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Abstract

Let M is a unitary R-module over R be a commutative ring with identity and let
X be a fuzzy module of an R-module M. Our aim in this paper is studing small
T-ABSO fuzzy submodules and classical T-ABSO fuzzy submodules. Many new
basic properties and characterizations of these concepts are given and relationship
these concepts with T-ABSO fuzzy submodules.
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1. Introduction

In this paper all ring are commutative with 1 # 0 and all modules are unitary. Prime
submodule presented by C. P. Lu in [4] where “A prime submodule N of an R-module
M over a commutative ring R, N # M with property a € R, x € M , ax € N implies
that x € N ora € (N : M)”. This concept is generalized to concept of prime fuzzy
submodule by Rabi H.J. (see[11]). Layla S. Mahmood in [15] presented the definition
of small prime submodule where "a proper submodule N of an R-module M is called
small prime submodule if wheneverr € Rand x € M with < x >X M andrx € N
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implies that eitherx € N orr € (N :g M). In[13] presented the concept of fuzzy small
submodule where “let M be a module over aring R, and let A € F(M). Then A is said
to be fuzzy small submodule of M if for any B € F(M) satisfying B # X s implies
A+ B # Xy. The notation A < r M indicates that A is fuzzy small submodule of
M. Where F(M) is a set of all fuzzy submodule of M. A. Badawi in[2] presented the
concept of 2-absorbing ideal where “A properideal I # 0 of R is said to be a 2-absorbing
ideal if wheneverr,b,z € Randrbz € I thenrb € [ orrz € I or bz € I”. Rabah K. in
[14] generalized this concept to 2-absorbing fuzzy ideal where “A nonzero proper fuzzy
ideal I of R is called 2-absorbing fuzzy ideal if for each f. singletons ag, by, ry of R,
Vs,l,k € L, and asbyry C I, then either agh; C I or agry C I or byry € I”. while ALY.
Darani, F. Soheilnia in [3]. presented the definition of 2-absorbing submodule where
“let N < M, N is called 2-absorbing submodule of M if whenever r,b € R, x ¢ M
and rbx € N,thenrx € Norbx € Norrb € (N : M)’. Abdulrahman A.H. in
[1] presented two concepts:small 2-absorbing submodule where “A proper submodule
N of an R-module M is called a small 2-absorbing submodule, if whenever a,b € R
and < m > M, abm € N implies that am € N or bm € N orab € (N :g M)
and small 2-absorbing ideal where “A proper ideal I of a ring R is small 2-absorbing
if it is small 2-absorbing submodule of the R-module R. A classical prime submodule
presented by M. Behboodi in [12] where “A proper submodule N of an R-module M is
called a classical prime submodule, if for eachm € M and elements a,b € R, abm € N
implies that am € N or bm € N. H. Mostafanasab gave a generalization of classical
prime submodule to a classical 2-absorbing submodule where “A proper submodule N
of an R-module M is called a classical 2-absorbing submodule, if whenever a, b, c € R
and m € M with abcm € N,then abm € N oracm € N or bcm € N”.

This paper be composed of two sections.
In sec. (1) we present the definitions: T-ABSO fuzzy submodules, small prime fuzzy
submodules, small T-ABSO fuzzy ideals and small T-ABSO fuzzy submodules and we
give some characterizations of small T-ABSO fuzzy submodules. Also many properties
and outcomes of these concepts are given.
In sec. (2) we present the definitions: classical prime submodule and classical T-ABSO
fuzzy submodule, many basic properties and outcomes are studied.
Note that we denote to fuzzy: f., module:m., submodule:subm., [0,1]: L , otheroiwse:
o.w. and example: ex.

2. Small T-ABSO F. Subm.

In this sec., we introduce the concepts small prime f. subm., T-ABSO f. subm., small
T-ABSO . ideal. and small T-ABSO f. subm. and some of propostions and relationship
between small T-ABSO f. subm. with small prime f. subm. and T-ABSO f. subm.

Now, we shall fuzzify the definitions: small prime subm., T-ABSO subm., small
T-ABSO ideal and small T-ABSO subm. as follows:

Definition 2.1. A proper f. subm. A of f. m. X of an R-m. M is called small prime f.
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subm. if whenever f. singleton a; of R and x, C X with < x, >< X and a;x, € A
implies either x, € Aoras; C (A :g X).

The following proposition specificates small prime f. subm. in terms of its level
subm.

Proposition 2.2. Let A is small prime f. subm. of f. m. X of an R-m. M. if and only
if the level subm. A, is small prime subm. of X, Vv € L.

Proof. (= )Letax € A,and < x > X, fora € R,then A(ax) >vand < x >, < X
hence (ax), € A. Sothatagx; C A, Vs, k € L, and < x; >< X where v = min{s, k}.
Since A is small prime f., then either x; € A ora; C (A :g X). Hence either x € A, or
a € (A, g X,)since (A :g X), = (A, :g X,) by [7]. Thus A, is small prime subm. of
X,.

