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Abstract

The credit crunch of 2007-2008 demonstrated a potential change in derivatives
pricing methodologies, mostly the consideration of the counterparty risks in the
valuation procedures. The standard pricing theories based on the martingale princi-
ples are subject to produce unrealistic results because of not taking the counterparty
credit exposure into consideration. One way the problem can be handled is to
introduce counterparty risks in the pricing equations by using the effect of collat-
eralization scheme, especially extreme liquid transactions. Assuming a Lipschitz
continous driver , this study will investigate a backward stochastic differential equa-
tion as a pricing equation based on the market which is weakly efficient. We use
these results to ensure the solution of the pricing equations on both cases, collateral
dominated in domestic and foreign currencies. We introduce the basis currency in
the case of collateral being posted in foreign currency in order to preclude arbitrage
opportunities. Overall, We found that the prices differ from each other.

1. Introduction
A decade ago, after the global financial crisis of 2007−2008, the quantitative finance
experienced unexpected changes particularly in asset pricing. The disregarded factors in
the old valuation discounting framework, counterparty credit risks and funding costs, had
proved to contribute too much to the aforementioned crisis. However, banks and other
financial institutions dealing with derivatives deals have been pushed by this crisis event
to carefully review the principles and regulations governing the derivatives contracts
traded either in the over-the-counter(OTC) or clearing counterparties, identify new risks
embedded in these contracts and hence propose new mitigation tools and new regulatory
frameworks against these risks.
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The pricing problem in the post crisis concerns about the inclusion of counterparty credit
risks and funding costs in the valuation framework. This causes controversial views
among practitioners and academics. The most problematic is the introduction of various
valuation adjustments, namely funding, debit and credit valuation adjustments, into
pricing formula. In addition, the financial crisis had witnessed a bilateral counterparty
credit risk in a derivative contract. Since banks can default on their obligations as some
banks did during the crisis, the consideration of counterparty risks in the valuation should
be bilateral instead of unilateral. It is clear that the counterparty credit risk happens if one
party fails to meet her contractual obligations, hence measures to reduce the counterparty
credit risks would be primary of importance in the new valuation framework.

As specified in citeISDA, collateralization is widely used in the over-the-counter deriva-
tives contracts and considered as a mitigation tool for counterparty exposures. Hence,
the use of collateral is increasingly becoming a standard practice in the derivatives trans-
actions happened in bilateral trading positions. It is worth mentioning that collateral
positing is regulated by a Credit Support Annex(CSA) under the International Swaps
and Derivatives Association (ISDA) master agreement which specifies the posting and
margining rules. A CSA is a bilateral contract that specifies the collateral agreements
between counterparties in the OTC derivatives transactions. The counterparty whose
market-to-market(MTM) value is negative posts a collateral on the collateral account of
her counterparty.

Putting these factors into the valuation discounting framework, one needs to consider
the possibility of defaulting by either counterparty. This consideration violates the risk-
neutral valuation which is based on the risk free assumption, seemingly unrealistic. In
this paper, we are concern about the impact of collateralization on the standard asset
pricing theory, specifically the valuation framework of an option-European style. The
main motivation of this work is due to the emerging of collateral requirements in the
over-the-counter derivatives transactions. In this context, previous and current works
are concentrated on assessing the impact of collateralization in derivatives transactions
and its inclusion in the standard derivatives pricing theories. This has been investigated
recently in [5], [6], and the references therein. The introduction of collateral agreements
under CSA into option pricing, Black-Scholes European style, has been discussed by
[29]. The author derived a partial differential(PDE) equation representing the dynamics
of the value of a derivative which depends on different rates including collateral rate.
Although the derivation did not consider the effect of default by any counterparty it
showed that the price of the derivative does not depend on the risk free rate.

As it has been shown in the previous works for example, pricing derivatives with partial
differential equation (PDE) approach has mostly been considered in the risk neutral
valuation. For example the celebrated Black-Scholes formula. Note that the risk neutral
valuation does not account for the counterparty risks, and by its name states there is a
need to change measures. However, the valuation PDE approach is not a good candidate
to value defaultable contingent claims. As discussed by [10], including counterparty
risks in a pricing formula is equivalent to forming a backward stochastic differential
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equation(BSDE). In this context the BSDE representation depends on different interest
rates. An important feature of BSDE approach there is no need to switch to another
probability measure; that is, the governing equation of a financial deal is formulated
under a single probability measure which is the physical measure [28]. In more general
settings, BSDEs are suitable for solving hedging problems where niether continuity of
pay-off nor a Markovian dynamics is assumed [12]. Once again, a BSDE representation
has been identified to mathematically characterize a financial event having a component
of counterparty credit risk [9]. All of these features back a BSDE approach to be a best
candidate to model defaultable contingent claims.

