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Abstract

In this paper, we study the blow-up of positive solutions for a nonlinear
reaction-diffusion equation subject to nonlinear boundary conditions. We
obtain the sufficient condition under the solutions which may exist globally or
blow up in finite time. Moreover, an upper bound of the blow-up time, an
upper estimate of the blow-up rate, and an upper estimate of the global
solutions are also given. At last we give some examples of the theorem to
obtain the possible application of this paper.

Keywords: Nonlinear reaction-diffusion equations, Blow-up solutions, Global
solutions

1. INTRODUCTION

Blow-up solutions and global solutions for nonlinear reaction-diffusion equations
reflect instability and stability of heat and mass transport processes respectively.
There is a vast literature on global existence and the blow-up in finite time of
solutions to nonlinear parabolic equations and systems. We refer the reader to
[3,5,6,11,16 ] and the references therein. Papers [8,7,12-14] researched the following
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equations:
u,=V-(gw)Vu),xe D,t € (0,T),
a—u:h(x,t,u),)ceﬁD,te (0,7),
on

u(x,0) =uy,(x)>0,x e D.

Where V is the gradient operator and &/0n is the outward normal derivative. Paper
[15] dealt with the following equations:

P w)=Lu+ f(u),xeD,te(0,T)
a—u+O'(x,t)h(u):0,xec'5D,te(O,T)
on

u(x,0) =uy(x) >0,xe D.

Where Lu = a”(x)u;; + b'u; is uniformly elliptic.Paper[17] resolved the following
equations:

Lw)=V-(gw)Vu)+ f(u),xe D,t €(0,T)

Z—Z +o(x,t)h(u)=0,x € oD,t € (0,7T)

u(x,0) =uy(x) >0,x e D.

The main purpose of the paper is to extend the results in [8,7,15,17] to more
general parabolic equations. In this paper, we consider the following nonlinear
reaction-diffusion equations:

a, () =V -(B(@)VP)+k(1)h(¢),xeD,t€(0,T)
?+O'(x,t)y(¢):0,xeaD,te(O,T) (1.1)
n

#(x,0) = (x),x € D.

Where D < R"is bounded domain with smooth boundary 9Q and 7 is the maximum
existence time of u(x,t).

SetD, = Dx(0,T),R" =(0,0).We assume throughout this paper that the function «

is a position C*(R") increasing function, the function 3 is a positive C*(R*) function,
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the function’ is a positive C?(R*) function and satisfies 2(0) > 0 ,the function % is a
positive C*(R") function the functiony is a positive C*(R") function, the function o is

a nonnegative Cl(l_)r)function, the function ¢, is a positive C*(R") function and
satisfies the compatibility conditions.

The object of this paper is the blow-up solutions and global solutions of (1.1). We
obtain some existence theorems for blow-up solutions, upper bounds of the blow-up
time, upper estimates of the blow-up rate, existence theorems for global solutions, and
upper estimates of global solutions.

We proceed as follows. In Section 2, we establish the comparison principle, local
existence and uniqueness of the solutions of (1.1). Section 3 studies the blow-up
solutions and global solutions of (1.1). A few examples are presented in Section 4 to
illustrate the application of the abstract results.

2. PRELIMINARIES
At first, we study local existence of the solution of (1.1). According to the classical

parabolic equation theorem [4], a unique classical solution of (1.1) exists for 7 < g, if
0, 1s small enough, and ¢ > 0in D, by the maximum principle [1,9 ]. Denote by T the

supremum of all 5(0 < & < ) such that the solution exists for all # < 5. We say that the

=0, If

solution ¢(x, £) blows up if there exists a0 < T <oosuch that lim sup,_, || .

T =, we call ¢(x,z) a global solution. Furthermore, by the regularity theorem [10],

#(x,t) e C}(Dx(0,T))NC*(Dx (0, T)).

Next we present a comparison lemma that will be used in the following sections.

Definition 2.1. Assume?,g_éeC3(D><(O,T))ﬂC2(B><(O,T)). ¢is a lower solution to
problem (1.1) if
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a,(9) =V -(B(P)VP)—k()h($) <0,xe D,t (0, T),
?—i—a(x,t)y(?) <0,xedD,te(0,7),

#(x,0) < g (x),x € D.

¢ is a upper solution to problem (1.1) if

a,(9) -V - (B(@)VP) —k(t)h($) > 0,x € D, € (0,T),

?Jra(x,t)}/@) >0,xeoD,te(0,7),
n

#(x,0) > ¢, (x),x € D.

