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Abstract
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1. Introduction and Results

In this paper, the term “meromorphic” will always mean meromorphic in the complex
plane C. We shall use the standard notations in Nevanlinna’s value distribution theory
(see, e.g. [15],[21],[23]). We denote by S(r , f ) any quantity satisfying S(r , f ) =
o(T (r , f )), as r → ∞ possibly outside a set of finite linear measure. We denote ρ(f )
for order of f (z) and hyper order of a function f (z), defined as

ρ2(f ) = lim sup
r→∞

log log T (r , f )

log r
.

The following definitions we use while proving our results.

Definition 1.1. Let ‘a’ be a finite complex number, and k be a positive integer. We
denote by N(k(r , a, f ) the counting function for zeros of f − a with multiplicities at
least k, and by N (k(r , a, f ) the one for which multiplicity is not counted. Similarly, we
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denote by Nk)(r , a, f ) the counting function for zeros of f − a with multiplicities at
most k, and by N (k(r , a, f ) the one for which multiplicity is not counted. Then

Nk(r , a, f ) = N (1(r , a, f ) + N (2(r , a, f ) + · · · + N (k(r , a, f ).

Definition 1.2. Let f (z) and g(z) be two meromorphic functions in the complex plane
C. If f (z) − a and g(z) − a assume the same zeros with the same multiplicities, then we
say that f (z) and g(z) share the value a CM, and if we do not consider the multiplicity,
then we say that f (z) and g(z) share the value a IM, where a is a complex number.

Definition 1.3. [2] Let f and g be two nonconstant meromorphic functions such that
f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p and also a
1-point of g with multiplicity q. We denote by NL(r , 1; f ) the counting function of those
1-points of f and g, where p > q, by N

(k
E (r , 1; f ) (k ≥ 2 is an integer) the counting

function of those 1-points of f and g, where p = q ≥ k, where each point in these
counting functions is counted only once. In the same manner we can define NL(r , 1; g)
and N

(k
E (r , 1; g).

Definition 1.4. [16, 17] Let f and g be two nonconstant meromorphic functions such
that f and g share the value a IM. We denote by N∗(r , a; f , g) the reduced count-
ing function of those a-points of f whose multiplicities differ from the multiplici-
ties of the corresponding a-points of g. Clearly N∗(r , a; f , g) = N∗(r , a; g, f ) and
N∗(r , a; f , g) = NL(r , a; f ) + NL(r , a; g).

Recently, people have raised great interest in difference analogues of Nevanlinna’s
theory and many articles have focused on value distribution and uniqueness of difference
polynomials of entire or meromorphic functions (see example [6]-[14]).

In 2012, Y H Cao and X B Zhang ([3]) obtained the following theorem.

Theorem 1.5. Let f (z) and g(z) be two transcendental meromorphic functions, whose
zeros are of multiplicities at least k, where k is a positive integer. Let n > max{2k −
1; 4 + 4/k + 4} be a positive integer. If f n(z)f (k)(z) and gn(z)g(k)(z) share z CM, and
f (z) and g(z) share ∞ IM, then one of the following two conclusions holds

(1) f n(z)f (k)(z) = gn(z)g(k)(z);

(2) f (z) = c1e
cz2

, g(z) = c2e
−cz2

, where c, c1 and c2 are constants such that
4(c1c2)n+1c2 = −1.

In 2014, X. B. Zhang ([26]) reduced the lower bond on n and relax the condition on
multiplicity of zeros in Theorem 1.5 and proved the following result.

Theorem 1.6. Let f (z) and g(z) be two transcendental meromorphic functions and n, k
two positive integers with n > k + 6. If f n(z)f (k)(z) and gn(z)g(k)(z) share z CM, and
f (z) and g(z) share ∞ IM, then one of the following two conclusions holds
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(1) f n(z)f (k)(z) = gn(z)g(k)(z);

(2) f (z) = c1e
cz2

, g(z) = c2e
−cz2

, where c, c1 and c2 are constants such that
4(c1c2)n+1c2 = −1.

In 2016, R. S. Dyavanal and A. M. Hattikal ([11]) obtained the following result.