(< ) Letagxy € Aand < x;x >« X for f. singleton a; of R, Vs,k € L. Hence
(ax), € Aand < x >, < X where v = min{s,k}, sothatax € A, and < x >« X,.
But A, is small prime, then either x € A, ora € (A, :g X,), hence either x; € A or
as € (A :g X). Thus A is small prime f.subm. of X. |

Definition 2.3. Let X be f. m. of an R-m. M. A proper f. subm. A of X is called
T-ABSO f. subm. if whenever ay, b; be f. singletons of R, and x, C X, Vs,l,v € L,
such that a,b;x, C A then either agh; C (A :g X) or azx, C A or byx, C A.

The following proposition specificates T-"ABSO f. subm. in terms of its level subm.

Proposition 2.4. Let A is T-ABSO f. subm. of f. m. X of of an R-m. M if and only if
the level subm. A, is T-ABSO subm. of X,, Vv € L.

Proof. ( = )Let abx € A, for each a,b € R and x € X,, then A(abx) > v, so
(abx), € A implies that a;b;xy € A where v = min{s,l,k}. Since A be a T-ABSO f.
subm., then either a;b; C (A :g X) orasx;y € A or bjx; C A. hence (ab), C (A :g X)
or (ax), € Aor(bx), € A. Sothatab € (A, :g X,) since (A :g X), = (A, :g X,) by
[7]orax € A, or bx € A,. Thus A, is a T"TABSO subm. of X,.

( < ) Let aghixy < A for f. singletons ag, b; of R and x; € X, Vs,l,k € L, hence
(abx), € A where v = min{s,l,k} so that abx € A,. But A, is T-ABSO subm., then
either ab € (A, :g X,)orax € A, orbx € A, ,since (A, :r X,) = (A :r X), by [7],
hence ab € (A :g X),. Then either (ab), C (A :g X) or (ax), € A or (bx), C A,
implies either a;b; € (A :g X) or agxy € A or byxy € A. Thus A be T-ABSO f. subm.
of X. [ |

Definition 2.5. A proper f. subm. A of f. m. X of an R-m. M is called small " ABSO
f. subm. if whenever f. singletons ag,b; of R and x, € X such that < x, > X,
asb;x, € A implies either azx, € A or bjx, € Aoragh; C (A :g X).

Definition 2.6. A proper f. ideal I of aring R is a small T-ABSO . if it is small " ABSO
f. subm. of the R-m. R, equivalent; a proper f. ideal / of a ring R is small T-ABSO f.
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if whenever f. singletons ag, by, ry of R such that < ry >< R, agbjry C I, then either
agry € T orbyry C 1 oraghy C 1.

The following proposition specificates small T-ABSO f. subm. in terms of its level
subm.

Proposition 2.7. Let A is small T-ABSO f. subm. of f. m. X of an R-m. M. if and
only if the level subm. A, is small T-ABSO subm. of X, forall v € L.

Proof. ( = ) Letabx € A, and < x ><K X, for a,b € R, then A(abx) > v and
< x >,< X hence (abx), C A. Sothat a;bjx;y C A, Vs,l,k € L,and < x; > X
where v = min{s,[, k}. Since A is small T-ABSO f., then either a;x; C Aorbjx; C A
or agh; € (A :g X). Hence either (ax), € A or(bx), C A or (ab), € (A :g X), so
either (ax) € A, orbx € A,orab € (A, :g X,) since (A :g X), = (A, :g X,) by [7].
Thus A, is small T-ABSO subm. of X,,.

(<) Letaghixy € A and < x; >< X for f. singletons ay, b; of R, Vs,l,k € L. Hence
(abx), € Aand < x >, X wherev = min{s,[,k},sothatabx € A, and < x ><K X,.
But A, is small T-ABSO, then either ax € A, or bx € A, orab € (A, :g X,), hence
either agx; € A or byxip € A or agh;y € (A :g X). Thus A is small T-ABSO f.subm.
of X. [ |

Remark 2.8. There are many remarks and ex. as follows:

1. if A is a small prime f. subm. of f. m. X of an R-m. M, then A is a small - ABSO
f. subm. of X.

Proof. Let agb;x, € A for f. singletons a,b; of R and < x, >< X, hence a; <
bix, >C A and < byx, >< X. Since A is a small prime f. subm., then either b;x, C A
ora, C (A :g X). Soeither byjx, € A or agx, € A. Thus A is small T-ABSO f. subm.

[ |

The converse incorrect for ex.:

Let X : Z4 —> L such that X(y) = { L ity € 25

0 o.w.
It is obvious that X be a f. m. of Zy4 as Z-m.

Let A: Z>4 —> L such that A(y) = ‘(}) :)fv); €12 VvelL
Let B : Zos —> L such that B(y) = (‘; gvyv €O v, ep
Let C : Zoy —> L such that C(y) = (v) f\i €O v er

It is obvious that A, B and C are f. subm. of X.