Adopting the replication strategy we construct a BSDE which represents the dynamics of
a European option considering the effects of counterparty exposure. The introduction of
collateralization will be treated as a mitigating tool against this exposure. Depending
on the CSA agreements, collateralization may require a counterparty to post collateral
which dominated in the same currency as the underlying or in a different currency. In
this context, we allow counterparties to post collaterals dominated either in the same or
different currency from the underlying. The valuation problem here would be solved
using no arbitrage conditions and market completeness arguments. These arguments
will be given by the existence and uniqueness of the solution for the resulting pricing
equation.

2. Backward Stochastic Differential Equation with Jumps
Over the decades, backward stochastic equations have been regarded as a strong tool
to solve financial problems, mostly linked to the optimal control of the systems and
pricing contingent claims. Researches have been done in line with these problems
under different contexts and considerations to find the existence and uniqueness of
the resulting equations. This section will focus on the existence and uniqueness of
the backward stochastic differential equation driven by the two independent processes,
namely Brownian Motion and Poisson random measure. In setting up these mathematical
backgrounds, we use the same notations as in Cordoni and Di Persio [8]. Let us fix a
terminal time T > 0 and a filtered probability space (Ω,Ft,F,P) with Ft := (Ft)t∈[0,T ],
available information at time t generated by both the Brownian motion W and Poisson
random measure N(dt,dx) on R+×E with E :=R\{0}. Note that the compensated Poisson
random measure Ñ(dx,dt) is a martingale and defined as Ñ(dt,dx) = N(dt,dx)−λ(dx)dt,
where λ(dx)dt is σ-finite measure on (E,B(E) satisfying, for more details see Barles
et al. [2], ∫

E
(1∧|x|2)λ(dx) <∞

Throughout this section, we consider the following definitions and spaces in establishing
the existence and solutions.

(i) The L2(FT ) represents the space of square integrable and FT -measurable pro-
cesses.
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(ii) The S2(R) denotes the set of all progressively measurable processes Y such that

E

(
sup

t
|Y |2

)
<∞

(iii) TheH2(R) denotes the set of all predictable processes Z such that E


T∫

0

|Z|2 dt

<∞
(iv) The H2

N(R) represents the set of all P⊗B(E)− measurable processes U such that

E


T∫

0

∫
E

∣∣∣ut(x)
∣∣∣2λ(dx)dt

 <∞
where P stands for the σ−algebra of all F−predictable sets of [0,T ]×Ω and Ñ(dx,dt)
the compensated Poisson random measure.

We consider the following linear BSDE with jumps of the form

dYt = − f (t,Yt,Zt,Ut) + ZtdWt +

∫
E

Ut(x)Ñ(dt,de), YT = ξ (2.1)

or equivalently

Yt = ξ+

T∫
t

f (s,Ys,Zs,Us)ds−

T∫
t

ZsdWs−

T∫
t

∫
E

Ut(x)Ñ(ds,de)

The function f is called driver and ξ is the terminal condition and Ñ(dt,de) is a com-
pensated Poisson counting measure, as defined above, that counts the size of the jump
occurred at time t. The pair of ( f , ξ) is called standard data of the BSDE (2.1) and satisfy
certain conditions to have solutions.

Indeed the existence of the solution plays a vital role in the theory of BSDEs, for example
for the BSDE of (2.1) to have a meaning. Different directions have been taken into
considerations by different researchers to establish the existence results, whether the
solution is unique or not. In this direction, much efforts were devoted to find the existence
and uniqueness of the solution of (2.1). The most restrictive assumptions are finiteness of
the terminal value ξ and the continuity of the driver f . For example the authors in [27],
[14] and the reference therein defined the terminal condition ξ to be square integrable
(i.e, finite) and assumed the driver f to be Lipschitz continuous with respect to y and z,
in the case there are no jumps. We note that all of these conditions and/or assumptions
are particularly restrictive to the standard data. The key interesting point here is to find
the existence of the solution for the BSDE equation (2.1).

