Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 13, Number 7 (2017), pp. 3121-3143
© Research India Publications

http://www.ripublication.com

Implementation of Real Time Operating System
based 6-degree-of-freedom Missile Trajectory
Simulation

Prathik Sargar
Symbiosis Institute of Technology, Lavale, Mulshi, Pune, Maharashtra, India

Dr. Himanshu Agrawal
Symbiosis Institute of Technology, Lavale, Mulshi, Pune, Maharashtra, India

Suman Mohandaas
Zeus Numerix Pvt. Ltd.
ISquarelT campus, Phase-1, hinjewadi, Pune, Maharashtra, India

Abstract

Simulation plays a key role in the development and testing of a missile system.
Simulation not only helps to reduce research cost but also saves development
time. Software in the loop simulation (SILS), Processor in the loop simulation
(PILS), and Hardware in the loop simulation (HILS) are three ways by which
simulation for the most of the system is achieved. SILS allows validation of
model in precise fashion before field test. In SILS, modules of the system are
replaced by executable code (for example missile’s motion is represented by
6-DOF equation of motion) and ran on the PC platform. PILS is the
intermediate stage between SILS and HILS. In PILS, the control algorithm
will be run on a hardware platform to simulate a realistic situation. In HILS,
modules like actuators, different sensors in simulation loop are actual
hardware and others are simulated in more proficient and reasonable way. One
of the key aspects of HILS is the precision of time and also it proves to be
more economical. But for performing real-time HILS requires expensive
platforms and hardware sensors. We are building low-cost simulation platform
out of commodity equipment. We are carrying out PILS with the help
Windows operating system. Windows OS has been a widely accepted
operating system for desktop applications. However, it could not satisfy real-
time aspect due to its uncertain system thread scheduling. So we are going to

mailto:prathik.sargar@sitpune.edu.in
mailto:himanshu.agrawal@sitpune.edu.in
mailto:suman.mohandas@zeusnumerix.com

3122 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

use FreeRTOS along with it which is an open source real-time operating
system that will meet real-time requirement of our system. We expect that the
proposed technique can be used widely in the development of real-time
applications where development cost and time are of key importance

Keywords: FreeRTOS, Software-in-the-loop, Processor-in-the-loop,
Tracealyzer, Six-degree-of-freedom.

1. INTRODUCTION

Simulation of the real-time system has to be done before actual deployment of the
system in its environment. Testing any critical system directly in its environment, not
only increases development time but also its research cost. Also, some test conditions
may not be always available in it real environment and can be simulated in the
laboratory easily [!1, Complex missile system has to undergo intense testing before
actual flight trials [*1. Simulation is the platform used for validating a mathematical
model of the subsystems of the missile. SILS and HILS can prove the accuracy and
usefulness of an aeronautical flight model 3. The simulation can test the software
and hardware design of missile and forecast the behavior of the system in actual flight
test and will be able to find problems to improve the software design of missile.

Software in the loop simulation (SILS) is simulation based software evaluation.
Simulated input conditions are given as input to the software system under evaluation
to know how fine the system works under such input conditions. SILS is a cost-
effective method for evaluating a complex, mission critical system before it can be
deployed in real world environment. SILS is a useful tool to teach and understand
better the concepts behind real aerial vehicles BIMIR2 SIS and HILS are commonly
used to evaluate the controls and algorithms because they help in the fast development
and minimize experimental flights and finally reduce the overall cost required by the
project I3l The HILS systems are typically expensive and complicated compared to
PILS. PILS provides a framework to verify the actual control algorithm on a
dedicated microcontroller that controls plant simulation in the software environment
[141 " PILS is much less expensive and simpler substitute for the assessment of the
control algorithms. It introduces another level of simulation between SIL and HIL,
with improved accuracy and closer approximation to the real plant and controller
dynamics than SIL 41,

S.K.chaudhuri et.al*! performed such HILS for the missile system. They highlighted
guidance and control design issues, modeling and simulation techniques and
validation methodologies for guided missile application. The flight software design
along with on board computer, guidance, and control real-time hardware can be
validated only in an integrated form in HILS. Similar such work was done recently
using different platforms and real-time operating systems. Xiaofei Chang, et.al® have

Implementation of Real Time Operating System based 6-degree-of-freedom... 3123

done a study on results of digital simulation and hardware-in-the-loop simulation and
have analyzed the deviation between the results for further study.

