
Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 3121-3143

© Research India Publications

http://www.ripublication.com

Implementation of Real Time Operating System

based 6-degree-of-freedom Missile Trajectory

Simulation

Prathik Sargar

Symbiosis Institute of Technology, Lavale, Mulshi, Pune, Maharashtra, India

Dr. Himanshu Agrawal

Symbiosis Institute of Technology, Lavale, Mulshi, Pune, Maharashtra, India

Suman Mohandaas

Zeus Numerix Pvt. Ltd.
ISquareIT campus, Phase-1, hinjewadi, Pune, Maharashtra, India

Abstract

Simulation plays a key role in the development and testing of a missile system.

Simulation not only helps to reduce research cost but also saves development

time. Software in the loop simulation (SILS), Processor in the loop simulation

(PILS), and Hardware in the loop simulation (HILS) are three ways by which

simulation for the most of the system is achieved. SILS allows validation of

model in precise fashion before field test. In SILS, modules of the system are

replaced by executable code (for example missile’s motion is represented by

6-DOF equation of motion) and ran on the PC platform. PILS is the

intermediate stage between SILS and HILS. In PILS, the control algorithm

will be run on a hardware platform to simulate a realistic situation. In HILS,

modules like actuators, different sensors in simulation loop are actual

hardware and others are simulated in more proficient and reasonable way. One

of the key aspects of HILS is the precision of time and also it proves to be

more economical. But for performing real-time HILS requires expensive

platforms and hardware sensors. We are building low-cost simulation platform

out of commodity equipment. We are carrying out PILS with the help

Windows operating system. Windows OS has been a widely accepted

operating system for desktop applications. However, it could not satisfy real-

time aspect due to its uncertain system thread scheduling. So we are going to

mailto:prathik.sargar@sitpune.edu.in
mailto:himanshu.agrawal@sitpune.edu.in
mailto:suman.mohandas@zeusnumerix.com

3122 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

use FreeRTOS along with it which is an open source real-time operating

system that will meet real-time requirement of our system. We expect that the

proposed technique can be used widely in the development of real-time

applications where development cost and time are of key importance

Keywords: FreeRTOS, Software-in-the-loop, Processor-in-the-loop,

Tracealyzer, Six-degree-of-freedom.

1. INTRODUCTION

Simulation of the real-time system has to be done before actual deployment of the

system in its environment. Testing any critical system directly in its environment, not

only increases development time but also its research cost. Also, some test conditions

may not be always available in it real environment and can be simulated in the

laboratory easily [7][11]. Complex missile system has to undergo intense testing before

actual flight trials [9]. Simulation is the platform used for validating a mathematical

model of the subsystems of the missile. SILS and HILS can prove the accuracy and

usefulness of an aeronautical flight model [13]. The simulation can test the software

and hardware design of missile and forecast the behavior of the system in actual flight

test and will be able to find problems to improve the software design of missile.

Software in the loop simulation (SILS) is simulation based software evaluation.

Simulated input conditions are given as input to the software system under evaluation

to know how fine the system works under such input conditions. SILS is a cost-

effective method for evaluating a complex, mission critical system before it can be

deployed in real world environment. SILS is a useful tool to teach and understand

better the concepts behind real aerial vehicles [3][11][12]. SILS and HILS are commonly

used to evaluate the controls and algorithms because they help in the fast development

and minimize experimental flights and finally reduce the overall cost required by the

project [4][13]. The HILS systems are typically expensive and complicated compared to

PILS. PILS provides a framework to verify the actual control algorithm on a

dedicated microcontroller that controls plant simulation in the software environment
[14]. PILS is much less expensive and simpler substitute for the assessment of the

control algorithms. It introduces another level of simulation between SIL and HIL,

with improved accuracy and closer approximation to the real plant and controller

dynamics than SIL [14].

