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Abstract

In this paper, we investigate the uniqueness of product of difference polynomials of
meromorphic functions sharing the fixed point z with finite weight /. We generalise
the results of R S Dyavanal and A M Hattikal [11].
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1. Introduction and Results

In this paper, the term “meromorphic” will always mean meromorphic in the complex
plane C. We shall use the standard notations in Nevanlinna’s value distribution theory
(see, e.g. [15],[21],[23]). We denote by S(r, f) any quantity satisfying S(r, f) =
o(T(r, f)), as r — oo possibly outside a set of finite linear measure. We denote p( f)
for order of f(z) and hyper order of a function f(z), defined as

. loglog T'(r, )
p2(f) = lim sup B8 1)
r— 00 logr

The following definitions we use while proving our results.
Definition 1.1. Let ‘a’ be a finite complex number, and k be a positive integer. We

denote by N (r,a, f) the counting function for zeros of f — a with multiplicities at
least k, and by N (r,a, f) the one for which multiplicity is not counted. Similarly, we
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denote by Ny(r,a, f) the counting function for zeros of f — a with multiplicities at
most k, and by N(k(r, a, f) the one for which multiplicity is not counted. Then

Ni(r,a, f) = Na(r,a, f) + Na(r,a, f) + -+ N(r,a, f).

Definition 1.2. Let f(z) and g(z) be two meromorphic functions in the complex plane
C.If f(z) — a and g(z) — a assume the same zeros with the same multiplicities, then we
say that f(z) and g(z) share the value a CM, and if we do not consider the multiplicity,
then we say that f(z) and g(z) share the value a IM, where a is a complex number.

Definition 1.3. [2] Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. Let zg be a 1-point of f with multiplicity p and also a
1-point of g with multiplicity g. We denote by Ny (r, 1; f) the counting function of those
I-points of f and g, where p > ¢, by N](Ek(r, I; f) (k > 2 is an integer) the counting
function of those 1-points of f and g, where p = g > k, where each point in these
counting functions is counted only once. In the same manner we can define Ny (r, 1; g)
and Ng‘(r, I;2).

Definition 1.4. [16, 17] Let f and g be two nonconstant meromorphic functions such
that f and g share the value a IM. We denote by N.(r,a; f, g) the reduced count-
ing function of those a-points of f whose multiplicities differ from the multiplici-
ties of the corresponding a-points of g. Clearly N.(r,a; f,g) = Ni(r,a;g, f) and
Ni(r,a; f,8) = Np(r,a; )+ NL(r,a; g).

Recently, people have raised great interest in difference analogues of Nevanlinna’s
theory and many articles have focused on value distribution and uniqueness of difference
polynomials of entire or meromorphic functions (see example [6]-[14]).

In 2012,Y H Cao and X B Zhang ([3]) obtained the following theorem.

Theorem 1.5. Let f(z) and g(z) be two transcendental meromorphic functions, whose
zeros are of multiplicities at least k, where k is a positive integer. Let n > max{2k —
1;4 4 4/k + 4} be a positive integer. If f"(z) f®(z) and g"(2)g®(z) share z CM, and
f(z) and g(z) share oo IM, then one of the following two conclusions holds

() f"@fPw) = g2 @);

2 2
(2) f(z) =1, g(z) = cre” ¢, where ¢, ¢; and ¢, are constants such that
Acier) ey = —1.

In 2014, X. B. Zhang ([26]) reduced the lower bond on n and relax the condition on
multiplicity of zeros in Theorem 1.5 and proved the following result.

Theorem 1.6. Let f(z) and g(z) be two transcendental meromorphic functions and n, k
two positive integers with n > k + 6. If f"(z) f®(z) and g"(z)g®(z) share z CM, and
f(2) and g(z) share oo IM, then one of the following two conclusions holds
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() f"@fPe) = g2 @);

2 2
(2) f(z) =c1e“ ,g(z) = cpe”““, where ¢, ¢ and c; are constants such that
A(cic) ey = —1.

In 2016, R. S. Dyavanal and A. M. Hattikal ([11]) obtained the following result.