Chai Lina and Zhou Qiang built such HILS system based on RTX platform and
windows environment [l. RTX HAL extension is introduced in the Windows OS to
overcome the poor real-time performance of the Windows OS. Qianlong Yang, et.al
81 also built HILS based on Windows operating system. They made use of external
timer clock for their real-time requirements in order to improve timing accuracy and
reliability simulated on Windows OS. Z.Y. Luo and M. Lil*! used rapid prototype
method for building real-time simulation platform aiming at the requirements of the
ballistic simulation. First mathematical model is built and the accuracy of the model
and the reliability of the simulation platform is validated by HILS. They made use of
VxWorks which is a commercial RTOS. It has advantages of high real-time
capability, stable and reliable, scalable, widely used in the field of the missile, aircraft,
etc. Also, there are another open source RTOSes like RT-Linux that can be used
which have strong real-time features but, it can’t be used in commercial projects
unless we pay royalties and also platforms with small processor and microcontrollers
can’t support RT-Linux but something larger like x86 can support it.

There are many Real-Time operating systems available in the market. Some of the
RTOSs available are VxWorks, RT-Linux, us-OS, RTX for windows and eCos. The
selection of the RTOS to implement the real-time model was mainly based on 1€

(1) RTOS portability among different microprocessor/microcontrollers systems,
(2) Source code availability with ample documentation,

(3) Truly free for commercial applications and

(4) License to introduce alterations into the source code.

Moreover, available RTOSs are closed source and costly. We believe an open source
RTOS with strong capability as that of commercial RTOS which can be used by any
researcher who wants to perform real-time simulation in cost efficient way. As
mentioned earlier, in a commercial project, the ability to use the GPL license doesn't
always exist. In this case, it can be worth mentioning that FreeRTOS can be used in a
commercial project without paying royalties. It is being ported to thirty-one different
architecture and also has examples for different platform along with its source code. It
only makes it easy to understand, learn and built the project. The development of the
real-time system is fairly straight forward in freeRTOS. Since most of the operating
systems are written in the ¢ programming language, so are the real-time tasks
themselves. So we selected FreeRTOS which is largely used RTOS.

In this paper we perform real-time simulation using Raspberry Pi 2 single-board chip
as dedicated hardware and freeRTOS as the real-time operating system, for achieving
low-cost SILS and PILS simulation platform. Also, we are not using any data
acquisition sensor but we use digital sample values instead of analog data. We are
building simulation platform out of commodity equipment so that hardware-based

3124 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

simulation can possible with a low budget. Our contribution is summarised as
follows:-

1) As per our knowledge this is the first attempt to use freeRTOS for real-
time simulation for guided missile trajectory .

2) Use of low-cost equipment like raspberry pi to perform real time processor
in the loop simulation so that we can check the validity of our control
algorithm.

We are showing how the development of missile system can be done using open
source tools like freeRTOS and development board like raspberry pi.

In the next section, we give preliminaries. In Sect. 3, we show our design and
implementation flow. Sect. 4, gives details about the simulation results and the
discussion. Finally, in Sect. 5 we will conclude and summarizes our findings.

2. MATHEMATICAL PRELIMINARIES:
In order to predict the trajectory of a guided missile, six degrees of freedom
mathematical model is presented.

The equations of motions that describe the Six-DOF model are derived according to
following assumptions:

a) The flying body is rigid.

b) All equations are referred to a body-fixed reference frame.

c) The aerodynamic coefficients are calculated in the body-fixed reference frame.
d) The Earth model is included (rotation, gravity).

A Six-DoF equation of motion model consists of three translational and three attitude
degrees of freedom. The three translational equations of motion (linear velocity
components: u, v, w) are derived from Newton’s Law expressed in body coordinates
and the three attitude equations of motion (angular velocity components: roll, pitch
and yaw rates; p, q, 1) are derived from Euler’s Law expressed in body coordinates.

2.1 Mathematical Symbols:

Table 1: Nomenclature

p = Components of the angular velocity vector of the projectile in the body
reference frame along x-axis.

g = Components of the angular velocity vector of the projectile in the body
reference frame along y-axis.

r= Components of the angular velocity vector of the projectile in the body
reference frame along z-axis.

u = Components of the velocity vector of the mass centre of the composite body in

Implementation of Real Time Operating System based 6-degree-of-freedom... 3125

the body reference frame along x-axis.

v = Components of the velocity vector of the mass centre of the composite body in
the body reference frame along y-axis.

w = Components of the velocity vector of the mass centre of the composite body in
the body reference frame along z-axis.