(C1) The terminal condition ξ is square integrable (i.e ξ ∈ L2(FT )).
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(C2) f (t,0,0,0) ∈ L2(FT )

(C3) The driver f is Lipschitz with respect to y,z and u. There exists a constant
C > 0 such that∣∣∣ f (t,y,z,u)− f (t,y′,z′,u′)

∣∣∣ ≤C
(∣∣∣y− y′

∣∣∣+∣∣∣z− z′
∣∣∣+∥∥∥u−u′

∥∥∥) (2.2)

Definition 2.1. A triple of processes (Yt,Zt,Ut)0≤t≤t ∈ S
2(R)×H2(R)×H2

N(R) is a solution
satisfying

Yt = ξ+

T∫
t

f (s,Ys,Zs,Us)ds−

T∫
t

ZsdWs−

T∫
t

∫
E

Ut(x)Ñ(ds,de) (2.3)

where U is a jump size distribution.

So far we have considered a one-dimensional standard BSDE with Lipschitz driver. The
interest here is to find the Ft-adapted processes Yt, Zt and Ut such that the equation 2.3
holds. In the favor of applications, the following results tell us that there exits a unique
solution for the BSDE 2.3. Before that we would like to present two important lemma
that will be used later. The first lemma gives a representation for a jump-diffusion models
and the other one establishes the a priori estimates. We mention that representation
results are very important to solve problems pertaining to hedging claims in financial
mathematics Rachev [30]. In diffusion stochastic processes, every square integrable
martingale adapted to the natural filtration of Brownian motion can be written as a
stochastic integral with respect to Brownian motion Kallianpur and Karandikar [22]
solving hedging problems. The extension to the jump-diffusion processes can be found
in the standard books on financial mathematics, for example . In fact, we consider the
following result from [12].

Lemma 2.1 (Martingale representation theorem). Let Mt be a square integrable mar-
tingale defined on (Ω,Ft,F,P). There exist a predictable process φt, square integrable
process φt ∈ H

2(R) and ψt(x) ∈ H2
N(R) such that

Mt = M0 +

t∫
0

φsdWs +

t∫
0

∫
E
ψt(x)Ñ(ds,de). (2.4)

where φ and ψ are Ft-predictable processes, integrable with respect to W and Ñ respec-
tively.

Note that the predictable processes φ and ψ in the equations (2.4) are unique Rémillard
and Renaud [31]. The second lemma estimates the solution of the BSDE 2.3 as follows.
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Lemma 2.2 (A priori estimates). Let (ξi, f i), i = 1,2, be the standard data for the
BSDE of 2.3 and the triple (Y i,Zi,U i) the corresponding solutions. Let C be a Lischitz
constant for f 1 and define ∆Yt = Y1

t −Y2
t , ∆Zt = Z1

t −Z2
t , ∆Ut = U1

t −U2
t and ∆2 ft =

f 1(t,Y2,Z2,U2)− f 2(t,Y2,Z2,U2). For any β > C(2 + µ+ γ) and µ,γ > C ; then the
following a priori estimates hold

∥∥∥∆Y
∥∥∥2
β
≤ T

[
eβTE

(∣∣∣∆YT
∣∣∣2)+

1
β−C

(
2 +µ+γ

)∥∥∥∆ f
∥∥∥2

]
∥∥∥∆Z

∥∥∥2
β
≤

µ

µ−C

[
eβTE

(∣∣∣∆YT
∣∣∣2)+

1
β−C

(
2 +µ+γ

)∥∥∥∆ f
∥∥∥2

]
(2.5)∥∥∥∆U

∥∥∥2
β
≤

γ

γ−C

[
eβTE

(∣∣∣∆YT
∣∣∣2)+

1
β−C

(
2 +µ+γ

)∥∥∥∆ f
∥∥∥2

]
Proof. Extending the proposition 2.2 in [3] to the jump-diffusion process will give us
results. �

Theorem 2.3 ([26]). Suppose that lemma 2.1 is true and assume that the assumptions
(C1), (C2) and (C3) hold. Then a triplet of the processes (Y,Z,U) uniquely solves the
BSDE (2.3).