Theorem 1.7. Let f(z) and g(z) be two transcendental meromorphic functions of hyper
d

orders po(f) < land pa(g) < 1. Letk,n,d,s;(j =1,2,... ,d), A = Zsj be positive

j=1
integers, c; € C — {0}(j = 1,2,...,d) are distinct constants and n > max{2d(k +
d d
2) + Atk +3) + 7. A1: A2}, where 4y = Y ajsjand Ay = Y Bysj. j = 1.2,....d
j=1 j=1

and f(z + ¢;) and g(z + ¢;) have zeros with maximum orders «; and B; respectively.
(k) (k)

d d
Iff@" | []fe+ep | andg@" | []e+ep)® | sharezCMand £(2). ()
j=1 j=1
share oo IM, then one of the following two conclusions holds.

d (k) J (k)
D f@" | [[fe+epyi| =eg@"|[]ec+cp®

j=1 j=1

d d
(2) 1_[ fz+c))V = C e, l_[ gz+¢)) = Cre €%, where Cy,C; and C are
j=1 j=1
constants such that 4(C,C,)"t'C? = —1.

The following is the unicity theorem for meromorphic functions sharing the value z
with weight /.

Theorem 1.8. Let f(z) and g(z) be two transcendental meromorphic functions of hyper
d

orders po(f) < land pa(g) < 1. Letk,n,d,s;(j =1,2,... ,d), A = Zsj be positive
j=1
(k)

d
integers, c; € C—{0}(j = 1,2,... ,d)aredistinct constants. If f(z)" l_[ flz+c))Y
Jj=1
(k)

d
and g(z2)" H gz +cj)V share (z,1) and f(z), g(z) share oo IM, where 0 <[/ < oo.
j=1
Then the conclusions of Theorem C hold provided

1. if2 <l <oothenn > 2(k 4+ 2)d + (k + 4)A + 8,
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37 1
2. ifl:1thennzk<§k+§>+d(2(k+2)+§(k+1)>+9,

3. ifl =0thenn > d(5k +7) + 7Th + 4k + 14.
Corollary 1.9. Let f(z) and g(z) be two transcendental meromorphic functions of hyper
d

orders p2(f) < l and p2(g) < 1. Letk,n,d,s;(j = 1,2,... ,d),A = Zsj be positive
j=1
(k) (k)

d d
integers. If f(z)" l_[ fl@+cj)V and g(z)" 1_[ gz +cj)V share (1,/) and
j=1 j=1
f(2), g(z) share oo IM, where 0 < [ < oo. Then the conclusions of Theorem 1.7 hold
provided

1. if2 <l <oothenn > 2(k +2)d + (k + 4)A + 8,
. 3 7 1
2. ifl =1thenn > A §k+§ +d 2(k—|—2)+5(k+1) +9,

3. ifl =0thenn > d(Sk +7) 4+ 7\ 4+ 4kir + 14.

2. Some Preliminary Results

In this section we present some Lemmas which will be needed in the sequel.
Let F and G be two nonconstant meromorphic functions defined in C. We shall
denote by H the following function:

F// 2F/ G// 2G/
H=|—— — | = — )
(F-71) (& a1)
Lemma 2.1. [4] Let f(z) be a transcendental meromorphic function of finite order.
Then

T(r’f(Z+c)):T(r’f)+S(r9f)-

Lemma2.2. [2] Let F', G be two nonconstant meromorphic functions sharing (1, /), (0o, 0),
where 2 <[ < oo and H # 0. Then

T(r,F) < Na(r,0; F) + Na(r,0; G) + N(r,00; F) + N(r, 00; G) + Ny(r, 00; F, G)
—m(r,1;G) — NO(r, 1, F) = N.(r, 1;G) + S(r, F) + S(r, G)

T(r,G) < Na(r,0; F) + Nao(r,0; G) + N(r,00; G) + N(r,00; F) + N4(r,00; F, G)
—m(r,1;F) = NS (r,1;G) = Np.(r, 1; F) + S(r, F) + S(r, G)
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Lemma 2.3. [[20], Lemma 2.3] Let F, G be two nonconstant meromorphic functions
sharing (1, 1), (c0,0) and H # 0. Then

3 _ _
T(r,F) < Nyr,0; F)+ Nao(r,0; G) + EN(F,OO; F)4+ N(r,00;G) 4+ Ny(r,o00; F,G)

1—
+§N(F,O;F)+S(F,F)+S(F,G)
T(r,G) < Na(r,0; F) + Na(r,0; G) + N(r,00; G) + N(r,00; F) + N4(r,00; F, G)
1—
+5 N, 0:G) + S, F) + S0, G)