L 1y I = Moment of inertia of the rocket about the X, Y, Z-axes

M = Mass of the missile.

V= Magnitude of the velocity vector of the mass centre of the projectile.
®, 0, v = Euler roll, pitch, and yaw angle of the projectile respectively.
Re = Radius of the earth at the place of launch = 6356750 m

we = angular velocity of the earth = 7.27x10-5 rad /s

A = latitude at the place of launch

g = gravitational force.

2.2 Translational Equation of Motion: Newton'’s law:

The Six-DOF equations of motions are three translational degrees describe the motion
of mass (Center of Gravity (CG)), also called the trajectory, as shown in the equation
below.

Newton’s second law with respect to the inertial frame “I” states that the time rate of
change of linear momentum equals the externally applied forces. The external forces
acting on the aerospace vehicles are aerodynamics and trust forces “Fap” and the
gravitational acceleration.

mass % acceleration = external forces

Md_V+Vdﬂ =f=F,,... (nertial Frame)
dt dt

M %/ + M[QIBE[u v W] = Fap+ [TIBLMg - 2[Q]EI [u v W] - [Q]EI[Q]EISBI (body

frame)

COS i cos & siny cosé -siné
[T]B" =| cosy sin@sing -siny cosg siny sin@sing + cosy cos¢ cosésing
Cosy sin@cosg +siny sing siny Sin@cos¢ - cosy Sing CoSé Cos @

Where,

[T]BL is the transformation matrix from local to body coordinate system.

3126 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

[Q]BE skew symmetric matrix of body rates p, g, and r.

[Q]EI skew symmetric matrix of Earth’s rotation

SBI Distance between Body C.G. and center of the Earth.

Scalar differential equation of the Newton, law
F

U= - —qw+1v - (2mev sinA - T11Reme?sindcosh — T31Reme?C0S?L) + T13g
m

F

Vv

D= —— — U+ PW - (2(me COSAW + @e sinAu) - T12Re@e?sinAcosh — T3oReme?C0S?A) + T23g

m
. _F :
W= —= —pv+qu- (2mev cosh - TisReme’sinhcosA — T3sReme?C0OS?A) + T3sg
The integration of these differential equations yields the velocity vector that must be
integrated once more to obtain the location of the rocket c.m. with respect to an earth

reference point.

Xe cosy cosd cosy sindsing-siny cosg Cosy Sin@cosg +siny sing | | u

Ye |7] sinpcos@ sinysingsing +cosy cos¢g Siny sin@d cosg-cosy sing | | v

z, -sin@ cosy sing Cos @ cos¢ w
Where,

Xe, Ye, and ze are the distance from the place of launch

Hence, there are six first-order differential equations that govern the translational
motions of a vehicle with the earth as the inertial reference frame.

2.3 Rotational Equation of Motion: Newton’s Law:

The rotational degrees of freedom are governed by Euler’s law that states that the time
rate of change of angular momentum equals the externally applied moments.

Time-rate-of-change of angular momentum = external moments

wﬂ + do _ Map (Inertial frame)
dt dt
dw

IE +1[Q] [p q r] = MBa,p (body frame)

EEL:

ot s dt}: (-1 (-1 [P gr]+Map)

Implementation of Real Time Operating System based 6-degree-of-freedom... 3127

Where,

IXx Ixy Ixz

[(M=1]lyx lyy lyz
Izx lzy I1zz

0 -r q
[Q]=|r 0 P
-q P 0

The integration of these three differential equations yields the body rates that must be
integrated once more (Euler angle differential equations) to obtain the orientations of
the rocket c.m. w.r.t an earth reference point.

@ =p + qtand sing + r tan6 cos®
6 = q cosp — rsin®
= q sech sing + r sech cos®

Hence, there are six first-order differential equations that govern the rotational
motions of a vehicle with the earth as the inertial reference frame.

