. By the same method if
JK ⊆ (A :R X), then we have JB ⊆ A. �
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