S.K.chaudhuri et.al[1] performed such HILS for the missile system. They highlighted

guidance and control design issues, modeling and simulation techniques and

validation methodologies for guided missile application. The flight software design

along with on board computer, guidance, and control real-time hardware can be

validated only in an integrated form in HILS. Similar such work was done recently

using different platforms and real-time operating systems. Xiaofei Chang, et.al[6] have

Implementation of Real Time Operating System based 6-degree-of-freedom… 3123

done a study on results of digital simulation and hardware-in-the-loop simulation and

have analyzed the deviation between the results for further study.

Chai Lina and Zhou Qiang built such HILS system based on RTX platform and

windows environment [7]. RTX HAL extension is introduced in the Windows OS to

overcome the poor real-time performance of the Windows OS. Qianlong Yang, et.al
[8] also built HILS based on Windows operating system. They made use of external

timer clock for their real-time requirements in order to improve timing accuracy and

reliability simulated on Windows OS. Z.Y. Luo and M. Li[10] used rapid prototype

method for building real-time simulation platform aiming at the requirements of the

ballistic simulation. First mathematical model is built and the accuracy of the model

and the reliability of the simulation platform is validated by HILS. They made use of

VxWorks which is a commercial RTOS. It has advantages of high real-time

capability, stable and reliable, scalable, widely used in the field of the missile, aircraft,

etc. Also, there are another open source RTOSes like RT-Linux that can be used

which have strong real-time features but, it can’t be used in commercial projects

unless we pay royalties and also platforms with small processor and microcontrollers

can’t support RT-Linux but something larger like x86 can support it.

There are many Real-Time operating systems available in the market. Some of the

RTOSs available are VxWorks, RT-Linux, μs-OS, RTX for windows and eCos. The

selection of the RTOS to implement the real-time model was mainly based on [16]:

(1) RTOS portability among different microprocessor/microcontrollers systems,

(2) Source code availability with ample documentation,

(3) Truly free for commercial applications and

(4) License to introduce alterations into the source code.

Moreover, available RTOSs are closed source and costly. We believe an open source

RTOS with strong capability as that of commercial RTOS which can be used by any

researcher who wants to perform real-time simulation in cost efficient way. As

mentioned earlier, in a commercial project, the ability to use the GPL license doesn't

always exist. In this case, it can be worth mentioning that FreeRTOS can be used in a

commercial project without paying royalties. It is being ported to thirty-one different

architecture and also has examples for different platform along with its source code. It

only makes it easy to understand, learn and built the project. The development of the

real-time system is fairly straight forward in freeRTOS. Since most of the operating

systems are written in the c programming language, so are the real-time tasks

themselves. So we selected FreeRTOS which is largely used RTOS.

In this paper we perform real-time simulation using Raspberry Pi 2 single-board chip

as dedicated hardware and freeRTOS as the real-time operating system, for achieving

low-cost SILS and PILS simulation platform. Also, we are not using any data

acquisition sensor but we use digital sample values instead of analog data. We are

building simulation platform out of commodity equipment so that hardware-based

3124 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

simulation can possible with a low budget. Our contribution is summarised as

follows:-

1) As per our knowledge this is the first attempt to use freeRTOS for real-

time simulation for guided missile trajectory .

2) Use of low-cost equipment like raspberry pi to perform real time processor

in the loop simulation so that we can check the validity of our control

algorithm.

We are showing how the development of missile system can be done using open

source tools like freeRTOS and development board like raspberry pi.

In the next section, we give preliminaries. In Sect. 3, we show our design and

implementation flow. Sect. 4, gives details about the simulation results and the

discussion. Finally, in Sect. 5 we will conclude and summarizes our findings.

2. MATHEMATICAL PRELIMINARIES:
In order to predict the trajectory of a guided missile, six degrees of freedom

mathematical model is presented.

The equations of motions that describe the Six-DOF model are derived according to

following assumptions:

a) The flying body is rigid.

b) All equations are referred to a body-fixed reference frame.

c) The aerodynamic coefficients are calculated in the body-fixed reference frame.

d) The Earth model is included (rotation, gravity).