Now, A, = (12), B, = (6), C, = (0) and X, = Zp4 as Z-m.

where A, is small T-ABSO subm. since A,, B, and C,, are only small subm. in X,. and
2.1.(6) € A, and 2.(6) € A,..
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2.4.(6) € A, and 4.(6) € A,.

3.2.(2) € A, but (2) not small in X,

However A, is not small prime since 2.(6) € A, but (6) ¢ Ayand2 ¢ (A, :g X)) = 12Z.
Hence A is small T-ABSO f. subm. but A is not small prime f. subm.

1. Itis obvious that every T-ABSO f. subm. is small T-ABSO f. subm. However the
converse incorrect, for ex.:

Let X : Z — L such that X(y) = Lifyez

0 o.w.
It is obvious that X be f. m. of Z as Z-m.

Let A : Z —> L such that A(y) = B gv);ezoz

VvelL

It is obvious that A is f. subm. of X.

A, =20Z and X, = Z as Z-m. where A, is a proper subm. of X, if abx € A,
fora,b € Z and < x ><K Z. Since (0) is only small subm. in X, = Z, so that
x = 0. Then ax = 0 and bx = 0. Hence A, is small T-ABSO this satisfies for
each proper subm. of Z. But A, is not T-ABSO subm. since 2.2.5 € A, but
25¢ A,and 2.2 ¢ A,. So that A is small T-ABSO f. subm., but it is not T-ABSO

f. subm.

The following theorem is a characterization of small T-ABSO f.subm.

Theorem 2.9. Let A be a proper f. subm. of f. m. X of an R-m. M. Then A is a
small T-ABSO f. subm. if and only if whenever for singletons ay,b; of R, B < X,
asbjB C A, then eithera,B C AorbyB C Aoragh; € (A g X).

Proof. ( = ) Suppose that asbyB C A, but a;B ¢ A and bjB ¢ A, so there exist
f. singletons x,,y, € B such that a;x, ¢ A, bjy, ¢ A. Then < x, >« X and
< yp >< X since x,, y, € B and B < X by[13]. Now a;b;x, € A and asx, € A,
hence either bjx, € A or asb; C (A g X). If agh; C (A :g X) then we are done. If
bix, € A. Meditate asb;(x, + yp) € A and < x, + y; ><K X since < x, > X and
< yp >< X by[5]. Since A is a small T-ABSO f. subm., then either a;(x, + yy) C A
or by(x, + yn) € Aorashy € (A :g X). If agby € (A :g X), then we are done. If
as(x, + yn) € A. Since agx, ¢ A, hence asy, ¢ A. Butasbyy, € A, agyn € A and
bryy Q A sothatash; € (A :g X). If by(x, + yn) € A, then similary asb; € (A :g X).
( <) It is obvious. [ |

Proposition 2.10. Let A be a proper f. subm. of f. m. X of an R-m. M, then the
following expressions are equivalent:

1. Aisasmall T-ABSO f. subm. of X.
2. (A :x I)is asmall T-ABSO f. subm. for each f. ideal / of R, I X Q A.

3. (A :x ay)is a small T-ABSO f. subm. for each f. singleton a; of R, a;X SZ A.
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Proof. (1) = (2) Let rpbyx, € (A :x 1) and < x, > X for f. singletons r¢, b; of R
and x, € X,sorb; < x, >C (A :x I), hence rybyl < x, >C A. But < x, > X
then < Ix, >< X and since A is a small T-ABSO f. subm., then eitherr; < Ix, >C A
or by < Ix, >C Aorrby C (A :g X) by theorem(5). So that rpx, € (A :x I)or
bix, C(A:x Iorryb; C (A g X).

(2) = (3) It is obvious.

(3) = (1) It follows directly since A = (A :x 1,)

_ 1 ify=1 1 ifyeR _ _
where 1, : R —> L suchthat 1,(y) = { 0 ify#1 < { 0 o, =Ar(y) =1
by [16]
then A is a small T-ABSO f. subm. of X. [ |

Proposition 2.11. Let f : M; — M, be an epimorphism and X, X; are f. m. of an
R-m. M, M; respectively. Let A be a small T-ABSO f. subm. of X», then f_l(A) is a
small T-ABSO f. subm. of X;.

Proof. Ttis obvious that £ ~'(A) a proper f. subm. of X; since A is a proper f. subm. of
Xo. Let ripbyx, C f_l(A) and < x, >< X for f. singletons r¢, b; of R and x, € X7,
then ri by f(x,) € A. But < f(x,) >< X, by [5]. Since A is a small T-ABSO f. subm.,
then either r; f(x,) € Aorb; f(x,) € Aorrgb; C (A :g X2). Hence ryx, C f_](A) or
bix, € f7N(A) or by S (f7(A) ik X)), u

Remark 2.12. A homorphic image of small T-ABSO f. subm. may be not small T-
ABSO f. subm. we can show by the following ex.:
) 1 ifyeZy
Let X : Z4 —> L such that X(y) = 0 ow.
It is obvious that X be a f. m. of Zy4 as Z-m.