2.4 FreeRTOS:

FreeRTOS is a popular real-time operating system for embedded devices, being
ported to thirty-one microcontrollers. It is distributed under the GPL(General Public
License) with an optional exception. The exception permits user's trademarked code
to remain closed source while maintaining the kernel itself as open-source, thereby
aiding the use of FreeRTOS in proprietary applications. FreeRTOS is designed to be
small and simple. The kernel itself consists of only three C files. To make the code
readable, easy to port, and maintainable, it is written mostly in C, but there are a few
assembly functions included where needed 31,

FreeRTOS is chosen because it's open source real-time operating system and
development is easy using freeRTOS. It is easy to understand and learn and also it has
a huge set of demo projects for different platforms provided for initial understanding
and development of simple projects. All we need to do is make a project using the
existing demo and include the libraries provided by freeRTOS. And it is mostly
recommended to use the existing demo project and then make the changes according
to our requirements. This is done so that some of the libraries are not missed while
creating a new project and to avoid any issue while building the project.

2.5 Tracealyzer:

Tracealyzer gives exceptional understanding into the run-time world of RTOS-based
embedded software, accelerating firmware development. RTOS-based development
requires a good knowledge of the different timings (like execution time, waiting time,

3128 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

response time, etc) of tasks, their interaction among each other, etc. Tracealyzer gives
different graphical views into the run-time environment that helps during debugging,
validation and optimization of the real-time system. It increases development
efficiency and delivers robust, responsive real-time system 4],

3. DESIGN OF PROPOSED SYSTEM:
3.1 Architecture of 6-DOF Missile System:

Initial condition ‘ Coefficients

Missile position and|Velocity, Aero-Coeficients,
Euler Angleg, Thrust-Coefficignts,
Target Positign surface wind, gtc
RS 1 ,j 6-DOF Eq_uatlon
of Motion
Control Output
A
fommanded State
Rcceleration variables
Position, A J

Velocity,

Guidance and l‘ Angular bodyrates
- Sensor
Navigation J‘ ‘

Figure 1: Architecture of 6-DOF Missile

Real-time simulation for the guided missile system started with building linear non-
real-time (NRT) based model, evolving into a real-time (RT) based missile model.
First, a mathematical model for the guided missile (i.e a Fire control computer model,
six-degree-of-freedom mathematical model, and trajectory correction model) is built
and simulation is set up by using Eclipse IDE. Then real-time simulation environment
is set up using freeRTOS inside Eclipse IDE. FreeRTOS provide a port for Windows
OS for simulating the real-time environment. The trajectory model is verified by real-
time simulation. We are going test model using the real-time software in the loop
simulation and compare the guided flight results with the results of the mathematical
model. Finally, we will perform processor in the loop simulation using the raspberry
pi board.

Implementation of Real Time Operating System based 6-degree-of-freedom... 3129

As mentioned earlier that we are only using the raspberry pi board as the hardware
test bed and there are no actuators to control or no data acquisition sensor but instead
digital signal being used. So there are only 2 tasks i.e Trajectory correction task and
the Six-DOF task which will be running in parallel. Semaphores are used to take care
of shared variables of the two tasks so that only one task will be manipulating the
shared variables at a time. The Six-DOF task and trajectory correction are running
with the same priority task.

In the beginning, flight control computer will do the simulation based on longitude,
latitude and altitude values of source and the target. This simulation helps in finding
out the elevation angle for firing the missile, total time the missile is going to take to
hit the target, range value (distance between the source and the target) and bearing
value. Elevation angle and bearing values are set and then we can carry out either free
flight simulation or guided flight simulation depending on the requirement.

3.2 Simulation Parameters:

The main data and firing conditions of the studied guided missile are summarized
below:

Table 2: Simulation parameters used in the simulation experiment

DATA VALUE
Initial Center of Gravity C.G_xi 0.0m
Final Center of Gravity C.G_xf 0.3975m
Initial Axial Moment of Inertia. |_xxi 0.14 Kg.m2
Final Axial Moment of Inertia. 1I_xxf 0.12 Kg.m2
Initial Lateral Moment of Inertia. |_yyi = |_zzi 41 Kg.m2
Final Lateral Moment of Inertia. |_yyf = 1_zzf 33 Kg.m2
Firing Elevation Angle (theta) 21 degree
Longitude of source and target 14600 and 0
Latitude of source and target 0 and 19800
Altitude of source and target Oand 0

3130 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

3.3 Source Code Snippet:
Table 3: Simulation source code used in the simulation experiment

int main(void)