Theorem 1.7. Let f (z) and g(z) be two transcendental meromorphic functions of hyper

orders ρ2(f ) < 1 and ρ2(g) < 1. Let k, n, d, sj (j = 1, 2, . . . , d), λ =
d∑

j=1

sj be positive

integers, cj ∈ C − {0}(j = 1, 2, . . . , d) are distinct constants and n > max{2d(k +
2) + λ(k + 3) + 7, λ1; λ2}, where λ1 =

d∑
j=1

αjsj and λ2 =
d∑

j=1

βjsj , j = 1, 2, . . . , d

and f (z + cj ) and g(z + cj ) have zeros with maximum orders αj and βj respectively.

If f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

and g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

share z CM and f (z), g(z)

share ∞ IM, then one of the following two conclusions holds.

(1) f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

= g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

(2)
d∏

j=1

f (z + cj )sj = C1e
Cz2

,
d∏

j=1

g(z + cj )sj = C2e
−Cz2

, where C1, C2 and C are

constants such that 4(C1C2)n+1C2 = −1.

The following is the unicity theorem for meromorphic functions sharing the value z
with weight l.

Theorem 1.8. Let f (z) and g(z) be two transcendental meromorphic functions of hyper

orders ρ2(f ) < 1 and ρ2(g) < 1. Let k, n, d, sj (j = 1, 2, . . . , d), λ =
d∑

j=1

sj be positive

integers, cj ∈ C−{0}(j = 1, 2, . . . , d) are distinct constants. Iff (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

and g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

share (z, l) and f (z), g(z) share ∞ IM, where 0 ≤ l < ∞.

Then the conclusions of Theorem C hold provided

1. if 2 ≤ l < ∞ then n ≥ 2(k + 2)d + (k + 4)λ + 8,
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2. if l = 1 then n ≥ λ

(
3

2
k + 7

2

)
+ d

(
2(k + 2) + 1

2
(k + 1)

)
+ 9,

3. if l = 0 then n ≥ d(5k + 7) + 7λ + 4kλ + 14.

Corollary 1.9. Let f (z) and g(z) be two transcendental meromorphic functions of hyper

orders ρ2(f ) < 1 and ρ2(g) < 1. Let k, n, d, sj (j = 1, 2, . . . , d), λ =
d∑

j=1

sj be positive

integers. If f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

and g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

share (1, l) and

f (z), g(z) share ∞ IM, where 0 ≤ l < ∞. Then the conclusions of Theorem 1.7 hold
provided

1. if 2 ≤ l < ∞ then n ≥ 2(k + 2)d + (k + 4)λ + 8,

2. if l = 1 then n ≥ λ

(
3

2
k + 7

2

)
+ d

(
2(k + 2) + 1

2
(k + 1)

)
+ 9,

3. if l = 0 then n ≥ d(5k + 7) + 7λ + 4kλ + 14.

2. Some Preliminary Results

In this section we present some Lemmas which will be needed in the sequel.
Let F and G be two nonconstant meromorphic functions defined in C. We shall

denote by H the following function:

H =
(

F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
.

Lemma 2.1. [4] Let f (z) be a transcendental meromorphic function of finite order.
Then

T (r , f (z + c)) = T (r , f ) + S(r , f ).

Lemma 2.2. [2] LetF , Gbe two nonconstant meromorphic functions sharing (1, l), (∞, 0),
where 2 ≤ l < ∞ and H �≡ 0. Then

T (r , F ) ≤ N2(r , 0; F ) + N2(r , 0; G) + N (r , ∞; F ) + N (r , ∞; G) + N∗(r , ∞; F , G)

−m(r , 1; G) − N
(3
E (r , 1; F ) − NL(r , 1; G) + S(r , F ) + S(r , G)

T (r , G) ≤ N2(r , 0; F ) + N2(r , 0; G) + N (r , ∞; G) + N (r , ∞; F ) + N∗(r , ∞; F , G)

−m(r , 1; F ) − N
(3
E (r , 1; G) − NL(r , 1; F ) + S(r , F ) + S(r , G)
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Lemma 2.3. [[20], Lemma 2.3] Let F , G be two nonconstant meromorphic functions
sharing (1, 1), (∞, 0) and H �≡ 0. Then