Lemma 2.4. [[20], Lemma 2.5] Let F, G be two nonconstant meromorphic functions
sharing (1, 0), (c0,0) and H # 0. Then

T(r,F) < Na(r,0; F) + Na(r,0; G) + 3N(r, 00; F) + 2N(r,0; G) + N (r, 00; F, G)
+2N@r,0; F)+ N(,0;G) + S(r, F) + S(r, G)

T(r,G) < Na(r,0; F) + No(r,0;G) + 3N(r, 00; G) + 2N(r, 00; F) + N(r,00; F, G)
+2N(r,0:G)+ N(r,0; F) + S(r, F) + S(r, G)

Lemma2.5. [23] Let f(z) be anon-constant meromorphic function, and letay(z), a;(2), . . .
an(z)( # 0) be small functions with respect to f. Then

T(ranf" + ap_1 f" '+ +arf +ao) = nT(r, f) + S(r, f).

Lemma 2.6. [[18], Lemma 2.11] Let f(z) be a non-constant meromorphic function,
and p, k be positive integers. Then

T(r, f%) < T(r, f) + kN(r, f) + S(r, f),

1 1
N, (r, W) < T(r, fO) = T(r, )+ Npk (r, 7) +5(r, ),

1 1 —
N, (r,m) < Npik (r,;) +kN(r, )+ S, f).

Lemma 2.7. [19] Let f(z) be a transcendental meromorphic function of finite order.
Then

N(r, f(z+c¢)) = N(r, f(z)) + S, f),

1 1
V(- 7ra) = ) 50

Lemma 2.8. ([11]) Let f(z) be a transcendental meromorphic function of hyper order

d
p(f) < land Fi@) = f@" | [ | f@@+¢;)" |. Then
j=1

(n =T, )+ S, ) =T Fi2) =@m+0T(r, f)+ S, ).
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3. Proof of Theorem

Proof of Theorem 1.1
Let
- — (k) 4 (k)
F@) = f@"|[[fe+ep¥| . G@=g@"|[]ec+cp¥| GBI
/=1 i j=1
[ 4 | d
Fi) = f"|[]fc+ep? |, G =g@"|[]ec+cp)” |, (32
| j=1 ] j=1
r (k) (k)
f@ [T fe+ep] 8@ [TT-1 8+ )]
F(2) = —— L Ga(0) = - .

(3.3)

Then F,(z), G2(z) are transcendental meromorphic functions that share (1,/) and f, g
share oo IM. Since f and g are transcendental, z is a small function with respect to both
F and G.

Let us consider two cases separately.

Case 1: Assume that H # 0.
Now, we consider the following three subcases.

Subcase 1.1: Suppose that 2 < < oco. Then using Lemma 2.2, we obtain

IT(r,F) = T(,F)+ S, F)

< No(r,0, F>) + Na(r,0,G3) + N(r, 00, F5) + N(r, 00, G2)
N .(r, 00; F2, G2) — m(r,1,G2) — NG (r, 1, Fa) — N1(r, 1, G2)
+S(r, F2) + S(r, G»)
< No(r,0,F)+ N»(r,0,G) + Nyu(r,00; F,G) + N(r,00, F) + N(r, 00, G)
+S(r, F) + S(r,G) (3.4)
Noting that

Nu(r,00; F,G) = Ny(r,00,F)+ Np(r,00,G)
< N(r,00,F) = N(r,0,G) (3.5)
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we obtain from (3.4),(3.5), Lemma 2.8 and Lemma 2.6 that

T(r,F) < Ny(r,0,F)+ Nyr,0,G)+2N(r,00, F) + N(r,o0, G)
+S(r, F) + S(r,G)
J *)
< N, 0, f 4 No | 0 | [] fla+ ) + Na(r,0,g")
j=1
J k)
+N, | 7,0, Hg(z—i—cj)sf + 2N (r, 00, f")
j=1
d (k)
+2N | r, 00, Hf(z—l—cj)sf +N(r oo,g)
j=1
J (k)
+N | o0, | [T+ +S(r, )+ S(r, 8)
j=1

(k)
d
< W (0. M) +T[r|]]rfe+ep

j=1

d
r ] fGc+cp

j=1

+Nis2 | 1,0, l—[f(z+6‘])s’) +2N@ (r,0,¢")

d
ng(z+c])51 ) l—[g(z—i-cj)sf
j=I1
d
+Nig2 | 7,0 H gz +cp) | +2N (r,00, f)
d
+2N r,ool_[ flz+c))



338

That is,

(n—MT(, f)

Similarly,

=

A
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d

+N (r, 00, g) +N (r, 00, l—[ gz + cj)sj) + S(r, )+ S(r,g)

j=1

d (k)
27(r, /) +T (r, (H [+ c;)Sf) ) +T(r, f") = T(r, f")
j=1

-T (r,
+T (r,
J

-T (r, []e+ c,-)sf) +dk+2)T(r,g) +2T(r, f)

j=1

.