Lemma 2.2. If¢is a lower solution andg_/ﬁis an upper solution to problem (1.1), then
P<p< Zﬁ where ¢ is the solution to (1.1).

The proof of the comparison is similar to the one given in [1], so we omit it here. Our
approach relies heavily on the maximum principles and upper-and lower-solution
techniques. Therefore, the comparison lemma is our main tool.

3. BLOW-UP AND GLOBAL SOLUTIONS

We first consider the case which the initial value is a positive constant.

Theorem 3.1. Let¢(x,¢) be a smooth solution of the following auxiliary problem
a,(9) =V -(B(P)VP) +k()h(¢),x € D,t € (0, T)

Z—¢+a(x,t)7/(¢) ~0,xedD,1(0,T) (3.1)
n

¢(x,0)=¢,xeD.

Where ¢ is a positive constant. Set 5= 3(s)/a (¢) . Assume that the following

conditions are satisfied:
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(1) Suppose the following:
() k() 2L k(1) <0,a'(s)>0,(B(s)r(s))=0,(B(s)/ &'(5))'2 0, (h'(s)/ B(s))20,

(B()r ()] h(s))'<0 for s>0. o,(x,1)<0in Dr.

(i) [ B(s)/ h(s)ds < oo
Then, ¢(x,¢) must blow up in finite7 and 7" < 5*1J.+wﬁ(s)/h(s)ds. Moreover,

supg(x,t) <G (S(T 1)), for 0<t<T.

xeD

Where G(7) = J':wﬂ(s) I h(s)ds and G is the inverse function of G.
(2) Suppose the following:
(1) 0<k(t) <LK (1)=0,&'(s) > 0,(B(s)y(5))=0,(B(s)/ &' (5))' <O, (H' (s) ] B(s))'< O,

(B()y ()] h(s5))20 for s>0. o,(x,1)=0in Dr.

(i) [ p(s) 1 (s)ds = oo
Then, ¢(x,t) exists globally and

sup@(x, 1) <G, (& +G,(¢)) for 0<t,

xeD

Where G,(7) = J.(:,B(s)/h(s)ds and G, ' is the inverse function of G,.

Proof. Similarly as [2,5,10], consider the auxiliary function
J = ()h(p) — B(P) ¢, 3.2)

From which we find that

J, = & (O)h(p) + K (' (9)¢, — 5 (D) — B(P)¢, (3.3)
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VJ =) (PV ¢— B (PV ép, — B(H)V ¢, (3.4)
And
A =V -V =& BV +FKO)h (B)As—B BV 4,
=B (D)AGD, =25 (P)V IV ¢, — L(P)AY, (3.5)
By (3.1), we have

POV @AY HHk()

- 3.6

T AT R (36)
Substituting (3.6) into (3.3), we get
1, = 8 (Oh@) + & (B — B D) - poyL OV 2 (fz)A prEOR),

O PO+ )+ FOBOHDE @) KON DE®),

@' @) o (#)

B0 _POED,, , FD

ey @ e

FOPGE @) _POB@),, e DG . KOO

ooy @ " aw T (37)

It follows from (3.5) and (3.7) that

B(9) (O () + KDL (¢) _ k() S(@G)h'(§)
o ¢)AJ J, = B @) ~[(Oh' (9)+ @) 2 (@) 14,
BB @) 4142 B D" (9)
(' (#))* Hoo - (o' (#))* ey M

A (3.8)

L KO L@)R" (¢)| Vo + L HFOL@ (D) |
a'(4) a'(¢4)
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By (3.6) we have

_a@s BONVI k)

Ad = 3.9
T T T ¢9
Substituting (3.9) into (3.8), we get
B rr_ s — B (DG TS k() B(Ph(@)a" (p) k(1) B(P)H (9)
2 (0) =B — k()N (4) + (@) 2 1¢,
_B@)B(a"(4) 4|V 4 - B (@)a"(9) p (a‘(¢)¢, ~ JAON ~ k(t)h(¢))
@@ @@ " B B(9) B(9)
ROV v+ k() B(P)H (9) (a‘(¢)¢t P O ~ k(t)h(¢))
a'(9) a'(9) B(9) B(#) B(9)
+[5/c(t)ﬂl(¢)h”(¢) _ ék(t)ﬂ: (¢)h'(¢)]|V 4 - ék(t)hl(qf)h'(@ (3.10)
a'(4) a'(4) a'(¢)
According to (3.2), we have
BG) ;T D) 1 pip BB @), . KOS (P)
) g O T Y e
+[67c(t)ﬂ(¢)h“(¢) k(@B (PN (¢)]|V o - K ()h(9)h' (9)
a'(4) a'(4) a'(¢)
D (S ynp) - BHH)
o' (P)
_ BB\ 2 FK@)B*(#) ' (P) ISPk
G aw pe
+ (k(2) —1) BAH(P) @, (3.11)

a'(9)
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For (1): According to supposition (1)(i), the right side of equation (3.11) is

nonnegative, i.e.,

a'(¢) T (9)