T (r , F ) ≤ N2(r , 0; F ) + N2(r , 0; G) + 3

2
N (r , ∞; F ) + N (r , ∞; G) + N∗(r , ∞; F , G)

+1

2
N (r , 0; F ) + S(r , F ) + S(r , G)

T (r , G) ≤ N2(r , 0; F ) + N2(r , 0; G) + N (r , ∞; G) + N (r , ∞; F ) + N∗(r , ∞; F , G)

+1

2
N (r , 0; G) + S(r , F ) + S(r , G)

Lemma 2.4. [[20], Lemma 2.5] Let F , G be two nonconstant meromorphic functions
sharing (1, 0), (∞, 0) and H �≡ 0. Then

T (r , F ) ≤ N2(r , 0; F ) + N2(r , 0; G) + 3N (r , ∞; F ) + 2N (r , ∞; G) + N∗(r , ∞; F , G)

+2N (r , 0; F ) + N (r , 0; G) + S(r , F ) + S(r , G)

T (r , G) ≤ N2(r , 0; F ) + N2(r , 0; G) + 3N (r , ∞; G) + 2N (r , ∞; F ) + N∗(r , ∞; F , G)

+2N (r , 0; G) + N (r , 0; F ) + S(r , F ) + S(r , G)

Lemma 2.5. [23] Letf (z) be a non-constant meromorphic function, and leta0(z), a1(z), . . . ,
an(z)( �≡ 0) be small functions with respect to f . Then

T (r , anf
n + an−1f

n−1 + · · · + a1f + a0) = nT (r , f ) + S(r , f ).

Lemma 2.6. [[18], Lemma 2.11] Let f (z) be a non-constant meromorphic function,
and p, k be positive integers. Then

T (r , f (k)) ≤ T (r , f ) + kN (r , f ) + S(r , f ),

Np

(
r ,

1

f (k)

)
≤ T (r , f (k)) − T (r , f ) + Np+k

(
r ,

1

f

)
+ S(r , f ),

Np

(
r ,

1

f (k)

)
≤ Np+k

(
r ,

1

f

)
+ kN (r , f ) + S(r , f ).

Lemma 2.7. [19] Let f (z) be a transcendental meromorphic function of finite order.
Then

N (r , f (z + c)) = N (r , f (z)) + S(r , f ),

N

(
r ,

1

f (z + c)

)
= N

(
r ,

1

f (z)

)
+ S(r , f ).

Lemma 2.8. ([11]) Let f (z) be a transcendental meromorphic function of hyper order

ρ2(f ) < 1 and F1(z) = f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦. Then

(n − λ)T (r , f ) + S(r , f ) ≤ T (r , F1(z)) ≤ (n + λ)T (r , f ) + S(r , f ).
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3. Proof of Theorem

Proof of Theorem 1.1

Let

F (z) = f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

, G(z) = g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

(3.1)

F1(z) = f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦ , G1(z) = g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦ , (3.2)

F2(z) =
f (z)n

[∏d
j=1 f (z + cj )sj

](k)

z
, G2(z) =

g(z)n
[∏d

j=1 g(z + cj )sj
](k)

z
.

(3.3)

Then F2(z), G2(z) are transcendental meromorphic functions that share (1, l) and f , g
share ∞ IM. Since f and g are transcendental, z is a small function with respect to both
F and G.

Let us consider two cases separately.

Case 1: Assume that H �≡ 0.

Now, we consider the following three subcases.

Subcase 1.1: Suppose that 2 ≤ l < ∞. Then using Lemma 2.2, we obtain

T (r , F ) = T (r , F2) + S(r , F2)

≤ N2(r , 0, F2) + N2(r , 0, G2) + N (r , ∞, F2) + N (r , ∞, G2)

+N∗(r , ∞; F2, G2) − m(r , 1, G2) − N
(3
E (r , 1, F2) − NL(r , 1, G2)

+S(r , F2) + S(r , G2)

≤ N2(r , 0, F ) + N2(r , 0, G) + N∗(r , ∞; F , G) + N (r , ∞, F ) + N (r , ∞, G)