Proof. The proof is based on the contraction mapping and martingale representation
theorem. We closely follow and apply the theorem 2.1 in [3] to the jump-diffusion
process.The adaptedness property allows us to define Yt as

Yt = E

ξ+

T∫
t

f (s,Ys,Zs,Us)ds
∣∣∣Ft

 , for all0 ≤ t < τ (2.6)

By Lemma 2.1, there exists a pair of processes (Z,U) such that

Yt = Y0 +

t∫
0

ZsdWs +

t∫
0

∫
E

Ut(x)Ñ(ds,de) (2.7)

From the equations (2.6) and (2.7) it follows that

ξ = Y0 +

T∫
0

ZsdWs +

T∫
0

∫
E

Ut(x)Ñ(ds,de)−

T∫
t

f (s,Ys,Zs,Us)ds (2.8)

Thererfore the result follows from extracting the value of Y0 from the eqaution (2.8) and
put into (2.7). Then, we remain to show the existence of Yt. To do that, it is sufficient to
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show that the process Yt is fine. From the BSDE (2.3) we see that the inequality below
still holds

|Yt| ≤
∣∣∣ξ∣∣∣+

∣∣∣∣∣∣∣∣∣∣
T∫

0

f (t,Yt,Zt,Ut)dt

∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣

T∫
0

ZtdWt

∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣∣

T∫
0

∫
E

Ut(x)Ñ(dt,de)

∣∣∣∣∣∣∣∣∣∣ (2.9)

On the other hand we know that, by quadratic inequality, (a + b + c + d)2 ≤ 6a2 + 6b2 +

6c2 ++6d2, we have

sup
t≤T
|Yt|

2 ≤ 6
∣∣∣ξ∣∣∣2 + 6

∣∣∣∣∣∣∣∣∣∣
T∫

0

f (t,Yt,Zt,Ut)dt

∣∣∣∣∣∣∣∣∣∣
2

+ 6sup
t≤T

∣∣∣∣∣∣∣∣∣∣
T∫

0

ZtdWt

∣∣∣∣∣∣∣∣∣∣
2

+ 6sup
t≤T

∣∣∣∣∣∣∣∣∣∣
T∫

0

∫
E

Ut(x)Ñ(dt,de)

∣∣∣∣∣∣∣∣∣∣
2

and both by Doob’s inequality and taking expection on both sides we get

E

sup
t≤T
|Yt |

2

 ≤ 6E
(∣∣∣ξ∣∣∣2)+ 6TE


T∫

0

∣∣∣ f (t,Yt,Zt,Ut)
∣∣∣2 dt

+ 24E


T∫

0

|Zt |
2 dt

+ 24E


T∫

0

∫
E

∣∣∣Ut(x)
∣∣∣2α(dt,de)


(2.10)

Each term on the right hind side of (4.1) is finite, so does E

sup
t≤T
|Yt|

2

. Therefore, there

exists a finite and adapted Yt such that E

sup
t≤T
|Yt|

2

 <∞.

We remain now to show that the solution (Y,Z,U) is unique. We only need to show that
the mapping that maps to itself is a contraction. Let Q(y,z,u) be a mapping such that
Q(y,z,u) = (Y,Z,U). Let (y1,z1,u1) and (y2,z2,u2) be such that Q(y1,z1,u1) = (Y1,Z1,U1)
and Q(y2,z2,u2) = (Y2,Z2,U2) where (Y1,Z1,U1) and (Y2,Z2,U2) are the solutions of
(2.3). Assume that the estimates in Lemma 2.1 holds. Then we see from the inequal-
ity (2.5) that ∆2 f = f 1(y1,z1,u1)− f 2(y2,z2,u2) = f (y1,z1,u1)− f (y2,z2,u2) and ∆ξ = 0.
These are true because it is involving one equation with two solutions (Y1,Z1,U1) and
(Y2,Z2,U2). Taking C = 0, the inequality (2.5) will change to

∥∥∥∆Y
∥∥∥2
β
≤

T
β
E


T∫

0

eβs
∣∣∣∣ f (y1,z1,u1)− f (y2,z2,u2)

∣∣∣∣2 ds


∥∥∥∆Z

∥∥∥2
β
≤

1
β
E


T∫

0

eβs
∣∣∣∣ f (y1,z1,u1)− f (y2,z2,u2)

∣∣∣∣2 ds


∥∥∥∆U

∥∥∥2
β
≤

1
β
E


T∫

0

eβs
∣∣∣∣ f (y1,z1,u1)− f (y2,z2,u2)

∣∣∣∣2 ds


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We know that f (y,z,u) satisfies the assumption (C3), then it implies that∥∥∥∆Y
∥∥∥2
β