A Six-DoF equation of motion model consists of three translational and three attitude

degrees of freedom. The three translational equations of motion (linear velocity

components: u, v, w) are derived from Newton’s Law expressed in body coordinates

and the three attitude equations of motion (angular velocity components: roll, pitch

and yaw rates; p, q, r) are derived from Euler’s Law expressed in body coordinates.

2.1 Mathematical Symbols:
Table 1: Nomenclature

p = Components of the angular velocity vector of the projectile in the body

reference frame along x-axis.

q = Components of the angular velocity vector of the projectile in the body

reference frame along y-axis.

r= Components of the angular velocity vector of the projectile in the body

reference frame along z-axis.

u = Components of the velocity vector of the mass centre of the composite body in

Implementation of Real Time Operating System based 6-degree-of-freedom… 3125

the body reference frame along x-axis.

v = Components of the velocity vector of the mass centre of the composite body in

the body reference frame along y-axis.

w = Components of the velocity vector of the mass centre of the composite body in

the body reference frame along z-axis.

Ixx ,Iyy ,Izz = Moment of inertia of the rocket about the X, Y, Z-axes

M = Mass of the missile.

V = Magnitude of the velocity vector of the mass centre of the projectile.

Φ, θ, ψ = Euler roll, pitch, and yaw angle of the projectile respectively.

Re = Radius of the earth at the place of launch = 6356750 m

ωe = angular velocity of the earth = 7.27×10-5 rad /s

λ = latitude at the place of launch

g = gravitational force.

2.2 Translational Equation of Motion: Newton’s law:
The Six-DOF equations of motions are three translational degrees describe the motion

of mass (Center of Gravity (CG)), also called the trajectory, as shown in the equation

below.
Newton’s second law with respect to the inertial frame “I” states that the time rate of

change of linear momentum equals the externally applied forces. The external forces

acting on the aerospace vehicles are aerodynamics and trust forces “Fa,p” and the

gravitational acceleration.
mass × acceleration = external forces

)(FrameInertialFf
dt

dMV
dt
dVM external

M
dt
dV

 + M[Ω]BE[u v w] = Fa,p+ [T]BLMg - 2[Ω]EI [u v w] - [Ω]EI[Ω]EISBI (body

frame)

[T]BL =























coscossincos-cossinsinsinsin+cossincos

sincoscoscos+sinsinsincossin-sin sincos

sin-cossincoscos

Where,

[T]BL is the transformation matrix from local to body coordinate system.

3126 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

[Ω]BE skew symmetric matrix of body rates p, q, and r.

[Ω]EI skew symmetric matrix of Earth’s rotation

SBI Distance between Body C.G. and center of the Earth.

Scalar differential equation of the Newton, law

𝑢̇ =
m
Fx – qw + rν - (2ɷeν sinλ - T11Reɷe

2sinλcosλ – T31Reɷe
2cos2λ) + T13g

𝑣̇ =
m
Fy

 – ru + pw - (2(ɷe cosλw + ɷe sinλu) - T12Reɷe
2sinλcosλ – T32Reɷe

2cos2λ) + T23g

𝑤̇ =
m
Fz – pν + qu - (2ɷeν cosλ - T13Reɷe

2sinλcosλ – T33Reɷe
2cos2λ) + T33g

The integration of these differential equations yields the velocity vector that must be

integrated once more to obtain the location of the rocket c.m. with respect to an earth

reference point.

















e

e

e

z
y
x

=























coscossincossin-

sincos-cossinsincoscos+sinsinsincossin

sinsin+cossincoscossin-sin sincoscoscos

















w
v
u

Where,

xe, ye, and ze are the distance from the place of launch

Hence, there are six first-order differential equations that govern the translational

motions of a vehicle with the earth as the inertial reference frame.

2.3 Rotational Equation of Motion: Newton’s Law:
The rotational degrees of freedom are governed by Euler’s law that states that the time

rate of change of angular momentum equals the externally applied moments.