{
read_input();

prvinitialiseHeap();
vTracelnitTraceData();

xTickTraceUserEvent = xTraceOpenLabel("tick™);

fflush(stdout);
uiTraceStart();
solver();
return O;

ks

void solver()

{
enableFlushAfterPrint();

mutual_exclusion = xSemaphoreCreateMutex();

intialize();
xTaskCreate(solver_6dof_main, (signed char*)"6-dof-solver”, 1024, NULL, 1,
&xHandle);
xTaskCreate(trajectory_correction,(signed char*)"trajectory_correction",1024,
NULL, 1, &xHandlel);

vTaskStartScheduler();

void solver(double var_6dof[10])

{
/Isolving 6-dof equation of motion
}
void trajectory_correction(int *p)
{

/I Guidance, navigation, and control.

Implementation of Real Time Operating System based 6-degree-of-freedom... 3131

Execution begins with first instruction in main which calls to the read_input() (it is
going to read all the coefficient required). prvinitialiseHeap() is related to memory
usage. The project uses heap_5.c, so start by defining some heap regions. Next four
lines are for trace record purpose (tracealyzer helps in generating statics report and
different graphs for the two tasks). It will initialize the trace recorder and create the
label used to post user events to trace recording on each tick interrupt. The solver is
called next which initializes the required coefficients (i.e initializing aero_coefficents,
thrust_data, surface wind, etc) and creates two tasks with xTaskCreate() API. This
API allocates space in the heap for the task stack and it’s Task Control Block (TCB).
It then creates and initializes the various task queues that the kernel maintains,
including the ready queue which is an array of FIFO queues, one for each priority and
the delayed queue. It finally adds “6-dof-solver” to the ready queue and returns. Next,
main calls xTaskCreate() for “trajectory correction”, which adds this task to the ready
queue. Then, vTaskStartScheduler() API is called and it will creates the “idle” task
with zero priority and adds it to the ready queue. The two tasks will run in parallel
until the terminating conditions are met.

As microcontrollers usually have only one core, in reality only a single thread can be
executing at any one time. The kernel chooses which thread should be executing by
investigating the priority assigned to each thread. When one thread completes its
execution, it will either be sent to completed queue or ready queue and another thread
is chosen from the ready queue for execution and so on till the termination conditions
are met.

3.4 Porting to Raspberry pi 2:

There is no official port for Raspberry pi2 board for using freeRTOS. But reference
[18] provided a port for using freeRTOS with Raspberry pi. It provides port.c,
portisr.c, and portmacro.h required by freeRTOS to run on specific hardware. We
made use of this port so that the processor-in-the-loop simulation can be performed on
the raspberry pi board.

Steps involved while running the bare metal program on raspberry pi are as follows:-

1. First, we have to copy three files to the SD-Card i.e bootcode.bin, start.elf, and
kernel7.img.

2. Bootcode.bin will be first read by ROM. It will enable the SDRAM and load
start.elf file which is bootloader.

3. Start.elf is GPU firmware. It is responsible for loading the other files and starts
the CPU.

4. Kernel7.img is the bare metal application.

Loader.bin is an optional file. It is mainly used for loading start.elf file. bootcode.bin
can also be used for loading start.elf file, if we add “.elf” loading support to
bootcode.bin. Kernel7.img then executes the bare metal application on the pi board
the way we programmed it to do. Config.txt and cmdline.txt are also optional files.
Config.txt is used for setting system configuration just like bios does in a windows

3132 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

environment. Cmdline.txt is responsible for passing arguments to the kernel (for
example setting static IP address for raspberry pi).

In Linux environment, kernel7.img can be generated easily. We only need arm-none-
eabi toolchain installed in Linux. If we want to generate kernel7.img file for raspberry
pi on windows machine we have to make use of msys2 and the arm-none-eabi
compiler or yagarto compiler for generating it. Kernel7.img is responsible for
executing actions on the raspberry pi board. As mentioned earlier we do not use any
dedicated data acquisition hardware. We transmit digital data sample instead of
analog signals to the pi board so that we don’t need any active components beyond
the Raspberry Pi. And also we are not controlling any actuators, that is why we have
only two tasks, one solves the Six-DOF equation of motion and the second does the
guidance and navigation of the trajectory.