By the maximum principle for parabolic problems we know that J can attain its
maximum only for¢ =0or ondD. Fort =0,

J(x0)= {ék(r)h(@ ﬂ((f?)[v (ﬂ(¢)V¢)+k(t)h(¢)]}lzo F(O)h(£) ~k(0) ﬂ((g))h() 0

We claim thatJ cannot take a positive maximum at any point(x,,t,) € 6Dx(0,T).
Indeed, if J takes a positive maximum at point (x,,z,) € 6D x(0,T).then

J(x,,1)>0 and ‘2—J>o at (x,,1,). (3.13)
n

From J(x,,t,) >0we have ¢ (x,7) <k(t)h(g)! p(p) at (x,,t,). Note that

%+0'(x,t)7(¢)=0 on oDx(0,T).
on
Thus
—|;‘;0° 5 (Oh(§) + (W (9) 2% ¢ ) ¢¢ - ¢
= & OP) + B (o7 B, + P Aoy D) +0,(0 07 ) @)
— F OO )7 (@)
= &' (Oh(@) + o N B@AY @) 6 + 0,000 B@)7 (D) - F Do (x, ) (@) (@)

= ' (O)h(d) + 5"(;(;))"(” & %)@)) 10,0 0) BB (@)
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According to supposition (1)(i), left hand side of the above inequality is not positive,
i.e.,

Y <o,
on

This contradicts the inequality (3.13). ThusJ <0 inl_)x[o, T). From the assumption

feC?*(R") and £(0)>0, we have

B#) e
KO ¢, =1in Dx[0,T). (3.14)

Integrate (3.14) over|[O0, ¢] to get, for each fixed x and k(z) >1, we have

[ % et = [ St

[ 10 BG) g
#(x,0) h(s)

[0 L8 4o
¢ h(s)

By using assumption (1)(ii), it follows that(x,¢) must blow up in finite time7 .

Furthermore, the following inequality must hold

Tﬁirw&ds.
6%  h(s)

Integrating inequality (3.14) over[z,s](0<t<s<T), that

Gl90) 2 Glox, 1)~ Gl ) = [ 42 s 20-1)
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Thus
#(x,1) <G H(S(T —1)) for O<t<T.

The proof of theorem 3.1(1) is complete.
For (2): According to supposition (2)(i) and the equation (3.11), we have

D, FD
@) @@

Repeating the above proof process, we get

J>0in Dx[0,T).

Which implies from the assumption / € C*(R*) and £(0) >0,

8, (x.1) < % in Dx[0.7). (3.15)

For each fixed x € D and 0 < k(¢) <1, we obtain by integration (3.15)

¢(x.0) B(s)
ds <ot
_L 7(s) S (3.16)

It follows from assumption (2)(ii) that ¢(x,¢) must be a global solution. From the

inequality (3.16), we get

G - Go(e) = [ 1) ds <

And
P(x,1) <G, (%X + G(g))

The proof of theorem 3.1 is complete.

The following theorem considers that the initial value is a function.
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Theorem 3.2. Assuming ¢(x, ¢) is a smooth solution of (1.1). set

o0 =pM) a'(M),0, = B(m)] o' (m), where M =max_ _ @,(x),m=min__ ¢ (x).
(1)Suppose the following:

(i) k()2Lk'() <0,a'(s)>0,(B(s)r(s))=20,(B(s)/ &' (s))2 0, (h'(s)/ B(s)) =0,

(B(s)y(s)! h(s))'<O for s>0; o,(x,t) <0 in Dr.

