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Abstract 

In this paper, we study the blow-up of positive solutions for a nonlinear 

reaction-diffusion equation subject to nonlinear boundary conditions. We 

obtain the sufficient condition under the solutions which may exist globally or 

blow up in finite time. Moreover, an upper bound of the blow-up time, an 

upper estimate of the blow-up rate, and an upper estimate of the global 

solutions are also given. At last we give some examples of the theorem to 

obtain the possible application of this paper.  

Keywords: Nonlinear reaction-diffusion equations, Blow-up solutions, Global 

solutions 

 

1. INTRODUCTION 

Blow-up solutions and global solutions for nonlinear reaction-diffusion equations 

reflect instability and stability of heat and mass transport processes respectively. 

There is a vast literature on global existence and the blow-up in finite time of 

solutions to nonlinear parabolic equations and systems. We refer the reader to 

[3,5,6,11,16 ] and the references therein. Papers [8,7,12-14] researched the following 
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equations:  
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Where ∇ is the gradient operator and n /  is the outward normal derivative. Paper 

[15] dealt with the following equations:  
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Where 𝐿𝑢 = 𝑎𝑖𝑗(𝑥)𝑢𝑖𝑗 + 𝑏𝑖𝑢𝑖 is uniformly elliptic.Paper[17] resolved the following 

equations: 
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  The main purpose of the paper is to extend the results in [8,7,15,17] to more 

general parabolic equations. In this paper, we consider the following nonlinear 

reaction-diffusion equations： 
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                          (1.1) 

Where nRD is bounded domain with smooth boundary 𝜕Ω and T is the maximum 

existence time of 𝑢(𝑥, 𝑡). 

 

Set ).,0(),,0(  RTDDT We assume throughout this paper that the function 

is a position )(2 RC increasing function, the function  is a positive )(1 RC  function, 
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the function h is a positive )(2 RC function and satisfies 0)0( h ,the function k is a 

positive )(1 RC function the function is a positive )(1 RC function, the function is 

a nonnegative )(1
TDC function, the function 0 is a positive )(3 RC function and 

satisfies the compatibility conditions.  

The object of this paper is the blow-up solutions and global solutions of (1.1). We 

obtain some existence theorems for blow-up solutions, upper bounds of the blow-up 

time, upper estimates of the blow-up rate, existence theorems for global solutions, and 

upper estimates of global solutions. 

We proceed as follows. In Section 2, we establish the comparison principle, local 

existence and uniqueness of the solutions of (1.1). Section 3 studies the blow-up 

solutions and global solutions of (1.1). A few examples are presented in Section 4 to 

illustrate the application of the abstract results. 

 

2. PRELIMINARIES 

At first, we study local existence of the solution of (1.1). According to the classical 

parabolic equation theorem [4], a unique classical solution of (1.1) exists for 0t if

0 is small enough, and 0 in TD by the maximum principle [1,9 ]. Denote by T the 

supremum of all )0(  such that the solution exists for all t . We say that the 

solution ),( tx blows up if there exists a T0 such that lim  )(
sup

DLTt  . If

T , we call ),( tx a global solution. Furthermore, by the regularity theorem [10],

)).,0(()),0((),( 23 TDCTDCtx    

Next we present a comparison lemma that will be used in the following sections. 

 

Definition 2.1. Assume )).,0(()),0((, 23 TDCTDC    is a lower solution to 

problem (1.1) if 
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  is a upper solution to problem (1.1) if 
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Lemma 2.2. If is a lower solution and is an upper solution to problem (1.1), then

,  where is the solution to (1.1). 

The proof of the comparison is similar to the one given in [1], so we omit it here. Our 

approach relies heavily on the maximum principles and upper-and lower-solution 

techniques. Therefore, the comparison lemma is our main tool. 

 

3. BLOW-UP AND GLOBAL SOLUTIONS 

We first consider the case which the initial value is a positive constant. 

Theorem 3.1. Let ),( tx be a smooth solution of the following auxiliary problem 
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Where  is a positive constant. Set )(/)( '   . Assume that the following 

conditions are satisfied: 
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(1) Suppose the following: 

(i) ,0))'(/)('(,0))'('/)((,0))'()((,0)(',0)(',1)(  sshssssstktk   

0))'(/))()(( shss  for 0s ; 0),( txt in .TD  
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Where dsshsG 




 )(/)()( and 1G is the inverse function of G. 

(2) Suppose the following: 

(i) ,0))'(/)('(,0))'('/)((,0))'()((,0)(',0)(',1)(0  sshssssstktk    
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(ii) 


sdshs

 )(/)(  

Then, ),( tx exists globally and 

   ))((),(sup 1

1

1  GtGtx
Dx






for ,0 t   

Where dsshsG 



0

1 )(/)()( and
1

1

G is the inverse function of 1G . 

 

Proof. Similarly as [2,5,10], consider the auxiliary function 

     thtkJ  )()()(                                      (3.2) 

From which we find that 

    ttttt htkhtkJ  )()(')(')()()(' 2                (3.3) 
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    tthtkJ   )()(')(')(                        (3.4) 

And   
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Substituting (3.6) into (3.3), we get 
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It follows from (3.5) and (3.7) that 
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By (3.6) we have 
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Substituting (3.9) into (3.8), we get 
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For (1): According to supposition (1)(i), the right side of equation (3.11) is 

nonnegative, i.e., 
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By the maximum principle for parabolic problems we know that J can attain its 

maximum only for 0t or on D . For 0t , 
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According to supposition (1)(i), left hand side of the above inequality is not positive, 

i.e., 
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By using assumption (1)(ii), it follows that ),( tx must blow up in finite timeT . 

Furthermore, the following inequality must hold 
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Thus 

      ))((),( 1 tTGtx    for 0<t<T. 