+S(r , F ) + S(r , G) (3.4)

Noting that

N∗(r , ∞; F , G) = NL(r , ∞, F ) + NL(r , ∞, G)

≤ N (r , ∞, F ) = N (r , ∞, G) (3.5)
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we obtain from (3.4),(3.5), Lemma 2.8 and Lemma 2.6 that

T (r , F ) ≤ N2(r , 0, F ) + N2(r , 0, G) + 2N (r , ∞, F ) + N (r , ∞, G)

+S(r , F ) + S(r , G)

≤ N2(r , 0, f n) + N2

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N2(r , 0, gn)

+N2

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + 2N

(
r , ∞, f n

)

+2N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N

(
r , ∞, gn

)

+N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + S(r , f ) + S(r , g)

≤ 2N (2
(
r , 0, f n

) + T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠

−T

⎛
⎝r ,

d∏
j=1

f (z + cj )sj

⎞
⎠

+Nk+2

⎛
⎝r , 0,

d∏
j=1

f (z + cj )sj

⎞
⎠ + 2N (2

(
r , 0, gn

)

+T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ − T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠

+Nk+2

⎛
⎝r , 0,

d∏
j=1

g(z + cj )sj

⎞
⎠ + 2N (r , ∞, f )

+2N

⎛
⎝r , ∞,

d∏
j=1

f (z + cj )sj

⎞
⎠
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+N (r , ∞, g) + N

⎛
⎝r , ∞,

d∏
j=1

g(z + cj )sj

⎞
⎠ + S(r , f ) + S(r , g)

≤ 2T (r , f ) + T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + T (r , f n) − T (r , f n)

−T

⎛
⎝r ,

d∏
j=1

f (z + cj )sj

⎞
⎠ + d(k + 2)T (r , f ) + 2T (r , g)

+T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠ + kN

⎛
⎝r , ∞,

d∏
j=1

g(z + cj )sj

⎞
⎠

−T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠ + d(k + 2)T (r , g) + 2T (r , f )

+2λT (r , f ) + T (r , g) + λT (r , g) + S(r , f ) + S(r , g)

≤ 2T (r , f ) + T (r , F ) − T (r , F1) + d(k + 2)T (r , f )

+2T (r , g) + kλT (r , g)

+d(k + 2)T (r , g) + 2(λ + 1)T (r , f ) + (λ + 1)T (r , g)

+S(r , f ) + S(r , g)

That is,

T (r , F1) ≤ (d(k + 2) + 2(λ + 1) + 2)T (r , f )

+(d(k + 2) + (k + 1)λ + 3)T (r , g) + S(r , f ) + S(r , g)

(n − λ)T (r , f ) ≤ (d(k + 2) + λ + 3)(T (r , f ) + T (r , g))

+(λ + 1)T (r , f ) + kλT (r , g) + S(r , f ) + S(r , g)

(3.6)

Similarly,

(n − λ)T (r , g) ≤ (d(k + 2) + λ + 3)(T (r , f ) + T (r , g))

+(λ + 1)T (r , g) + kλT (r , f ) + S(r , f ) + S(r , g)

(3.7)

From (3.6) and (3.7), we get

(n − 4λ − 2(k + 2)d − kλ − 7)(T (r , f ) + T (r , g)) ≤ S(r , f ) + S(r , g)

Which is contradiction to n ≥ 2(k + 2)d + (k + 4)λ + 8.
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Subcase 1.2: When l = 1.
Then using (3.5) and Lemma 2.3, we deduce that

T (r , F ) = T (r , F2) + S(r , F2)

≤ N2 (r , 0, F2) + N2 (r , 0, G2) + 3

2
N (r , ∞, F2) + N (r , ∞, G2)

+N∗(r , ∞, F2, G2) + 1

2
N (r , 0, F2) + S(r , F2) + S(r , G2)

≤ N2 (r , 0, F) + N2 (r , 0, G) + 3

2
N (r , ∞, F ) + N (r , ∞, G)

+N∗(r , ∞, F , G) + 1

2
N (r , 0, F) + S(r , F ) + S(r , G)

≤ N2 (r , 0, F) + N2 (r , 0, G) + 5

2
N (r , ∞, F ) + N (r , ∞, G)

+1

2
N (r , 0, F) + S(r , F ) + S(r , G)

≤ N2
(
r , 0, f n

) + N2

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N2

(
r , 0, gn

)