+
∥∥∥∆Z

∥∥∥2
β

+
∥∥∥∆U

∥∥∥2
β
≤

(4T + 8)C2

β

(∥∥∥∆y
∥∥∥2
β

+
∥∥∥∆z

∥∥∥2
β

+
∥∥∥∆u

∥∥∥2
β

)
(2.11)

The inequality (2.11) shows that the mapping Q(y,z,u) is a contraction with (4T +8)C2 <
β. Therefore, there exists a fixed point which is a unique solution of the BSDE (2.3). �

3. Pricing collateralized financial deals
3.1. Pricing domestic deals collateralized in domestic currency

In this section we focuse on credit support annex(CSA) discounting framework where
the collateral is posted in the deal’s currency. The basic idea of this framework is
that collateralized financial deal should be discounted at collateral rate of the currency
under consideration. In the sequel we will consider financial deals that are subject to
counterparty risks. This has been emphased by the work of [29] in the sense that in real
world it is unlikely to get free money. More importantly derivatives contracts involving
mutual agreements force parties to collateralize these agreements so that, in any case,
any losses incurred should be covered partially or in full depending on the agreements.

Let us start by fixing a terminal time T and a filtered probability space (Ω,G ,P) equipped
with two mutually independent stochastic processes: a unidimensional standard Brownian
motion W and a jump process N where the filtration Gt is generated both by W and N.

We are much concerned in this section on the CSA discounting to determine the fair price
of the deal. The below assumptions are credited to [17] and are very useful in setting up
our pricing equation:

A1: In this section, the deal and collateral are dominated in the same currency

A2: Each counterparty is subject to post collateral

A3: We assume no funding adjustments involved since the deal is fully collateralized.

A4: We allow repo agreement of the underlying assets.

A5: Collaterals are posted in segregated account(i.e no rehypothecation is allowed)

So far in this section we consider collaterals being posted in deal’s currencies. This is
important to highlight here because CSA agreements give rights to counterparties to post
collaterals dominated in currencies different from the underlying. We will consider this
problem in the next section. In general the counterparty with negative exposure posts
collateral to the collateral account and the posting depends on the marked-to-market
value of the deal.

We consider a financial deal between two dealers, where delear A sells a European option
to the dealer B. We assume the that the market is weakly efficient in sense that the price
movements of the underlying does not depend on the past values and are governed both



On the Derivation of the Pricing Equation of Collateralized Deals... 1559

by the Brownian motion and Poisson processesIn this section we borrow some important
concepts from [17] and assume that the market consists of the following instruments:

• Stock. We consider the underlying asset to be risky and driven by two mutually
independent processes. Let S t be the price process of the underlying and follow
the SDE of

dS t = µtS tdt +σtS tdWt +

∫
E

S t−Lt(e)Ñ(ds,de), S 0 = s, t ∈ [0,T ] (3.1)

where W is a d-dimensional Brownian motion and Ñ compensated Poisson count-
ing measure under physical measure P. The latter counts the unexpected chocks(i.e
jumps) in the underlying. The parameters µt and σt stand for the drift term and
volatility of the underlying respectively, and Lt(e) represents the size of jumps. We
also allow the underlying to be traded in repo market if need be.

• Repo account. Unlike to the classical theories, we suppose instead that a buyer
enters into repo agreement in order to hedge uncertain movements of the underlying.
This is done when she lends(borrows) money from repo market the same quantity
hold in the underlying. We suppose that a repo account, Bt, accrues at repo rate rS

t
and having the dynamics of

dBt = rS
t Btdt (3.2)

• The collateral account. We also consider a collateral account that accrues at
collateral rate rt and obeys the following dynamics

dCt = rtCtdt (3.3)

In the point of view of the buyer, we form the trading strategy as follows. The trading
strategy defined as φ := (αt,γt) is composed by the number of units, α, held in the stock
and the number of units, γ, in the repo account. Let Πt be the wealth process of the
holding portfolio of the buyer at time t, then these market instruments will imply the Πt
to be

Πt = αtS t + Bt +Ct (3.4)

From the equation (3.4) we see that the buyer is holding the whole amount of money
both at the money account, repo and collateral accounts respectively. Unlike what has
been treated in the work of [23], we allow collateral to impact the wealth process of the
portfolio.



1560 HATEGEKIMANA Nathanae, Prof. Dennis Ikpe, Dr. Ananda Kube

Definition 3.1. A collateralized trading strategy φ is self-financing if, for t ∈ [0,T ], it
holds that

dVt = αtdS t + dBt −dCt (3.5)

where αt represents the shares in the underlying at time t.