Time-rate-of-change of angular momentum = external moments

ω
dt
dI

+ I
dt
d

 = Ma,p (Inertial frame)

I
dt
d

 + I [Ω] [p q r] = MBa,p (body frame)










dt
dr

dt
dp

dt
dp

= [I]-1 (- [I] [Ω] [p q r] + Ma,p)

Implementation of Real Time Operating System based 6-degree-of-freedom… 3127

Where,

[I] =

















IzzIzyIzx

IyzIyyIyx

IxzIxyIxx

 [Ω] =

















0pq-

-p0r

q-r0

The integration of these three differential equations yields the body rates that must be

integrated once more (Euler angle differential equations) to obtain the orientations of

the rocket c.m. w.r.t an earth reference point.

𝜑̇ = p + q tanθ sinφ + r tanθ cosΦ

𝜃̇ = q cosφ – rsinΦ

ψ̇= q secθ sinφ + r secθ cosΦ

Hence, there are six first-order differential equations that govern the rotational

motions of a vehicle with the earth as the inertial reference frame.

2.4 FreeRTOS:
FreeRTOS is a popular real-time operating system for embedded devices, being

ported to thirty-one microcontrollers. It is distributed under the GPL(General Public

License) with an optional exception. The exception permits user's trademarked code

to remain closed source while maintaining the kernel itself as open-source, thereby

aiding the use of FreeRTOS in proprietary applications. FreeRTOS is designed to be

small and simple. The kernel itself consists of only three C files. To make the code

readable, easy to port, and maintainable, it is written mostly in C, but there are a few

assembly functions included where needed [13].

FreeRTOS is chosen because it's open source real-time operating system and

development is easy using freeRTOS. It is easy to understand and learn and also it has

a huge set of demo projects for different platforms provided for initial understanding

and development of simple projects. All we need to do is make a project using the

existing demo and include the libraries provided by freeRTOS. And it is mostly

recommended to use the existing demo project and then make the changes according

to our requirements. This is done so that some of the libraries are not missed while

creating a new project and to avoid any issue while building the project.

2.5 Tracealyzer:
Tracealyzer gives exceptional understanding into the run-time world of RTOS-based

embedded software, accelerating firmware development. RTOS-based development

requires a good knowledge of the different timings (like execution time, waiting time,

3128 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

response time, etc) of tasks, their interaction among each other, etc. Tracealyzer gives

different graphical views into the run-time environment that helps during debugging,

validation and optimization of the real-time system. It increases development

efficiency and delivers robust, responsive real-time system [14].

3. DESIGN OF PROPOSED SYSTEM:

3.1 Architecture of 6-DOF Missile System:

Figure 1: Architecture of 6-DOF Missile

Real-time simulation for the guided missile system started with building linear non-

real-time (NRT) based model, evolving into a real-time (RT) based missile model.

First, a mathematical model for the guided missile (i.e a Fire control computer model,

six-degree-of-freedom mathematical model, and trajectory correction model) is built

and simulation is set up by using Eclipse IDE. Then real-time simulation environment

is set up using freeRTOS inside Eclipse IDE. FreeRTOS provide a port for Windows

OS for simulating the real-time environment. The trajectory model is verified by real-

time simulation. We are going test model using the real-time software in the loop

simulation and compare the guided flight results with the results of the mathematical

model. Finally, we will perform processor in the loop simulation using the raspberry

pi board.

Implementation of Real Time Operating System based 6-degree-of-freedom… 3129

As mentioned earlier that we are only using the raspberry pi board as the hardware

test bed and there are no actuators to control or no data acquisition sensor but instead

digital signal being used. So there are only 2 tasks i.e Trajectory correction task and

the Six-DOF task which will be running in parallel. Semaphores are used to take care

of shared variables of the two tasks so that only one task will be manipulating the

shared variables at a time. The Six-DOF task and trajectory correction are running

with the same priority task.

In the beginning, flight control computer will do the simulation based on longitude,

latitude and altitude values of source and the target. This simulation helps in finding

out the elevation angle for firing the missile, total time the missile is going to take to

hit the target, range value (distance between the source and the target) and bearing

value. Elevation angle and bearing values are set and then we can carry out either free

flight simulation or guided flight simulation depending on the requirement.