+N2

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + 5

2
N

(
r , ∞, f n

)

+5

2
N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N

(
r , ∞, gn

)

+N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + 1

2
N

(
r , 0, f n

)

+1

2
N

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + S(r , f ) + S(r , g)

≤ 2N (2
(
r , 0, f n

) + T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ − T

⎛
⎝r ,

d∏
j=1

f (z + cj )sj

⎞
⎠

+Nk+2

⎛
⎝r , 0,

d∏
j=1

f (z + cj )sj

⎞
⎠ + 2N (2

(
r , 0, gn

)
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+T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ − T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠

+Nk+2

⎛
⎝r , 0,

d∏
j=1

g(z + cj )sj

⎞
⎠ + 5

2
N (r , ∞, f )

+5

2
N

⎛
⎝r , ∞,

d∏
j=1

f (z + cj )sj

⎞
⎠

+N (r , ∞, g) + N

⎛
⎝r , ∞,

d∏
j=1

g(z + cj )sj

⎞
⎠ + 1

2
N (r , 0, f )

+1

2
Nk+1

⎛
⎝r , 0,

d∏
j=1

f (z + cj )sj

⎞
⎠ + 1

2
kN

⎛
⎝r , ∞,

d∏
j=1

f (z + cj )sj

⎞
⎠

+S(r , f ) + S(r , g)

≤ 2T (r , f ) + T

⎛
⎜⎝r ,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + T (r , f n) − T (r , f n)

−T

⎛
⎝r ,

d∏
j=1

f (z + cj )sj

⎞
⎠ + d(k + 2)T (r , f ) + 2T (r , g)

+T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠ + kN

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠

−T

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠

+d(k + 2)T (r , g) + 5

2
T (r , f ) + 5

2
λT (r , f ) + T (r , g)

+λT (r , g) + 1

2
T (r , f )

+1

2
d(k + 1)T (r , f ) + 1

2
kλT (r , f ) + S(r , f ) + S(r , g)

≤ 2T (r , f ) + T (r , F ) − T (r , F1) + d(k + 2)T (r , f )

+2T (r , g) + kλT (r , g)
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+d(k + 2)T (r , g) + 5

2
T (r , f ) + 5

2
λT (r , f ) + T (r , g)

+λT (r , g) + 1

2
T (r , f )

+1

2
d(k + 1)T (r , f ) + 1

2
kλT (r , f ) + S(r , f ) + S(r , g)

That is,

T (r , F1) ≤
(

d(k + 2) + 1

2
kλ + 3 + λ

)
(T (r , f ) + T (r , g))

+
(

1

2
d(k + 1) + 3

2
λ + 2

)
T (r , f ) + 1

2
kλT (r , g) + S(r , f ) + S(r , g)

(n − λ)T (r , f ) ≤
(

d(k + 2) + 1

2
kλ + 3 + λ

)
(T (r , f ) + T (r , g))

+
(

1

2
d(k + 1) + 3

2
λ + 2

)
T (r , f ) + 1

2
kλT (r , g)

+S(r , f ) + S(r , g) (3.8)

Similarly

(n − λ)T (r , g) ≤
(

d(k + 2) + 1

2
kλ + 3 + λ

)
(T (r , f ) + T (r , g))

+
(

1

2
d(k + 1) + 3

2
λ + 2

)
T (r , g) + 1

2
kλT (r , f )

+S(r , f ) + S(r , g) (3.9)

From (3.8) and (3.9), we get(
n − λ

(
3

2
k + 7

2

)
− d

(
2(k + 2) + 1

2
(k + 1)

)
− 8

)
(T (r , f )+T (r , g)) ≤ S(r , f )+S(r , g)

Which is contradiction to n ≥ λ

(
3

2
k + 7

2

)
+ d

(
2(k + 2) + 1

2
(k + 1)

)
+ 9.