Remark 3.1. As explained in CSA manual agreement, the collateral does not implicitly
affect the holding portfolio of the collateral holder. We allow the portfolio to depend
on the collateral as well for the self-financing condition to make a mathematical sense.
Otherwise it will not make sense mathematically such a way that the changes on both
sides will be equivalent.

The negative sign on the right hand side of (3.5) tells us that the collateral holder accounts
for the interest rate paid on the collateral amount in his portfolio. Assume that portfolio
is self-financing as defined in the definition 3.1. Now we have the following result

Theorem 3.1. Assume that the trading strategy satisfies the self-financing condition (3.5)
and the underlying satisfies the equation (3.1). Let the predictable processes Zt(resp. Kt)
be defined as αtσtS t(resp. αtLt(e)S t− ). Then, for all t ∈ [0,T ], the pre-default value of
Vt follows the backward stochastic differential equation of

dVt = rtVtdt +
(
σt + Lt(e)

)−1
(
µ− rS

t

)
(Kt + Zt)dt + ZdWt +

∫
E

KtÑ(dt,de)

VT = ξ
(3.6)

And there exists a unique solution (Vt,Zt,Kt) that solves the BSDE (3.6).

Proof. The pre-default value Vt is seen as the pricing equation of the deal in the point
of view of the buyer. We assume that the buyer lends money to the repo market which
replicates the amount of money in shares which is equal to −αS . By definition 3.1 we
have

dVt = αt

(
µtS tdt +σtS tdWt +

∫
E

S t−Lt(e)Ñ(ds,de)
)
+ rS

t Btdt− rtCtdt (3.7)

Add and subtract rtVtdt in the right hand side of (3.6), the collateral term will cancel.
The result follows from setting Zt = αtσtS t(resp. Kt = αtLt(e)S t−) and applying hedging
strategies.

�

In the pricing equation (3.6) we assume that the terminal payoff ξ is a Fτ-measurable.
This is because the default of either counterparty does not imply a jump in the underlying.
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Define an adapted process ζt =
(
σt + Lt(e)

)−1
(
µ− rS

t

)
. The BSDE (3.6) becomes a linear

BSDE of the form

dVt = rtVtdt + ζt (Kt + Zt)dt + ZdWt +

∫
E

KtÑ(dt,de), VT = ξ, (3.8)

If we define the driver f (t,Vt,Zt,Kt) = −rtVt − ζt (Kt + Zt), then we have the BSDE of the
same form as the equation (2.3) but in differential form

dVt = − f (t,Vt,Zt,Kt)dt + ZdWt +

∫
E

KtÑ(dt,de) (3.9)

In addition to the aforementioned assumptions in the secion 2 we suppose that rt and ζt

are square integrable and bounded (i.e
∫ T

0
|rt|

2 dt <∞ and
∫ T

0

∣∣∣ζt
∣∣∣2 dt <∞) to ensure the

solution of the BSDE (3.9). By the theorem 2.3, a triple of processes (Vt,Zt,Kt) uniquely
solves the BSDE (3.9). In the BSDE of (3.9), one can see that the value of the derivative
is discounted by the collateral rate which is contrary to the classical theory where the
risk-free is the discounting rate. In this section we determined a pricing equation in a
single currency where the collateral is dominated in the same currency as the deal. As
the CSA agreement gives a possibility to post different currency from the deal’s one, we
will determine a pricing equation pertaining to this optionality in the next section.

3.2. Pricing domestic deals collateralized in foreign currency

In the previous section we considered a CSA discounting framework where deals only
allow counterparties to post collateral in domestic currency. . In this section, we will
address deals backed by multi-currency CSA whereby one of counterparties is allowed
to post collateral from a set of eligible currencies. This gives counterparties a right to
post cheapest currency available in the predefined set of eligible currencies. In fact if the
deal is dominated in USA dollar and Euro is the cheapest to deliver, counterparty will
post Euro as a collateral.

As discussed by [15] and [16], deals backed by multi-currency CSA lead to different
discounting rates and involve a foreign exchange rate. This poses a complexity in
valuation since what is cheapest today may not be in the future, consequently there
will be a change of discounting rate relevant to the cheapest-to-deliver option[32]. In
the subsequent paragraphs we will consider this optionality in determining a BSDE
representing this scenario.