~
Il
_

fz+ Cj)sj) +dk+2T (@, f)+2T(r,8)

1~

d
gz + Cj)sj) + kN (r, 00, H gz + Cj)sj)

j=1

S|
_

20T (r, )+ T(r,8) + AT (r,8) + S(r, f) + S(r, 8)
2T(r, Y+ T, F) =T, F1) +dk+2)T(r, f)
+2T(r,g) + kAT (r,g)

+d(k +2)T(r,g) + 20+ DT(r, f) + (A + DT(r, g)
+S(r, f)+ S(r,g)

T(r,F1) = (dk+2)+20.+D+2T(r, f)
+(d(k+2)+ (k+ DA +3)T(r,g) + S(r, f) + S(r, &)

A

dk+2)+1+3)T@r, )+ T(r,g))
+A+ DT, f)+ kAT (r,g)+ S, )+ S(r,g)

(n—MT(r,g) = dk+2)+r+3)T(r, fH+T(,8)

+ + DT (r,8) + kAT (r, f)+ S(r, f) + S(r, 8)

From (3.6) and (3.7), we get

(n—4r =2k +2)d —kx =T)T(r, )+ T(r,g) < S, f)+ S(r,2)

Which is contradiction to n > 2(k + 2)d + (k + 4)A + 8.

(3.6)

(3.7)
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Subcase 1.2: When !/ = 1.
Then using (3.5) and Lemma 2.3, we deduce that

T(r,F) = T, F)+ S(r, F)
3__ _
N> (r,0, Fp) + N2 (r,0,G2) + EN(F, 00, F2) + N(r, 00, G2)

_ 1—
+N(r,00, F2,G2) + EN (r,0, F2) + S(r, F2) + S(r, G2)

A

3_ _
N2(r509F)+N2(raO9G)+EN(r9OOaF)+N(r’OO5G)

— 1—
+Ny(r,00, F,G) + EN T, 0,F)+S(r,F)+ S(r,G)

[A

5__ _
Ny (r,0,F)+ Ny (r,0,G) + EN(r,oo, F)+ N(@r,00,G)

1—
+§N r,0,F)+ S(r,F)+ S(r,G)
J *)
Ny (r,0, /") + No | 1,0, [ [ ] fa+¢))¥ + N2 (r,0,8")

=1
(k)
gz+cj)V +
1

[A

+N, | 7,0, N (r, 00, f")

d
j=

| L

(k)
5 ' _
+§N r,o0, Hf(z—i—cj)sf +N(r,oo,g”)
j=1
(k)
+N [ .00 [ [T+ ¢))” +
j=1

1
5N (r,0, /")
(k)

1— d .
+oN [0 [] flatep) +S(r, /) + S(r, )
j=1
(k)

d d
2N (r,0, ")+ T | r, l_lf(Z+Cj)sj -T r,l_[f(z-l-cj)sf

j=1 j=1

A

d
+Nk+2 r’Oal_[f(Z+Cj)Sj +2N(2 (r’()’gn)
j=1
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d () d
T|r, (]_[ g(z-l—cj)sf) i (r,]_[g(z+c,-)~‘f)
j=1 j=1

d
5—
+Ni42 (F,O, [[e+ Cj)sj) + 5N (.00, f)

j=1

d
5
+oN (r, 00, 1_[ fz+ Cj)sj)
j=1
d

— — 1
+N (r,00,g) + N (r,oo,l_[g(z—l-cj)sf) + EN (r,0, f)

j=1

d d
1 1 —
5 Nict1 (r,o, []re+ c,~)~W) + SkN (r, oo, [ flz+ec ,~)Sf)

j=1 j=1
+S(r, f)+ S, 8)

J (k)
2T(r, )+T ( (]_[ f(z+cj')“f) ) +T@r, f" =T, f*)
d
gz +c))V +kN r,l_[g(z—{—cj)sj