Subcase 1.3 : When l = 0.
As in Subcase 1.1 and using (3.5) and Lemma 2.4, we simplify

T (r , F ) = T (r , F2) + S(r , F2)

≤ N2 (r , 0, F2) + N2 (r , 0, G2) + 3N (r , ∞, F2) + 2N (r , ∞, G2)

+N∗(r , ∞, F2, G2) + 2N (r , 0, F2) + N (r , 0, G2) + S(r , F2) + S(r , G2)

≤ N2 (r , 0, F) + N2 (r , 0, G) + 3N (r , ∞, F ) + 2N (r , ∞, G)

+N∗(r , ∞, F , G) + 2N (r , 0, F) + N (r , 0, G) + S(r , F ) + S(r , G)
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≤ N2 (r , 0, F) + N2 (r , 0, G) + 4N (r , ∞, F ) + 2N (r , ∞, G) + 2N (r , 0, F)

+N (r , 0, G) + S(r , F ) + S(r , G)

≤ 2T (r , f ) + T (r , F ) − T (r , F1) + d(k + 2)T (r , f ) + 2T (r , g) + kλT (r , g)

+d(k + 2)T (r , g) + 4N (r , ∞, f n) + 4N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠

+2N (r , ∞, gn) + 2N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + 2N

(
r , 0, f n

)

+2N

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N

(
r , 0, gn

)

+N

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + S(r , f ) + S(r , g)

That is,

T (r , F1) ≤ 2T (r , f ) + d(k + 2)T (r , f ) + 2T (r , g) + kλT (r , g) + d(k + 2)T (r , g)

+4T (r , f ) + 4N

⎛
⎝r , ∞,

d∏
j=1

f (z + cj )sj

⎞
⎠ + 2T (r , g)

+2N

⎛
⎝r , ∞,

d∏
j=1

g(z + cj )sj

⎞
⎠ + 2T (r , f ) + 2Nk+1

⎛
⎝r , 0,

d∏
j=1

f (z + cj )sj

⎞
⎠

+2kN

⎛
⎝r , ∞,

d∏
j=1

f (z + cj )sj

⎞
⎠ + T (r , g) + Nk+1

⎛
⎝r , 0,

d∏
j=1

g(z + cj )sj

⎞
⎠

+kN

⎛
⎝r , ∞,

d∏
j=1

g(z + cj )sj

⎞
⎠ + S(r , f ) + S(r , g)

(n − λ)T (r , f ) ≤ (d(k + 2) + d(k + 1) + 2kλ + 2λ + 5)(T (r , f ) + T (r , g))

+(2λ + d(k + 1) + 3)T (r , f ) + S(r , f ) + S(r , g) (3.10)

Similarly,

(n − λ)T (r , g) ≤ (d(k + 2) + d(k + 1) + 2kλ + 2λ + 5)(T (r , f ) + T (r , g))

+(2λ + d(k + 1) + 3)T (r , g) + S(r , f ) + S(r , g) (3.11)
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From (3.10) and (3.11), we get

(n−7λ−d(2k +4+2k +2+k +1)−4kλ−13)(T (r , f )+T (r , g)) ≤ S(r , f )+S(r , g)

Which is contradiction to n ≥ 7λ + d(5k + 7) + 4kλ + 14.

Case 2. We now assume that H ≡ 0. That is(
F

′′
2

F2
′ − 2F2

′

F2
′ − 1

)
−

(
G

′′
2

G2
′ − 2G2

′

G2
′ − 1

)
= 0

Integrating both sides twice, we get

1

F2 − 1
= A

G2 − 1
+ B (3.12)

where A( �= 0) and B are constants. From (3.12) , we have following subcases.

Subcase 2.1. Let B �= 0 and A = B. Then from (3.12), we get

1

F2 − 1
= BG2

G2 − 1
(3.13)

If B = −1, then from (3.13), we obtain, F2G2 = 1.

That is, f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

. g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

= z2

We proceed as in the proof of Theorem 1.7, we obtain
d∏

j=1

f (z + cj )sj = c1e
cz2

and

d∏
j=1

g(z + cj )sj = c2e
cz2

, where c1, c2 and c are constants such that 4(c1c2)n+1c2 = −1.