LetA:Zz4—>LsuchthatA(y)={ v ifye@) Vvel

0 o.w.

It is obvious that A are f. subm. of X.

Now, A, = (2), X, = Z»4 as Z-m.

where f : Zys —> Zp4 such that f(y) = 4y Vy € Zy4, Ay is a small T-ABSO
subm. But f(A,) =< 8 > is not small T-ABSO subm. since 2.2. < 6 >e< 8 > and
<6>kK X, but2. <6>¢<8>and22 ¢ (A, :z X,) = 8Z. So that A is small
T-ABSO f. subm., but f(A) is not small T"ABSO f. subm.

Proposition 2.13. Let A be a small T-ABSO f. subm. of f. m. of an R-m. M, then
(A :g X)is asmall T-ABSO f. ideal of R.

Proof. Letagbiry € (A :g X)and < ry >< R for f. singletons ag, b;, r of R. Suppose
that agry € (A :g X) and byri € (A :g X). Now for any f. singleton x, C X, define
f R — Xby f(d,) = d,x,. Itis obvious that f is well-defined and homomorphism.
Since < ry >< R,then < rpx, >< X ...(1). By assumption there exist yj, g, € X such
thatagriy, € A and byregm € A. Butaghi(riyn +rigm) € Aandby(l) < reyp >< X,
< rrgm >< X, then < ryyy + rrgm ><< X by [5]. Then either ag(rryy + rigm) C A
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or by(rryn + rkgm) € Aoraghy € (A g X). If aghy C (A :g X) then we are done.
If as(reyn + regm) S A, asriyn SZ A, we get asrkgm SZ A. But asbiregm S A,
< regm >< X and byrigym € A. Thus aghy € (A :g X). By the same method, if
bi(riyn + regm) S A, then ash; € (A g X). u

The definitions of faithful f. m. see [11], the finitely generated f. m. see [9] and the
multiplication f. m. see [7].

The converse of proposition (2.13) is true under certain conditions as we show by
following proposition.

Proposition 2.14. Let A be a proper f. subm. of a faithful finitely generated multipli-
cation f. m. X of an R-m. M. If (A :p X)is a small T-ABSO f. ideal, then A is a small
T-ABSO f{. subm.

Proof. Let agb;x, € A and < x, >< X for f. singletons ag, b; of R and x, C X. But
X is a faithful finitely generated multiplication f. m., then < x, >= [ X for some f.
ideal I of R and I <« R(sinceif I + J = R for f. ideal j of R, IX + JX = RX,
hence < x, > +JX = X. But < x, > X, sothat JX = X. Thus J = R). Hence
ashjI X C A,soagh;l € (A :g X). Then either a;l C (A :g X)or bl C (A :g X)or
asb; € (A :g X) by theorem (3.5). Sothatas; /X C Aorb I X C Aoragh; C (A g X).
Thus agx, € A or bjx, C Aoragh; C (A :g X). |

3. Classical T-ABSO F. Subm.

In this sec. we present the concept of a classical prime f. subm. and a classical " ABSO f.
subm. A classical T-ABSO f. subm. as a generalization of a classical prime, many basic
properties, results and relationships between a classical T-ABSO f. subm., T-ABSO f{.
subm. and a classical prime f. subm. are given.

M. Behboodi presented a classical prime submodule in [12] and H. Mostafanasab gave
a generalization of classical prime submodule to a classical 2-absorbing submodule. In
this sec. we shall fuzzify these concepts as follows:

Definition 3.1. Let X be f. m. of an R-m. M. A proper f. subm. is called a classical
prime f. subm. if for f. singletons ay, b; of R and x, C X with ayzb;x, C A, then either
agsx, € Aorbx, C A.

Definition 3.2. Let X be f. m. of an R-m. M. A proper f. subm. is called a classical
T-ABSO f. subm. if for f. singletons ay, b;, ri of R and x, € X with a;b;rix, C A, then
either agbyx, C A or agriyx, € A or byrix, C A.

The following proposition specificates a classical prime f. subm. in terms of its level
subm.

Proposition 3.3. Let A is a classical prime f. subm. of f. m. X of an R-m. M. if and
only if the level subm. A, is a classical prime subm. of X, Vv € L.
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Proof. ( = ) Letabx € A, fora € R, then A(abx) > v, hence (abx), C A. So that
asbi;xy € A,Vs,k € L wherev = min{s,l, k}. Since A is a classical prime f., then either
asxy € A or bjx, € A, hence either ax € A, or bx € A,. Thus A, is classical prime
subm. of X,,.