Let (d, f ) be a set of currencies where d represents domestic currency and f foreign
currency. Consider a collateral account, C f

t , which is dominated in foreign currency f
with a foreign accrual rate r f

t . The complexity here is that the deal has to be discounted at
corresponding collateral rate while is in the domestic currency d. In the point of view of
collateral taker, there is a foreign exchange in place to change the foreign currency into
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domestic one so that her replicating portfolio will still hold even if collateral is posted in
foreign currency. As it stands, it changes the foreign currency into the domestic currency.

Unlike the dynamics of foreign exchange considered in [7], we keep it fixed throughout
the life of the contract such that the collateral provider enters into a foreign swap contract.
We can describe this scenario as: Suppose counterpaty B buys a financial deal and pays Vt

dominated in d and counterparty A posts
Vt

X(d, f )
t

dominated in f . A buys
Vt

X(d, f )
t

dominated

in currency f at spot rate
1

X(d, f )
t

and agrees to resell back at forward rate X(d, f )
t+dt . This will

eliminated any uncertain movement of X(d, f )
t because it is fixed at the inception of the

FX swap contract [34].

It does not matter if the default event occurs before the maturity. In our disposal we have a
financial deal in place currency backed by multi-currency CSA. Obviously counterparties
are allowed to post collateral dominated in foreign currency f as mentioned earlier. Let
Cd

t and C f
t be collateral accounts dominated in domestic currency and foreign currency

respectively, then there exists a foreign exchange rate X(d, f )
t such that

Cd
t = Xd, f

t C f
t (3.10)

The exchange rate Xd, f
t in the relation (3.10) expresses the unit of domestic amounts in

terms of foreign amounts. This implies that there is no problem in changing the foreign
interests as CSA stipulates that the collateral account must accrue at relevant collateral
rate which is in foreign currency. In order to preclude any arbitrage opportunities
stemming from exchanging currencies, we extract a relation between collateral rates
from [17] such that the two collateral yields the same return. There exist a cross currency
basis when changing from domestic currency to foreign currency f such t hat

(rt −bt)Ctdt = r f
t C f

t dt (3.11)

We write rt(resp. Ct) to denote the collateral rate(resp. account) in domestic currency at
time t. Substituting the relation (3.11) into the BSDE of (3.6) we get the following result

Theorem 3.2. Assume that the trading strategy satisfies the self-financing condition (3.5)
and S t satisfies the equation (3.1), then the multi-currency pricing equation of the deal
follows the backward stochastic differential equation of the form

dVt = (rt −bt)Vtdt + ζt (Kt + Zt)dt + ZdWt +

∫
E

KtÑ(dt,de), VT = ξ, (3.12)

And there exists a unique solution (Vt,Zt,Kt) that solves the BSDE (3.12).



On the Derivation of the Pricing Equation of Collateralized Deals... 1563

Proof. The proof can be done similarly as in theorem 3.1. �

As the CSA agreements stipulate, we can see that both of the pricing equations (3.8)
and 3.12 are discounting at their respective collateral rates which is different from the
classical theory. We note that the two pricing equation are different from one another.
There is an immediate effect of posting foreign currency which is captured by the basis
currency bt at time t.

4. The Stability of the Solution
In this section we want to establish the stability of the solution of the BSDE (3.12) with
the Lipschitz driver. As the underlying conditions and assumptions of the BSDE (3.8) are
almost the same as of the BSDE (3.12), the stability of the BSDE (3.12) will definitely
imply the stability of the BSDE (3.8).

The stability for the solution of the equation can be established whether its solution is
known or not. Initially the Lyapunov functions were used to determine the stability of
stochastic differential equations, especially linear stochastic system driven by Brownian
motion Mao [24]. This has been established in different perspectives including stochastic
stability and almost sure stability. The monographs on the application of Lyapunov
function about the stability can be found in [25] and the references therein. The other
direction is to consider a sequence of solution that converges to the unique solution for the
respective BSDE, therefore the solution is stable. For more details, the interested reader
can consult [1], [18] and the references therein. In the sequel we aim at constructing a
Cauchy sequence that has a limit as unique solution of the BSDE in question, hence the
stability for the solution.