If B �= −1, from (3.13), we have

1

F2
= BG2

(1 + B)G2 − 1
and theref ore N

(
r ,

1

B + 1
, G2

)
= N (r , 0, F2).

(3.14)

Using second fundamental theorem of Nevanlinna, we get

T (r , G) = T (r , G2) + S(r , G)

≤ N (r , 0, G2) + N (r , ∞, G2) + N

(
r ,

1

B + 1
, G2

)
+ S(r , G)

≤ N (r , 0, G2) + N (r , ∞, G2) + N (r , 0, F2) + S(r , G)

≤ N (r , 0, G) + N (r , ∞, G) + N (r , 0, F) + S(r , G)
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Using this with Lemma 2.8, we deduce that

(n − λ)T (r , g) ≤ N
(
r , 0, g(z)n

) + N

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N (r , ∞, g(z)n)

+N

⎛
⎜⎝r , ∞,

⎛
⎝ d∏

j=1

g(z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + N

(
r , 0, f (z)n

)

+N

⎛
⎜⎝r , 0,

⎛
⎝ d∏

j=1

f (z + cj )sj

⎞
⎠

(k)
⎞
⎟⎠ + S(r , g)

≤ T (r , g) + kN

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠ + Nk+1

(
r ,

1∏d
j=1 g(z + cj )sj

)

+T (r , g) + N

⎛
⎝r ,

d∏
j=1

g(z + cj )sj

⎞
⎠ + N

(
r ,

1

f (z)n

)

+Nk+1

(
r ,

1∏d
j=1 f (z + cj )sj

)
+ kN

⎛
⎝r ,

d∏
j=1

f (z + cj )sj

⎞
⎠ + S(r , g)

≤ T (r , g) + kλT (r , g) + d(k + 1)T (r , g) + T (r , g) + λT (r , g)

+T (r , f ) + kλT (r , f ) + d(k + 1)T (r , f ) + S(r , f ) + S(r , g)

Thus,

(n − λ)T (r , g) ≤ (d(k + 1) + kλ + 1)(T (r , f ) + T (r , g))

+(1 + λ)T (r , g) + S(r , f ) + S(r , g) (3.15)

Similarly

(n − λ)T (r , f ) ≤ (d(k + 1) + kλ + 1)(T (r , f ) + T (r , g))

+(1 + λ)T (r , f ) + S(r , f ) + S(r , g) (3.16)

From (3.15) and (3.16), we get

(n − 2λ − 2d(k + 1) − 2kλ − 3)(T (r , f ) + T (r , g)) ≤ S(r , f ) + S(r , g)

which contradicts to n ≥ 2λ + 2d(k + 1) + 2kλ + 4.

Subcase 2.2. Let B �= 0 and A �= B.
Then by (3.12), we get

F2 = (B + 1)G2 − (B − A + 1)

BG2 + (A − B)
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and so, N

(
r ,

B − A + 1

B + 1
, G2

)
= N (r , 0, F2).

Proceeding as in Subcase 2.1 , we obtain a contradiction.

Subcase 2.3. Let B = 0 and A �= 0. Then by (3.12), we get

F2 = G2 + A − 1

A
and G2 = AF2 − (A − 1)

If A �= 1, we have N

(
r ,

A − 1

A
, F2

)
= N (r , 0, G2) and N (r , A − 1, G2) = N (r , 0, F2).

Using the similar arguments as in Subcase 2.1, we obtain a contradiction. Thus A = 1.
Which implies F = G and therefore

f (z)n

⎡
⎣ d∏

j=1

f (z + cj )sj

⎤
⎦

(k)

= g(z)n

⎡
⎣ d∏

j=1

g(z + cj )sj

⎤
⎦

(k)

.

�

Acknowledgement

The first author is supported by Ref. No. F.510/3/DRS-III/2016(SAP-I) Dated:29th
Feb.2016.

References

[1] T. C.Alzahary, H. X.Yi, Weighted value sharing and a question of I.Lahiri, Complex
Var. Theory Appl., 49 (2004), 1063–1078.