( < ) Let aghjxy € A for f. singletons ag,b; of R and x, € X, Vs,l,k € L. Hence
(abx), € A where v = min{s,l,k}, so that abx € A,. But A, is a classical prime, then
either ax € A, or bx € A,, hence either a;x; € A or bjx, € A. Thus A is classical
prime f.sunm. of X. [

Now, we give the following proposition specificates classical T-ABSO f. subm. in
terms of its level subm.

Proposition 3.4. Let A is a classical T-ABSO f. subm. of f. m. X of of an R-m. M if
and only if the level subm. A, is a classical T-ABSO subm. of X,, Vv € L.

Proof. ( = )Let abrx € A, for each a,b,r € R and x € X,, then A(abrx) > v,
so (abrx), € A implies that a;bjrix, € A where v = min{s,l,k,h}. Since A be a
classical T-ABSO f. subm., then either a;b;x;, € A or agrix, < A or byrix, C A.
hence (abx), € A or (arx), € A or (brx), € A. So that abx € A, orarx € A, or
brx € A,. Thus A, is aclassical T-ABSO subm. of X,.

( < ) Let agbyrgxy, € A for f. singletons ag, by, of R and x, € X, Vs,l,k,h € L,
hence (abrx), € A where v = min{s,l,k,h} so that abrx € A,. But A, is classical
T-ABSO subm., then eitherabx € A,orarx € A,orbrx € A,. Theneither (abx), C A
or (arx), € A or (brx), C A, implies either a;b;x;, C A or asrix, S A or byrixy C A.
Thus A is a classical T-ABSO f. subm. of X. |

Theorem 3.5. Let f : M| —> M, be an epimorphism and X1, X are f. m. of an R-m.
M1, M respectively.

1. If B is a classical T"ABSO f. subm. of X,, then f_l(B) is a classical T"ABSO f.
subm. of X;.

2. If A is a classical T"ABSO f. subm. of X; such that ker(f) C A, then f(A)is a
classical T-ABSO f. subm. of X»,.

Proof.

(1) Since f is epimorphism, f~'(B)is a proper f. subm. of X;. Let asbjrix, C
f_l(B) for f. singletons ag, by, of R and x,, € X{. Hence asb;ry f(x,) C B,
then either agb; f(x,) € B or agry f(x,) € B or byri f(x,) € B, hence azb;x, C
F~YB) or agryx, € f7N(B) or byrgx, € f~Y(B). Thus f~(B) is a classical
T-ABSO f. subm. of X;.

(2) Let agbiryyn < f(A) for f. singletons ag, by, ry of R and y, € X», then there
exists x, € X such that y;, = f(x,) since f is onto, hence f(asb;rix,) € f(A).
Since ker(f) C A, we get agbrix, € A. So that aghjx, C A or agryx, € A or
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biryx, € A. Hence agbiy, € f(A) or asryyn S f(A) or byryy, © f(A). Thus
f(A) is a classical T-ABSO f. subm. of X>. |

Proposition 3.6. Let X be f. m. of an R-m. M and A, B be classical prime f. subm. of
X. Then A N B is a classical T-ABSO f. subm. of X.

Proof. Let agbjryx, € A N B for f. singletons ay, by, ry of R and x, € X. Since A and
B are classical prime f. subm., then we can assume that a;x, € A and b;x, € B. Then
agsbjx, € AN B. So that A N B is a classical " ABSO f. subm. of X. [ |

Proposition 3.7. Let A be a proper f. subm. of f. m. X of an R-m. M.
1. If A is T-ABSO f. subm. of X, then A is a classical T-ABSO f. subm. of X.

2. Ais aclassical prime subm. of X if and only if A is T-ABSO f. subm. of X and
(A :g X)is aprime f. ideal of R.

Proof.
(1) Letagb;rix, < A for f. singletons ay, by, r;, of R and x,, € X. Since A is T-ABSO

f. subm., then either azrirx, € Aorbrix, € Aorasb; C (A g X). Ifagrix, €T A

or byryx, € A, then we are done. If a;b; € (A g X), then a;b; X C A, hence
agh;x, C A. Thus is a classical T-ABSO f. subm. of X.

(2) (= ) Let A is a classical prime f. subm., then A is T-ABSO f. subm. Now, let
asb; € (A :g X), then agh; X C A, hence asbyx, C A for f. singleton x,, C X.
Since A is a classical prime f. subm., a;zx, € A orb;x, € A,hencea; C (A :g X)
or by C (A :g X). Sothat (A :g X)is prime f. ideal.

(<= )Letashx, € A forf. singletons ay, b; of R and x,, € X. But A is T-ABSO
f. subm., then either a;x, € A or bjx, € A or agh; € (A :g X). Assume that
asx, ¢ A and byx, ¢ A. Then asb; € (A :g X) and hence a; € (A g X) or
by C (A :g X). Sothatasx, € A or bjx, C A which is a contradication!. Thus A
is classical prime f. subm. |

Remark 3.8. There are some remarks and ex. as follows:

1. The converse of proposition(11)part(1), incorrect for ex.:
1 if(x,y)eZ3d Zy
Let X : Z3® Z4 —> L such that X(x,y) = 0 ow
It is obvious that X be af. m. of Z3 d Z4 as Z-m.