(i) [~ B(s) h(s)ds <o
Then, ¢(x,¢) must blow up in finite7 and 7" < 5*_1I+wﬂ(s)/h(s)ds. Moreover,

sUp@(x, ) <G (8" (T 1)) for0O<t <T

xeD

Where G(7) = rwﬂ(s) I h(s)ds and G is the inverse function of G.
(2)Suppose the following:

(i) 0<k(t)<LK'(6)20,0'(s)>0,(B(s)r(s))=0,(B(s)/ &' (s))'< 0, (A'(s)/ B(s))'<O,
(B(s)y(s)/ h(s))'=0 for s>0; o,(x,£) =0 in Dr.
iy Ly PO h(s)ds =co,
Then, ¢(x, ) exists globally and

supg(x,t) <G, (5"t + G,(M)) for0 < ¢,

xeD

Where G,(7) = rwﬁ(s) / h(s)ds and G, " is the inverse function of G,.

Proof. Let;ﬁ(x, t) and ¢(x, ) be smooth positive solutions of the problems
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a,(¢) =V -(B($)Ve) +k(t)h(¢),x e D,t € (0,T)
Z—u+0'(x,t)}/@):o,xeaD,te(O,T) (3.17)
n

#(x,0)=M,xeD.

And

a,(9) =V -(B(PVP)+k()h(9),x e D,t €(0,T)
% +o(x,0)y(#)=0,xedD,t€(0,7) (3.18)

Q(x,O) =m,xeD.

Respectively.

(1) By Theorem 3.1(1), ¢(x,) blows up globally in D and

supg(x,t) <G (5" (T —1)) for O<t<T.

xeD

It follows from theorem 3.1(1) that ¢(x, 7) blows up globally in D at the blow-up time

WAONN

1 +
= ?Jm h(s)

By lemma 2.2, we have

#(x,1) < p(x,1) < P(x,1).
Hence, ¢(x,z)blows up globally in D and

w&a’s.

1 +
= ?Jm h(s)

As well as

supg(x, ) <G (5" (T—t)) for 0<t<T.

xeD
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The proof of theorem 3.2(1) is complete.

(2) 1t follows from theorem 3.1(2) that &(x, t) must be a global solution and

supp(x, 1) <G, (8"t +G,(M)) for ¢>0.

xeD

Using comparison principle, we say that ¢(x,7)is an upper solution of (1.1). Thus

&(x,t) exists globally and
supg(x,t) <G, (5"t + G (M)) for >0.
xeD

The proof of Theorem 3.2 is complete.

4. APPLICATIONS OF THE RESULT

In this section, we consider two special equations. We apply the results of Section 3 to
obtain the behavior of the solution of (1.1).

Example 1. Suppose w is a smooth positive solution of the problem (see[5,10])
w, =Aw+h(w),x e D,t €(0,T)
Z—W+O'(x,t)w:0,x68D,te (0,7)
n

w(x,0) =w,(x),x € D.
Where 0<m<w,(x)<M. Now
a(s)=s,L(s)=Lk@)=Ly(s)=s
Assuming 4(0) > 0, by Theorem 3.2, it is easy to obtain:
(1) 1F A" (s) 2 0,5 (s) = h(s) for s > 0,0, (x,#) <Oin Dy and | "1/ h(s)ds < +oo, then

w(x, ) must blow up in finite time7 and 7" < j+w1/h(s)ds. Moreover,



390 Jie Wu and Zejian Cui

supw(x,0) <G (T —t) for 0<t<T,

xeeD

Where G(z) =1/ h(s)ds.
(1) I /" (s) <O, (s) < h(s) for s > 0,0, (x,£) = 0in Dy and [ 1/ h(s)ds =+, then
w(x,?)exists globally and

sup w(x,t) < G, (t+G,(M)) for >0,

xeeD

Where G,(r) = jo’l/h(s)ds.

Example 2. Similarly as [3], we discuss the following equations
(A+w)In”(A+€")), =V-(In° (A +e")Vw)+ (' +D)(A+w)In?(A+e"),xe D,t (0, T),
ow

_:O,anD,tE(O,T):
on

w(x,0) =w,(x) >0,x € D,
Where p, g, o, r is nonnegative and 4 >1,0 < » <1are constants. Now

a(s) = (A +w)In?(A+e"), B(s) = In“ (A +e"),k(t) = 1 +1 h(s) = (A +w)In? (A +e"), 7(s) =0

In this case g—1>0c > p>0, From Theorem3.2(1), the solution w(x,¢) of the

problem must blow up in finite time 7 and

_InT (A re”)
~ S(qg-o-1)

wherem=min__w,(x) andd, =In“7*(1+e")(In(A+€")+p) ™.

where 5" =In“ 7 (A +e")(In(A+€" )+ p) and M = max__; wy(x).

1

* o—gq+1
Moreover, w(x, t) < el? (@] 1
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