Let ξ be a FT−measurable. We maintain the same assumptions and the probability space
as in the section 3. Now we consider the following BSDE

dVt = − f (t,Vt,Zt,Kt)dt + ZdWt +

∫
E

KtÑ(dt,de), VT = ξ, (4.1)

We start by fixing t ≥ 0 as in the previous sections. For each n ∈ N, let ξn ∈ L2(FT ) and
the triple (Yn,Zn,Un) solve the following BSDE

dVn
t = − f n(t,Vn

t ,Z
n
t ,K

n
t )dt + ZndWt +

∫
E

Kn
t Ñ(dt,de), Vn

T = ξn, for all t ∈ [0,T ] (4.2)

As established in [19], for each n ∈ N we have the following assumption:

A6: There exists a sequence (ξn,Cn) that converges almost surely to the limit (ξ,C).

A7: There exists a sequence (S n
t )n≥1 that converges almost surely to the limit S t.

A8: The driver f n(t,Vn
t ,Z

n
t ,K

n
t ) converges to f (t,Vt,Zt,Kt) almost surely
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Note that as posting collateral depends on the net exposure therefore the convergence of
collateral account will depend as well the convergence of net exposure. We are now in
position to establish the stability of the solution for the BSDE (4.2).

Theorem 4.1. Assume the assumptions A1-A8 hold. Then, for each n ∈ N and all
t ∈ [0,T ], there exists a triple of solution (Vn

t ,Z
n
t ,K

n
t )n≥1 such that

E
[∣∣∣Vn

t −Vt
∣∣∣2]+E


T∫

0

∣∣∣Zn
t −Zt

∣∣∣2 dt

+E


T∫

0

∫
E

∣∣∣Kn
t −Kt

∣∣∣2λ(dt,de)

 −→ 0, asn −→∞

(4.3)

Proof. It suffices to show that the sequence (Vn
t ,Z

n
t ,K

n
t )n≥1 is a Cauchy sequence. By

the relation (2.11), there exists a sequence (Vn+1
t ,Zn+1

t ,Kn+1
t ) such that

∥∥∥∥Vn+1
t −Vn

t

∥∥∥∥2
+
∥∥∥∥Zn+1

t −Zn
t

∥∥∥∥2
+
∥∥∥∥Kn+1

t −Kn
t

∥∥∥∥2
≤

(4T + 8)C2

β

[∥∥∥∥Vn+1
t −Vn

t

∥∥∥∥2

β
+
∥∥∥∥Zn+1

t −Zn
t

∥∥∥∥2

β
+
∥∥∥∥Kn+1

t −Kn
t

∥∥∥∥2

β

]
We know by the principle of contraction mapping that for any n and 0 < α < 1,∥∥∥∥Vn+1

t −Vn
t

∥∥∥∥2
≤ α

∥∥∥∥Vn
t −Vn−1

t

∥∥∥∥2
≤ · · · ≤ αn

∥∥∥∥V1
t −V0

t

∥∥∥∥2

This implies that

∥∥∥∥Vn+1
t −Vn

t

∥∥∥∥2
+
∥∥∥∥Zn+1

t −Zn
t

∥∥∥∥2
+
∥∥∥∥Kn+1

t −Kn
t

∥∥∥∥2
≤

 (4T + 8)C2

β

n [∥∥∥∥V1
t −V0

t

∥∥∥∥2

β
+
∥∥∥∥Z1

t −Z0
t

∥∥∥∥2

β
+
∥∥∥∥K1

t −K0
t

∥∥∥∥2

β

]
(4.4)

Since (4T +8)C2 < β the right hand side of (4.4) gets closer to 0 as n→∞. Therefore, the
sequence (Vn

t ,Z
n
t ,K

n
t )n≥1 is Cauchy. Hence, the sequence (Vn

t ,Z
n
t ,K

n
t )n≥1 −→ (Vt,Zt,Kt).

�

5. Conclusion
In this paper we derived a pricing equation of a collateralized financial deals, usually
called CSA discounting framework, using backward stochastic equation(BSDE) and we
found that the market under consideration is stable. The pre-default pricing equations
are uniquely represented in the sense that their respective solutions exist and are unique.
This BSDE can be extended to the equation whose terminal time is random but finite by
taking into consideration CSA regulations regarding default events.

In order to mitigate counterparty exposure embedded in a financial deal we allow each
party in the contract to post collateral according to what is the cheapest to deliver for her.
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This optionality has to deal with the dominance either in the domestic or foreign currency.
In this perspective, we put much emphasis on one collateralization scheme under which
collateral is posted in the form of cash. Other collateralization schemes like bonds can
be similarly used as well but with few differernces. Indeed, the aforementioned pricing
equations do not give the explicit solutions rather implicit. In continued work we are
exploiting numerical methods in order to find the solutions.
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