And A : Z3 ® Z4, —> L such that A(x, y) = B g\fvx’y) =(0,0) YvelLl
It is obvious that A are f. subm. of X.

Now, A, =(0,0) and X, = Z3 @ Z4 as Z-m. L L L
where A, is a classical T-ABSO subm. since 2.3.1(2,2) = (0,0) then 2.3(2,2) =
(0,0), but A, is not T-ABSO subm. since 2.3(2,2) = (0,0), but 2(2,2) = (1,0) #
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(0,0), 3(2,2) = (0,2) # (0,0) and 2.3 ¢ annX, = 12Z. So that A is a classical
T-ABSO f. subm., but A is not T-ABSO f. subm.

However the converse is correct if X is cyclic f. m. this fact they are coincide
as follows: Let A be a classical T"ABSO f. subm. and let a;b;x, € A. Since X
is cyclic f. m., X =< y, > for some f. singleton y;, C X, then x, = ryyy for
some f. singleton r; of R. So that asb;ryy, S A and hence either agb;y, € A
or asryyn, S A or biry, € A, implies that agh; € (A :g X) or agx, € A or
bi;x, C A. Thus A is T-ABSO f. subm. of X.

. Every quasi-prime f. subm. see[7], is a classical T-ABSO f., but the converse in

general incorrect for ex.:
Let X : Z —> L such that X(y) = { (1) 10fv); €z

It is obvious that X be af. m. of Z as Z-m.

LetA:Z—>LsuchthatA(y)={ v iy €6z o oy

0 o.w.

It is obvious that A are f. subm. of X.

Now, A, = 6ZisT-ABSO subm. of Z , sinceifx, y,z,r € Zandxyzr € 6Z = A,
then at least one of x, y, zand r is even or one of them is 6. Then either xyr € A, or
xzr € A, or yzr € A,. By[8] then A, is classical T"ABSO subm. of Z .But A, is
not quasi-prime, since 2.3.1 € 6Z = A, but2.1 ¢ 6Z = A,and 3.1 ¢ 6Z = A,.
So that A is classical T-ABSO f. subm., but A is not quasi-prime f. subm.

The following theorem gives a characterization of classical T-ABSO f. subm.

Theorem 3.9. Let X be f. m. of an R-m. M and A be a proper f. subm. of X. The
following expressions are equivalent:

1.
2.

A is a classical T-ABSO f. subm.;

For every f. singleton ag, by, ry of R, (A :x asbiry) = (A :x asb) U (A :x
asrx) U (A :x birg);

. For every f. singleton ag, b; of R and x, C X with asb;x, SZ A, (A g asbix,) =

(A :g asxy) U (A g bix,);

For every f. singleton ag, b; of R and x, C X with asb;x, gz A, (A g agbix,) =
(A :g agxy) or (A :g agbix,) = (A g bixy);

. For every f. singleton ay, b; of R, x, € X and every f. ideal I of R with asb;Ix, C

A, then either agb;jx, € Aoraglx, C Aorb;lx, C A;

For every f. singleton a; of R, x, € X and every f. ideal I of R with az/x, g A,
(A:paslxy)) = (A :gasx,)or(A:gaslx,)=(A:g Ix));
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7. For every f. singleton a5 of R, x, € X and every and every f. ideal 1, J of R with
aglJx, C A, then eitheragIx, C AoragJx, C AorlJx, C A;

8. Foreveryf. ideal I, J of Randx, € X with I Jx, € A, (A :g IJx,) = (A g Ixy)
or (A:gp IJx,)(A g Jx);

9. Forevery f. ideal I, J, H of R and x,, € X with [JH C A, theneither / Jx, C A
orIHx, CAor JHx, C A;

10. For every f. singleton x,, € X \ A, (A :g x,) is T-ABSO f. ideal of R.

Proof. (1) = (2) Assume that A is a classical T-ABSO f. subm. of X. Let x, C
(A :x agbyry) for f. singleton x,, € X, hence agb;rix, € A, Then either a;b;x, C A
or agrgxy, € A or birgx, € A. Thus x, € (A :x aghy) or x, € (A :x agry) or
xy, € (A :x biry). Sothat (A :x asbiry) = (A :x asby) U (A :x asry) U (A :x biry).

(2) = (3) Letasb;x, Q A for some f. singletons ay, b; of R and x,, € X. Suppose that
rr € (A :g agbix,), hence agb;ryx, A and so x, C (A :x agbiry). Since agh;x, Q A,
Xy Q (A :x agby). Then by part(1), x, € (A :x agrg) or x, € (A :x biry), hence
ri € (A g asxy) orry C (A g byxy). Thus (A :g asbix,) = (A g asx,) U (A g bixy);
(3) = (4) Since (A :g agh;x,)isf. ideal of R and (A :g asbix,) = (A g asx,)U(A g
bix,). So that either (A :g bix,) € (A :g asx,) or (A g asx,) € (A :g bix,). Thus
(A :g asbixy) = (A :g asxy) or (A :g asbix,) = (A :g bixy).