3.2 Simulation Parameters:
The main data and firing conditions of the studied guided missile are summarized

below:

Table 2: Simulation parameters used in the simulation experiment

DATA VALUE

Initial Center of Gravity C.G_xi 0.0 m

Final Center of Gravity C.G_xf 0.3975 m

Initial Axial Moment of Inertia. I_xxi 0.14 Kg.m2

Final Axial Moment of Inertia. I_xxf 0.12 Kg.m2

Initial Lateral Moment of Inertia. I_yyi = I_zzi 41 Kg.m2

Final Lateral Moment of Inertia. I_yyf = I_zzf 33 Kg.m2

Firing Elevation Angle (theta) 21 degree

Longitude of source and target 14600 and 0

Latitude of source and target 0 and 19800

Altitude of source and target 0 and 0

3130 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

3.3 Source Code Snippet:
Table 3: Simulation source code used in the simulation experiment

int main(void)

{

 read_input();

 prvInitialiseHeap();

 vTraceInitTraceData();

 xTickTraceUserEvent = xTraceOpenLabel("tick");

 fflush(stdout);

 uiTraceStart();

 solver();

 return 0;

}

void solver()

{

 enableFlushAfterPrint();

 mutual_exclusion = xSemaphoreCreateMutex();

 intialize();

xTaskCreate(solver_6dof_main, (signed char*)"6-dof-solver", 1024, NULL, 1,

&xHandle);

xTaskCreate(trajectory_correction,(signed char*)"trajectory_correction",1024,

NULL, 1, &xHandle1);

 vTaskStartScheduler();

}

void solver(double var_6dof[10])

{

 //solving 6-dof equation of motion

}

void trajectory_correction(int *p)

{

 // Guidance, navigation, and control.

}

Implementation of Real Time Operating System based 6-degree-of-freedom… 3131

Execution begins with first instruction in main which calls to the read_input() (it is

going to read all the coefficient required). prvInitialiseHeap() is related to memory

usage. The project uses heap_5.c, so start by defining some heap regions. Next four

lines are for trace record purpose (tracealyzer helps in generating statics report and

different graphs for the two tasks). It will initialize the trace recorder and create the

label used to post user events to trace recording on each tick interrupt. The solver is

called next which initializes the required coefficients (i.e initializing aero_coefficents,

thrust_data, surface wind, etc) and creates two tasks with xTaskCreate() API. This

API allocates space in the heap for the task stack and it’s Task Control Block (TCB).

It then creates and initializes the various task queues that the kernel maintains,

including the ready queue which is an array of FIFO queues, one for each priority and

the delayed queue. It finally adds “6-dof-solver” to the ready queue and returns. Next,

main calls xTaskCreate() for “trajectory_correction”, which adds this task to the ready

queue. Then, vTaskStartScheduler() API is called and it will creates the “idle” task

with zero priority and adds it to the ready queue. The two tasks will run in parallel

until the terminating conditions are met.

As microcontrollers usually have only one core, in reality only a single thread can be

executing at any one time. The kernel chooses which thread should be executing by

investigating the priority assigned to each thread. When one thread completes its

execution, it will either be sent to completed queue or ready queue and another thread

is chosen from the ready queue for execution and so on till the termination conditions

are met.

3.4 Porting to Raspberry pi 2:
There is no official port for Raspberry pi2 board for using freeRTOS. But reference

[18] provided a port for using freeRTOS with Raspberry pi. It provides port.c,

portisr.c, and portmacro.h required by freeRTOS to run on specific hardware. We

made use of this port so that the processor-in-the-loop simulation can be performed on

the raspberry pi board.

Steps involved while running the bare metal program on raspberry pi are as follows:-

1. First, we have to copy three files to the SD-Card i.e bootcode.bin, start.elf, and

kernel7.img.

2. Bootcode.bin will be first read by ROM. It will enable the SDRAM and load

start.elf file which is bootloader.

3. Start.elf is GPU firmware. It is responsible for loading the other files and starts

the CPU.