-T (r
( j=1
)

+d(k+2)T(r g+ T(r f)-I—SAT(r H+T(r,g)

A

:|&

flz+ c,)sf) +dk+2)T(r, f)+2T(r,g8)

~.
I
_

T :]& T :[a

+AT(r.8) + 5 T(r /)

+%d(k + DT, f)+ %k)»T(r, H+SE )+ S0, 8)

2T(r, Y+ T(r,F)—T(r, Fy)+dk +2)T(r, f)
+2T(r,g) + kAT (r,g)

A
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+d(k +DT(r,g) + §T<r, 4+ gmr, )+ T e)
FAT(r, g) + %m, £
+%d(k DTG )+ %kmr, £+ St )+ Sr.9)

That is,
T(r,F) =< <d(k +2)+ %kk +3+ )\) (TG, f)+T(r,g)

+ (%d(k +1)+ %A + 2) T(r, f) + %kkT(r,g) + S(r, f)+ S(r.g)

(n—=MTr, f) = (d(k +2)+ %kk +3+ A) (T(r, )+ T(r,g)

+ (%d(k + 1)+ %A + 2) T(r,f)+ %k)LT(r,g)
+S(r, f)+ S(r,g) (3.8)

Similarly
n—MNT(r,g) < (d(k +2)+ %kk +3+ k) (T(r, Y+ T(,g))

1 1
+ <§d(k + 1)+ %k + 2) T(r,g)+ EkkT(r, )
+S(r, )+ S(r, 8) (3.9)
From (3.8) and (3.9), we get

(n _a Gk + ;) _d (2<k 42+ %(k + 1)) - 8) (T(r, Fy+T(r. ) < S(r, f)+5(r8)

3 7 1
Which is contradictionton > A <§k + —) +d (2(k +2)+ E(k + 1)) + 9.

2
Subcase 1.3 : When !/ = 0.
As in Subcase 1.1 and using (3.5) and Lemma 2.4, we simplify

T(r,F) = T(@r,F)+ S, F)
N> (r,0, F») + Na (r,0,G2) 4+ 3N(r, 00, F>) + 2N(r, 00, G3)
+N,.(r,00, F»,G2) + 2N (r,0, F») + N (r,0,G2) + S(r, F>) + S(r, G»)
N> (r,0,F) 4+ N (r,0,G) + 3N(r,00, F) + 2N(r, 00, G)
+N,(r,00,F,G)+2N (r,0,F)+ N (r,0,G) + S(r, F) + S(r, G)

A

IA
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N> (r,0,F) 4+ N (r,0,G) +4N(r,00, F) + 2N(r, 00, G) + 2N (r,0, F)
+N (r,0,G) + S(r, F) + S(r, G)
2T(r, Y+ T(r,F) =T, F))+dk +2)T(r, ) +2T(r,8) + kAT (r,g)

d (k)
+d(k +2)T(r,g) + 4N(r,00, f") + 4N (r, 00, (]_[ flz+ cj)sf) )

j=1

IA

IA

d (k)
+2N(r,00,8") + 2N (r, 00, (1_[ glz+ cj)si) ) +2N (r,O, f")

j=l1

d (k)
+2N (r,O, (l_[ flz+ Cj)sj) ) + N (r,0,8")

j=1

. ®
+N (r, 0, (]_[ gz + cj)sf‘) ) +S(r, f)+ S(r, 8)

j=l1
That is,
T(r,F1) < 2T(r, f)+dk+2)T(r, f)+2T(r,g) +kAT(r,g) +dk +2)T(r,g)
d
+4T(r, f) + 4N (r, oo, [[ fz + cj)sf') +2T(r, g)

j=1

d d
+2N (r, oo, [[ sz + cj)sf) +2T(r, f) + 2Nkt (r, o.[[fc+ cj)s.f)

j=1 j=1

d d
+2kN (r, 00, 1—[ flz+ Cj)sj) +T(r,g) + Niy1 (r,(), 1_[ gz + Cj)sj)

j=1 j=1

d
+kN (r, 00, l_[ gz + cj)s«f) + S, f)+ S, g)

j=1

m—MTr,f) < dk+2)+dk+1)+2kX+204+5)T(r, f)+T(,8)
+Q@A+dk+ 1)+ 3)T(r, f)+ S, f)+ S(r, g) (3.10)
Similarly,
(n—MT(r,g) < dk+2)+dk+1)+2krA+20+5)T(r, f)+T(r,8))
+QRA+dk+1)+3)T(r,g)+ Sr, f)+ S, Q) (3.11)
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From (3.10) and (3.11), we get
n—Tr—dQRk+4+2k+24+k+1)—4kr —13)(T(r, f)+T(r,8) < S, f)+ S, g)

Which is contradiction to n > 7A 4+ d(5k + 7) + 4kX + 14.