[2] A Banerjee, Uniqueness of meromorphic functions sharing two sets with finite
weight, Port. Math. (N.S.) 65 (2008), 81–93.

[3] Y. H. Cao, X. B. Zhang, Uniqueness of meromorphic functions sharing two values,
J. Inequal. Appl., 2012:100.

[4] Y.M. Chiang, S.J. Feng, On the Nevanlinna characteristic of f (z+η) and difference
equations in the complex plane, Ramanujan J. 16(2008), 105–129.

[5] R.S. Dyavanal, A.M. Hattikal, Weighted sharing of Uniqueness of difference poly-
nomials of meromorphic functions, Far East J. Math. Sci. Vol. 98 No. 3(2015),
293–313.

[6] R.S. Dyavanal, R.V. Desai, Uniqueness of Difference Polynomials of Entire Func-
tions, Applied Math. Sci., Vol. 8, 2014, no. 69, 3419–3424.

[7] R.S. Dyavanal, R.V. Desai, Uniqueness of q-shift difference and differential poly-
nomials of Entire functions, Far East Journal of Applied Mathematics, Vol. 91,
no. 3(2015), 189–202.



346 Renukadevi S. Dyavanal and Rajalaxmi V. Desai

[8] R.S. Dyavanal, R.V. Desai, Uniqueness of q-difference and differential polynomials
of entire functions, Mathematical Sciences International Research Journal, Vol. 4,
No. 2, (2015), 267–271.

[9] R.S. Dyavanal, A.M. Hattikal, Weighted sharing of difference-differential polyno-
mials of entire functions, Mathematical Sciences International Research Journal,
Vol. 4, No. 2, (2015), 276–280.

[10] R.S. Dyavanal, A.M. Hattikal, Unicity theorems on difference polynomials of mero-
morphic functions sharing one value, Int. J. Pure Appl. Math. Sci. 9(2) (2016),
89–97.

[11] R.S. Dyavanal, A.M. Hattikal, On the uniqueness of product of difference polyno-
mials of meromorphic functions, Konuralp J. Math. 4(2) (2016), 42–55.

[12] R.S. Dyavanal, M.M. Mathai, Uniqueness of Difference-Differential polynomials
of meromorphic functions and its applications, Indian J. Math. Math. Sci. 12, No.
1, 11–30(2016).

[13] R.S. Dyavanal, M.M. Mathai, Uniqueness of Difference-Differential polynomials
of meromorphic functions, Ukrainian Math. J. (Accepted).

[14] R.S. Dyavanal, R.V. Desai, Uniqueness of product of derivatives and q-shift differ-
ence of entire functions, Indian Journal of Mathematics and Mathematical Sciences
(Accepted).

[15] W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[16] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya

Math. J., 161 (2001), 193–206.
[17] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Com-

plex Variables Theory Appl. 46(2001), 241–253.
[18] K. Liu, X. L. Liu and T. B. Cao, Some results on zeros distributions and uniqueness

of derivatives of difference, (2011) http.//arxiv.org/abs/1107.0773vl.
[19] X. Luo, W. C. Lin, Value sharing results for shifts of meromorphic functions, J.

Math. Anal. Appl. 377(2011), 441–449.
[20] P. Sahoo, Meromorphic functions that share fixed points with finite weights, Bull.

Math. Anal. Appl., 2 (2010), 106–118.
[21] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin 1993.
[22] C. C.Yang and X. H. Hua,Uniqueness and value sharing of meromorphic functions,

Ann. Acad. Sci. Fenn. Math. 22(1997), 395–406
[23] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer

Academic Publishers, Dordrecht, 2003, Chinese Original, Science Press, Beijing,
1995.

[24] X. Y. Zhang, J. F. Chen and W. C. Lin, Entire or meromorphic functions sharing
one value, Comp. Math. Appl. 56(2008), 1876–1883.

[25] X. B. Zhang and J. F. Xu, Uniqueness of meromorphic functions sharing a small
function and its applications, Comp. Math. Appl. 61(2011), 722–730.

[26] X. B. Zhang, Further results on uniqueness of meromorphic functions concerning
fixed points, Abst. Appl. Anal., (2014), Article ID 256032, 7 Pages.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