(4) = (5) Let for some f. singletons ag,b; of R, x, € X and for f. ideal I of R,
asbjlx, € A. Then I C (A :g asbhix,). If agb;x,, € A, then the proof is complete.
Suppose that asb;x,, SZ A. Hence by part(4), we have that I C (A :g asx,)or ] C (A g
byx,); thatisaglx, € Aor b Ix, C A.

(5) = (6) = (7) = (8) = (9) The proofs are similar to the previous implications.
(9) = (10) It is obvious.

(9) = (1) It is obvious.

(10) = (1) Is fiddling. [ |

Proposition 3.10. Let X be f. m. of an R-m. M and {B; : i € I} be a chain of classical
T-ABSO f. subm. of X. Then N;¢; B; is a classical T-ABSO f. subm. of X.

Proof. Assume that agb;rix, € N;cy B; for some f. singletons ay, by, ry of R and x,, C x.
Suppose that a;byx, € NierB; and agrix, ¢ NierB;i. Hence there are n,m € I where
asbix, ¢ By and agrix, € By,. Then for every B, C B, and every By By, we have
that agbyx, ¢ By and agrix, ¢ Bg. So that for every f. subm. By such that B, € B,
and B, C B,, we have b;rix, € B,. Thus b;ryx, C N;c1 B;. [ |

The product AB = IJ X where I, J {. ideal of R and A, B {. subm. of a multiplica-
tion f. m. of an R-m. M such that A = I X and B = J X see|[6].
By using this definition of product of f. subm., we give the following characterization of
classical T"ABSO f. subm. under conditions a finitely generated faithful multiplication
f. m.
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Proposition 3.11. Let X be a multiplication f. m. of an R-m. M and A be a proper f.
subm. of X. The following expressions are equivalent:

1. Ais aclassical T-ABSO f. subm. of X;

2. If AjA2A3x, C A for some f. subm. Ay, Ay, A3 of X and f. singleton x, C X,

then either AjA>x, € Aor A{Aszx, € Aor AyAszx, C A.

Proof. (1) = (2) Let A1A2A3x, € A for some f. subm. A, Az, Az of X and f.
singleton x, € X. Since X is multiplication f. m., there are f. ideals I, J, K of R such
that Ay =1X, A, =JX and A3 = KX. Then IJKx, C A and so either I Jx, C A or
IKx, C Aor JKx, C A. Thus either AjAyx, € Aor A{Aszx, C Aor AyAsx, C A.

(2) = (1) Assume that I J K x, C A forf. ideals I, J, K of R and f. singleton x,, C X.
Itis adequatetoset Ay = I X, Ao = JX and A3 = K X in part(2), we get A is a classical
T-ABSO f. subm. of X. |

In [10] Quartararo and Butts called that” A commutative ring R is a u-ring provided
R has the property that an ideal contained in a finite union of ideals must be contained
in one of those ideals; and a um-ring is a ring R with the property that an R-m. which
is equal to a finite union of subm. must to equal to one of them.”

Now, we shall fuzzify this concept as follows:

Definition 3.12. A commutative ring R is a u-ring provided R has the property that f.
1deal contained in a finite union of f. ideals must be contained in one of those f. ideals;
and a um-ring is a ring R with the property that an R-m. which is equal to a finite union
of f. subm. must to equal to one of them.

Theorem 3.13. Let R be a um-ring, X be f. m. of an R-m. M and A be a proper {.
subm. of X. The following expressions are equivalent:

1. Ais aclassical T-ABSO f. subm.;

2. For every f. singleton ay, by, ri of R, (A :x asbiry) = (A :x asby) or (A :x
asbiry) = (A :x asry) or (A :x asbyry) = (A :x biry);

3. For every f. singleton ag, b;, ry of R and every f. subm. B of X with a;h;ryB C A
implies that agb;B C A or asryB C A or byry B C A;

4. For every f. singleton as, b; of R and every f. subm. B of X with a;b;B € A,
(A g asbjB) = (A :gp agB) or (A :g asb;B) = (A g b B);

5. Forevery f. singleton ay, b; of R, every f. ideal I of R and every f. subm. B of X
with agb;I B C A implies that agh)B € AoraglB C AorbjIB C A;

6. For every f. singleton ag of R, every f. ideal I of R and every f. subm. B of X
with a;I B g A,(A:rasIB)=(A:rasB)or (A :gasIB)= (A :r IB);



Small and Classical T-ABSO Fuzzy Submodules 455

7. For every f. singleton a, of R, every f. ideal /, J of R and every f.subm. B of X,
aslJB C A implies thata; /B C AoragJB C AorlJB C A;