Case 2. We now assume that H = 0. That is

F, 2R/ G, 2G 0
F R —1 G, G)—1]

Integrating both sides twice, we get

1 A
Frb—1 Gy—1

+ B (3.12)
where A( # 0) and B are constants. From (3.12) , we have following subcases.

Subcase 2.1. Let B # 0 and A = B. Then from (3.12), we get
1 . BG,
E-1 Gy-1

If B = —1, then from (3.13), we obtain, F>,G, = 1.
(k) (k)

d d
Thatis, ()" | [[ fG+cp)¥ | . 8@ |[[ec+epy| =22

(3.13)

. 2
We proceed as in the proof of Theorem 1.7, we obtain 1_[ fz+c¢j)¥ = cie“ and
j=1
d
R 2
l_[ 8(z+c¢j) = e, where c1, ¢ and ¢ are constants such that A(cicr) Tle? = —1.

j=1
If B # —1, from (3.13), we have

1 BG» — 1 ~
— = and therefore N |r,——,G, | =N(,0,F).
F, (1+B)G;—-1 B+1
(3.14)

Using second fundamental theorem of Nevanlinna, we get

T(r,G) = Tr,Gy+ Sr,G)

IA

_ — — 1
N(F,O,G2)+N(7’,OO,G2)+N<F,B_H,Gz) + S(r, G)

N (r,0,G2) + N(r,00,G2) + N (1,0, F) + S(r, G)
N (r,0,G) + N(r,00,G) + N (r,0, F) + S(r, G)

A TA
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Using this with Lemma 2.8, we deduce that

j=1

d (k)
(n—WT(rg) < N(r,0,82)")+N (r,o, (H gz + c,~>“f) ) + N(r, 00,8()")

d (k)
mn(Hazwﬁj )+Nmaﬂﬂ)

j=l1

d (k)
r,0, ( f(Z+Cj)Sf) + S(r, g)
=1

1
s g(Z+C])SJ +Nk+] r, ]
jnl [Tj=1 8 +cp)v

+T(r,g)+N rl_[g(z—i—c-)sf —I—N(r ! )
’ , ’ @

A
~
<
L
+
bl
Z|
~

[Tj=) fa+e)) j=i
< T(r,e9)+krT(r,g)+dk+ DT(r,g)+T(r,g)+AT(r,g)
+T @, )+ kAT(r, f)+dk+ )T, )+ S, )+ S, g)

1 [ & |
+Ni+1 (r, ) + kN (r, 1_[ fz+ Cj)s,) + S, g)

Thus,
(n=MTr,g) = dk+1D+kr+1)Tr, f)+T(r,8)
+A+M0)Tr, )+ S, )+ S, g (3.15)
Similarly
(n=2T(r, f) = dk+1)+kr+1)T(r, f)+T(r,g)
+A+M0T@, )+ S, f)+ S, g) (3.16)

From (3.15) and (3.16), we get
(n—=2A=2d(k+1) =2kA =3)(T(r, f)+T(r,8) < S, f)+ S, g)
which contradicts ton > 2A + 2d(k + 1) + 2kA + 4.

Subcase 2.2. Let B # 0 and A # B.
Then by (3.12), we get
_(B+1DGry—(B—A+1)

F
BG>+ (A —B)
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B—-—A+1

and so, N ( r,
B+1
Proceeding as in Subcase 2.1 , we obtain a contradiction.

,G2> = N(r,0, F»).

Subcase 2.3. Let B = 0 and A # 0. Then by (3.12), we get

_G2+A—l

2 and Gy=AF,—(A—-1)

F

— A—1 — — —
IfA # 1,wehave N (r, T,Fz) = N(r,0,Gp)and N (r,A — 1,G3) = N(r,0, F>).

Using the similar arguments as in Subcase 2.1, we obtain a contradiction. Thus A = 1.
Which implies F' = G and therefore

d (k) d (k)
f| ] re+epy | =g@" | []ee+cp
j=1

j=1
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