The proof of theorem 3.1(1) is complete. 

   For (2): According to supposition (2)(i) and the equation (3.11), we have 

      0
)('

)('

)('

)(
 tJJhJ








 

Repeating the above proof process, we get 

     0J in ).,0[ TD  

Which implies from the assumption )(2  RCf and ,0)0( f  

 
)(

)()(
),(






htktxt   in ).,0[ TD                               (3.15) 

For each fixed Dx and 1)(0  tk , we obtain by integration (3.15)   

 tds
sh
stx




 
),(

)(

)(
                                       (3.16) 

It follows from assumption (2)(ii) that ),( tx must be a global solution. From the 

inequality (3.16), we get 

     tds
sh
sGtxG

sx







 
),(

11
)(

)(
)()),((  

And  

    ))((),(
1

1  GtGtx 


 

The proof of theorem 3.1 is complete. 

The following theorem considers that the initial value is a function. 
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Theorem 3.2. Assuming ),( tx is a smooth solution of (1.1). set

),('/)(),('/)( mmMM   

  where ).(min),(max 00 xmxM DxDx 


  

(1)Suppose the following:   

(i) ,0))'(/)('(,0))'('/)((,0))'()((,0)(',0)(',1)(  sshssssstktk   

     0))'(/)()(( shss  for ;0s 0),( txt in .TD  

  (ii) 


sdshs
m

)(/)(  

Then, ),( tx must blow up in finiteT and 




 .)(/)(

1 dsshsT  Moreover, 

       TtfortTGtx
Dx

 



0))((),(sup 1   

Where dsshsG 




 )(/)()( and 1G is the inverse function of G. 

(2)Suppose the following: 

   (i) ,0))'(/)('(,0))'('/)((,0))'()((,0)(',0)(',1)(0  sshssssstktk   

      0))'(/)()(( shss  for ;0s 0),( txt in .TD
 

   (ii) 
.)(/)( 



sdshs
M


 

Then, ),( tx exists globally and 

        ,0))((),(sup 1

1

1 tforMGtGtx
Dx

 



  

Where dsshsG 




 )(/)()(1 and

1

1

G is the inverse function of 1G . 

Proof. Let ),( tx and ),( tx be smooth positive solutions of the problems 
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




















.,)0,(

),0(,,0)(),(

),0(,),()())(()(

DxMx

TtDxtx
n
u

TtDxhtkt







                   (3.17) 

And  

       






















.,)0,(

),0(,,0)(),(

),0(,),()())(()(

Dxmx

TtDxtx
n

TtDxhtkt








                  (3.18) 

Respectively. 

 

(1) By Theorem 3.1(1), ),( tx blows up globally in D and  

     ))((),(sup 1 tTGtx
Dx

 



  for .0 Tt   

It follows from theorem 3.1(1) that ),( tx blows up globally in D at the blow-up time 

     





m
ds

sh
sT .
)(

)(1 


 

By lemma 2.2, we have  

     ).,(),(),( txtxtx    

Hence, ),( tx blows up globally in D and  

      





m
ds

sh
sT .
)(

)(1 


 

As well as  

      ))((),(sup 1 tTGtx
Dx

 



  for .0 Tt   
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The proof of theorem 3.2(1) is complete. 

(2) It follows from theorem 3.1(2) that ),( tx must be a global solution and  

    ))((),(sup 1

1

1 MGtGtx
Dx

 



  for .0t  

Using comparison principle, we say that ),( tx is an upper solution of (1.1). Thus 

),( tx exists globally and 

      ))((),(sup 1

1

1 MGtGtx
Dx

 



  for .0t  

The proof of Theorem 3.2 is complete. 

 

4. APPLICATIONS OF THE RESULT 

In this section, we consider two special equations. We apply the results of Section 3 to 

obtain the behavior of the solution of (1.1). 

 

Example 1. Suppose w is a smooth positive solution of the problem (see[5,10]) 

       






















.),()0,(

),0(,,0),(

),0(,),(

0 Dxxwxw

TtDxwtx
n
w

TtDxwhwwt

  

Where .)(0 0 Mxwm   Now  

sstksss  )(,1)(,1)(,)(    

Assuming ,0)0( h by Theorem 3.2, it is easy to obtain: 

(I) If )()(',0)('' shsshsh  for 0),(,0  txs t in TD and ,)(/1


dssh then   

),( txw must blow up in finite timeT and .)(/1 dsshT
m


  Moreover, 
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  )(),(sup 1 tTGtxw
Dx

 



 for ,0 Tt   

  Where 





 .)(/1)( dsshG  

(II) If )()(',0)('' shsshsh  for 0),(,0  txs t in TD and ,)(/1


dssh then 

   ),( txw exists globally and 

   ))((),(sup 1

1

1 MGtGtxw
Dx






 for ,0t  

Where 



0

1 .)(/1)( dsshG  

    

Example 2. Similarly as [3], we discuss the following equations 






















,,0)()0,(

),,0(,,0

),,0(,),(ln))(1())((ln))(ln)((

0 Dxxwxw

TtDx
n
w

TtDxewrweew wqtw
t

wp  

 

Where rqp ,,,  is nonnegative and 10,1  r are constants. Now 

0)(),(ln)()(,1)(),(ln)(),(ln)()(  sewshrtkesews wqtwwp  

  In this case ,01  pq  From Theorem3.2(1), the solution ),( txw of the 

problem must blow up in finite timeT and  

  ,
)1(

)(ln 1














q
eT

mq

 

where )(min 0 xwm Dx  and .)))(ln((ln 11 

  pee mmp     

where 11 )))(ln((ln   pee MMp   and ).(max 0 xwM Dx
 

Moreover, .1),(
1

1

)])(1([ 
 

q
tTqetxw



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