8. For every f. ideal I, J of R and every f. subm. B of X with /JB Q A, (A R
IJB)=(A:gIB)or(A:g IJB)=(A :p JB);

9. For every f. ideal I,J, H of R and every f. subm. B of X with I/JHB C A
implies that I /JB C Aor I[HB C Aor JHB C A;

10. For every f. subm. B of X not contained in A, (A :g B)is T"ABSO f. ideal of R.

Proof. By the same method to the proof of theorem (3.9). |

Proposition 3.14. Let R be a um-ring and A be a proper f. subm. of f. m. X of an
R-m. M. Then A is a classical T-ABSO f. subm. of X if and only if A is 3-ABSO f.
subm. of X and (A :x X)is T-ABSO f. idealof R.

Proof. ( = ) Let A is a classical ABSO f. subm., then A is 3-ABSO f. subm. and
(A :g X)is T-ABSO f{. ideal of R by theorem(11).

( <= ) Let asbjryx, < A for f. singletons ag, by, ry of R and x, € X. such that
asbix, ¢ A, agrix, ¢ A and byrgx, € A. Thus agbyry C (A g X). Hence either
agh; € (A :g X)oragry € (A :g X)orbiry € (A :g X) this is a contradication!. So
that A classical T-ABSO f. subm. |

Proposition 3.15. Let X be f. m. of an R-m. M and A be a classical T-ABSO f. subm.
of X. The following expressions hold:

1. For every f. singleton ag,b;,ry of R and x, € X, (A :g asbirix,) = (A g
agbx,) U (A g agrix,) U (A g birix,);

2. If R is a u-ring, then for every f. singleton ag,b;,ry of R and x, € X, (A g
asbjrix,) = (A g agbix,) or (A g asbirix,) = (A g agrix,) or (A R
asbirixy) = (A g Diryxy).

Proof.

(1) Let f. singletons ay, by, ry of R and x,, € X. Assume that ¢, C (A :g asbirix,),
hence agbiri(c,x,) < A, then either agb;(c,x,) € A or a,ri(cpx,) € A or
biri(cyx,) € A. Thus ¢, € (A :g agbixy) or ¢, € (A g agrixy) orc, < (A R
birix,). Sothat (A :g asbirix,) = (A g agbix,) U (A g agrix,) U (A g birixy).

(2) By using part(1). [ |

Proposition 3.16. Let R be a um-ring, X be a multiplication f. m. of an R-m. M and
Abe a proper f. subm. of X. The following expressions are equivalent:

1. Ais aclassical T-ABSO f. subm. of X;
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2. If AjA,A3A4 C A for some f. subm.A, Ay, Az, Aq of X, then either A{AyA4 C
Aor AjA3A4 C Aor ApA3A4 C A,

3. If AjA,A3 C A for some f. subm.A;, A, A3 of X, then either A{A, € A or
A1A3 C Aor ApA3 C A;

4. Ais T-ABSO f. subm. of X;

5. (A :g X)is T-ABSO f. ideal of R.

Proof. (1) =— (2)Let AjA2A3A4 C A for some f. subm.A, As, A3, A4 of X. Since X
is a multiplication f. m., there are f. ideals I, J, K of R suchthat Ay = I X, A, = J X,
A3 = KX. Hence I/ KA4 C A, theneither [JA4 C Aor/KAy; C Aor JKA4 C A.
Hence either AjA2A4 € Aor AjA3As4 C A or A,A3A4 C A by theorem (3.13).

(2) = (3) Is simple.

(3) = (4) Assume that I JB C A for some f. ideals I, J of R and some f. subm. B of
X. Itis adequate toset Ay = I X, A, = JX, A3 = B in part(3).

(4) = (1) By part(1) of proposition (3.7).

(4) = (5) Let aghyri € (A :g X) for f. singletons ay, by, ri of R. If agry Q (A:r X)
and byri ¢ (A :g X), then there exist f. singletons x,, y, € X \ A such that a;rix, ¢ A
and byriyy QZ A. Since agb;(rr(x, + yn)) € A and A is T-ABSO f. subm., then either
asb; € (A :g X) or asri(xy, + yp) € A or byri(xy, + yp) € A. If agri(x, + yp) € A and
asrix, € A, then we have asryy, ¢ A. So that agb(riyy) C A and byryy, € A, hence
asb; € (A :g X). By the same method if b;ri(x, + yn) € A, we get agh; € (A g X).
Thus (A :g X)is T-ABSO f. ideal of R.

(5) = (4) Let IJB C A for some f. subm. B of X. Since X is multiplication f. m.,
then there is f. ideal K of R such that B = KX. Sothat //JK C (A :g X), then either
IJ C (A g X)orIK C(A:g X)orJK C (A g X). If IJ C (A :r X), then the
proof is complete. If /K C (A :g X),then IKX = IB C A. By the same method if
JK C (A :g X), then we have /B C A. [ |
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