4. Kernel7.img is the bare metal application.

Loader.bin is an optional file. It is mainly used for loading start.elf file. bootcode.bin

can also be used for loading start.elf file, if we add “.elf” loading support to

bootcode.bin. Kernel7.img then executes the bare metal application on the pi board

the way we programmed it to do. Config.txt and cmdline.txt are also optional files.

Config.txt is used for setting system configuration just like bios does in a windows

3132 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

environment. Cmdline.txt is responsible for passing arguments to the kernel (for

example setting static IP address for raspberry pi).

In Linux environment, kernel7.img can be generated easily. We only need arm-none-

eabi toolchain installed in Linux. If we want to generate kernel7.img file for raspberry

pi on windows machine we have to make use of msys2 and the arm-none-eabi

compiler or yagarto compiler for generating it. Kernel7.img is responsible for

executing actions on the raspberry pi board. As mentioned earlier we do not use any

dedicated data acquisition hardware. We transmit digital data sample instead of

analog signals to the pi board so that we don’t need any active components beyond

the Raspberry Pi. And also we are not controlling any actuators, that is why we have

only two tasks, one solves the Six-DOF equation of motion and the second does the

guidance and navigation of the trajectory.

4. SIMULATION RESULT AND DISCUSSION

First, we conducted FCC (fire control computer) simulation. The basic parameters

required to perform this simulation is longitude, latitude, and altitude values of source

and the target. Once the FCC simulation is done we set up the firing parameters i.e

setting elevation angle, and bearing angle. Setting up these angles is important so that

missile can easily converge towards its target. Then we have performed mathematical

simulation followed by real time SILS using freeRTOS and real time PILS using

freeRTOS. While running in the non-real time-based environment there will be only

one task or function calling other functions from within. So while doing mathematical

simulation main function will call 6-DOF function and trajectory correction (guidance

and navigation) function will be called from the 6-DOF function. The simulation will

be completed within few seconds as it is run inside the Windows OS.

Now in real time simulation, we have created 2 tasks to emulate real time situation i.e

6-DOF task and trajectory correction task. These two tasks will be running in parallel

and the shared variables between these 2 tasks are protected by semaphores so wrong

results are avoided and the 2 tasks give correct output. The results of non-real time

based mathematical simulation and the real-time SIL simulation are shown below

with different graphs. The first graph gives altitude and range of the missile trajectory.

The blue curve represents simple mathematical based solution and the other

represents real time SILS solution. Both curves are almost same and converge

towards the target. The little difference is caused due to the tasks created. In

mathematical solution, there is only one task (one linear program) but in real time

system, there are 2 tasks running in parallel and semaphore controlling access to

shared variables. The second graph gives details on the drift of the missile trajectory

and so on. From the graphs below it can be observed that almost all graphs are

overlapping proving that real-time simulation carried out is indeed accurate.

Implementation of Real Time Operating System based 6-degree-of-freedom… 3133

Figure 2: Range Vs Altitude

Figure 3: Range Vs Drift

3134 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

Figure 4: Velocity Vs Time

Figure 5: Velocity Vector along x-axis Vs. Time

Implementation of Real Time Operating System based 6-degree-of-freedom… 3135

Figure 6: Velocity Vector along z-axis Vs Time

Figure 7: Roll Angle

3136 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

Figure 8: Pitch angle

Figure 9 : Yaw Angle

Figure 10 and Figure 11 gives the 3-D plot of the missile. The first plot represents free

flight missile trajectory. It means trajectory correction is not done here. It simply

gives the path that missile is going to follow if no trajectory correction is applied. The

second plot, on the other hand, represents missile’s path when trajectory correction is

Implementation of Real Time Operating System based 6-degree-of-freedom… 3137

applied. As we can see from the figure that missile is changing its path to move

towards the target.

Figure 10: 3D plot of Free flight trajectory.

Figure 11: 3D plot of Guided flight trajectory.

3138 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

We compared rotational angles (roll angle, pitch angle, and yaw angle), altitude, drift,

and velocity vectors for validation of real-time simulation. Total time required to

complete the simulation is 47.94 sec. The simulation cycle is of five milliseconds and

so there are 9590 iterations. From the above graphs, we can see that results of real-

time SILS matches with that of non-real time-based SILS proving that simulation

carried out in real time is correct. As mentioned earlier Altitude values and Drift

values are little different since in RT simulation there are actually 2 tasks running

simulating a real time scenario, unlike the NRT simulation where there is only linear

mathematical code being run. The solution file of the missile trajectory simulation is

shown in figure 12,

Figure 12: Solution file of 6-DOF missile

 We made use of “Tracealyzer software” for debugging and optimizing our real time

model. There is no delay while switching context between the tasks. We found out

that context switching time involved is zero for real time SILS in a windows

environment. Figure.13 shows how the 2 tasks are running and give all the execution

details of the tasks involved. The first graph gives horizontal trace view of the tasks

and the second graph gives details about CPU load graph of tasks. Horizontal trace

view provides details such as start time, end time, execution time, response time, wait

time, etc of each task instance.

Implementation of Real Time Operating System based 6-degree-of-freedom… 3139

Figure 13: Trace view and CPU Load Graph

As we can see from the figure: 14, Six-DOF task and trajectory correction task runs

periodically at the 5 os-tick gap (since simulation cycle i.e Δt is of 5 milliseconds).

Figure 15 show the communication flow of the 2 tasks i.e the semaphore used for

controlling access to critical section shared by the two tasks to avoid a race condition.

Figure 14: Trace Window

3140 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

Figure15: Communication Flow

Figure 16 gives the statics report of the task:-

Included Actor Properties:

 Priority: The scheduling priority of the actor (Task, Thread or Exception).

 Count: The number of instances (jobs/executions) of the actor.

 CPU Usage: The amount of CPU time used by the actor (in percent).

 Execution Time: The actual CPU time used an actor instance (in

microseconds).

 Response Time: The real time between start and completion an actor instance

(in microseconds).

 Periodicity: The real time between the starts of two adjacent actor instances

(in microseconds).

 Separation: The real time between the ends of an actor instance to the start of

the next instance of that actor (in microseconds).

Note: The Min and Max values in the below table are links, which shows the

corresponding actor instance in the trace window.

Figure 16: Statics report of two tasks.

Implementation of Real Time Operating System based 6-degree-of-freedom… 3141

Figure 17 gives actor instance graphs. The first graph represents periodicity from

execution start of the instances of the 2 tasks. It represents the time between the

instance start time and the previous instance finish. The second graph represents

separation from execution start of the instances of the 2 tasks. It represents the time

between the instance start time and the previous instance start time. Both separation

and periodicity are available in two versions, depending on where to count the

instance start time: from Ready and from Execution Start.

Figure 17: Separation and Periodicity from execution start of the task instances

5. CONCLUSION

We have introduced a new method to simulate Six-DOF missile trajectory using open

source RTOS. We have shown how to build the real-time model for missile trajectory

system. We made use of FreeRTOS running on top of windows operating system as a

deployment platform for performing SILS. Finally, the results of non-real time-based

SIL-simulation and real-time based SIL-simulation are compared for validation of the

real-time model. Both the result matches proving that real-time simulation carried out

using FreeRTOS is indeed valid. FreeRTOS switches context very fast in the win32

environment and hence can be used for the hard real-time system. At this moment we

are able to run the tasks on the raspberry pi and see the output log on the monitor. As

a future direction, we will be working on bare-metal FAT file-system driver for

reading and writing data to either USB storage or sd card itself for storing output

generated by the pi board instead of seeing it on the monitor. We are also currently

working on “FreeRTOS + Trace” as there is no official trace library support for

raspberry pi 2 yet for using tracealyzer for tracing the tasks on the raspberry pi.

3142 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

6. ACKNOWLEDGEMENTS:

We express our deepest gratitude to Zeus Numerix Pvt. Ltd, Pune, India for providing

the resources and support in our work. Our special thanks to Director of Zeus

Numerix, Pune, Mr. Irshad khan. We express our deepest thanks to Dr.Sudhir

Muthyala and Mr.Sanjay Kumar at Zeus Numerix, Pune, who took time out to hear,

guide, and keep us on the correct path. Finally, we would also like to thank “Percepio

AB” industry for providing a 1-year academic license for using Tracealyzer software.

REFERENCES

[1] S. K.chaudhuri, G. Venkatachalam and M. Prabhakar, “Hardware in the loop

simulation for missile guidance and control”, Research Centre Imarat,

Hyderabad, Defence Science Journal-1997

[2] Siouris G.M, “The Generalized Missile Equations of Motion”, Missile

Guidance and Control System”, Springer Journal-2004

[3] https://www.acm-sigsim-

mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm

[4] S.K. Gupta, S. Saxena, Ankur Singhal and A.K. Ghosh, “Trajectory Correction

Flight Control System using Pulsejet on an Artillery Rocket”, IIT Kanpur.

Defense Science Journal-2008.

[5] R.Liu, A.Monti, G. Francis, R. Burgos, F. Wang and D. Boroyevich”,

Implementing processor in the loop with universal controller in virtual testbed”,

IEEE, 2007.

[6] Xiaofei Chang, Tao Yang, Jie Yan, and Mingang Wang, “Design and

Integration of Hardware-in-the-Loop Simulation System for Certain Missile”,

College of Astronautics, Northwestern Polytechnical University, Xi China,

Springer Journal-2012

[7] Chai Lina, Zhou Qiang, "Design and Implementation of Real-Time HILS Based

on RTX Platform", School of Automation Science and Electrical Engineering,

Beijing University of Aeronautics and Astronautics Beijing 100083, IEEE,

China

[8] Qianlong Yang, Qifeng Zhao, Tao Min, Chuanyan Tian, Gang Zhou, Fengqi

Zhou , “Research of Flight Control Hardware-in-the-loop Simulation Based on

Windows Operation System”, People’s Republic of China, IEEE-2013

[9] Rajesh S Karvande, B. Ramesh Kumar, "Development of Hardware-In-Loop

Simulation Testbed for testing of Navigation System-INS", Research Centre

Imarat, Hyderabad-500069, India, 2013

[10] Z.Y. Luo and M. Li, “Simulation environment for a missile based on Matlab or

Simulink development”, Changchun Institute of Optics, Fine Mechanics and

Physics, Chinese Academy of Sciences, China, 2014

[11] Romulo Rodrigues, Rafael C. B. Sampaio, A. Pedro Aguiar, Marcelo Becker,

“FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance,

Navigation and Control”, Joint Conference on Robotics: SBR-LARS Robotics

Symposium and Robocontrol, 2014.

https://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm
https://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm

Implementation of Real Time Operating System based 6-degree-of-freedom… 3143

[12] Adriano Bittar, Helosman V. Figuereido, Poliana Avelar Guimaraes and

Alessandro Correa Mendes, “Guidance Software-in-The-Loop Simulation Using

X-Plane and Simulink for UAVs.”, International Conference on Unmanned

Aircraft Systems (ICUAS), Orlando, FL, USA, 2014.

[13] Calvin Coopmans, Michal Podhradsk´y and Nathan V. Hoffer, “Software- and

Hardware-in-the-Loop Verification of Flight Dynamics Model and Flight

Control Simulation of a Fixed-Wing Unmanned Aerial Vehicle”, Workshop on

Research, Education and Development of Unmanned Aerial Systems (RED-

UAS), Cancun, Mexico, 2015

[14] Harsh Vardhan, Bilal Akin, and Hua Jin, “A Low-Cost, High-Fidelity

Processor-in-the-Loop Platform”, IEEE power electronics magazine, June 2016.

[15] http://www.freertos.org/RTOS-task-states.html

[16] http://www.freertos.org/

[17] http://percepio.com/tz/freertostrace

[18] https://github.com/Forty-Tw0/RaspberryPi-FreeRTOS

http://www.freertos.org/RTOS-task-states.html
http://www.freertos.org/
https://github.com/Forty-Tw0/RaspberryPi-FreeRTOS

3144 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