4. SIMULATION RESULT AND DISCUSSION

First, we conducted FCC (fire control computer) simulation. The basic parameters
required to perform this simulation is longitude, latitude, and altitude values of source
and the target. Once the FCC simulation is done we set up the firing parameters i.e
setting elevation angle, and bearing angle. Setting up these angles is important so that
missile can easily converge towards its target. Then we have performed mathematical
simulation followed by real time SILS using freeRTOS and real time PILS using
freeRTOS. While running in the non-real time-based environment there will be only
one task or function calling other functions from within. So while doing mathematical
simulation main function will call 6-DOF function and trajectory correction (guidance
and navigation) function will be called from the 6-DOF function. The simulation will
be completed within few seconds as it is run inside the Windows OS.

Now in real time simulation, we have created 2 tasks to emulate real time situation i.e
6-DOF task and trajectory correction task. These two tasks will be running in parallel
and the shared variables between these 2 tasks are protected by semaphores so wrong
results are avoided and the 2 tasks give correct output. The results of non-real time
based mathematical simulation and the real-time SIL simulation are shown below
with different graphs. The first graph gives altitude and range of the missile trajectory.
The blue curve represents simple mathematical based solution and the other
represents real time SILS solution. Both curves are almost same and converge
towards the target. The little difference is caused due to the tasks created. In
mathematical solution, there is only one task (one linear program) but in real time
system, there are 2 tasks running in parallel and semaphore controlling access to
shared variables. The second graph gives details on the drift of the missile trajectory
and so on. From the graphs below it can be observed that almost all graphs are
overlapping proving that real-time simulation carried out is indeed accurate.

3133

e NRT-Alt tude
s RT-Altitude

AN

AN

9EGTS'FETFT
BZEGT THEETD
LS0T'GLSED

EZGLSLOTETD
SECHTATBEIT
BOEGE'FEVTT
CO560°'FEOZT
TLITETTITT
YSCOE00TTE
CEESELOL0T
LECELTZEDD
LBEERTIEET
TEEBEEQOBERT
LTIGCEDGET
CEQOFO0rET
ERLFIOEBLT
CEOO0EFELT
BECSOOBLOT
EERSFOTZOT
ST/RE'ETIST
LTZ0Z'966FT
TET98'GSEFT
99/ F9'TRIET
EZTLZZO0ET
STIRY'GBIZT
TIBT'RESTT

FI978'0940T
TS0Z96'LFER
BL99TZ'2606
BETI06'20Z8
LEFSLEGLTLE
BBE59'56Z9
BZSSER'FIZS
90FESE'LLTR
9ZLGTLBI0E
E0STR'OTBT
9BETOE0OTE

3000

Implementation of Real Time Operating System based 6-degree-of-freedom...
Altitude Vs Range

2500 -+

g 8§ &8 &

131 =l -

(s4219W) apnin |y

ZYETSIP'EZT
aFUE Y-LH N

Range (meters)

Range Vs Altitude

Figure 2

Drift Vs range

s R T-Dr

LTTIL[BOEYT
CTELE[ELBED
9B0TE[6ZIEL
ZTE00[8LCET
SECEVLTETT
StEriLPeZE
SOOBE[GOTZE
SLOPE[TELTE
GESR/[FBETE
TZELS[LEB0E
FZ0LL[6550E
FASEF 0ETOL
SPSEQ[EEI6T
GTLLG[FECET
PESEE[LOLET
BEZZ[SEIRT
FRETO[LBLLT
LVSTLELTLT
LEFRY[ER9T
SOEDL[ERTOT
B06LE[9Z95T
CTER/[BEDST
BLFLB[ZERFT
SESES[FIBET
LELTIESTET
BOEZI[BLFTT
FPRPTE[LLLTT
CEESWLPOTT
ZFTBE[LBZ0T
SLELE[PERE
g8 098

P TL[LEDB L
SETPER L6280
ZGEFIE'BFGS
BOTTIF TS6Y
BOLZER'Z06E
LTTFRE'O6LE
990586'TraT

T9¢6EROFL
5864681 F0Z
Bue LN

350

300

250

g 8 §
(s4212W) Yuiq

[=]

=1
o

Range (meters)

Range Vs Drift

Figure 3

Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas
Velocity Vs Time

s AT -1 (5]
s I RT-0{ 1,5

e N RT-Ve locity
= RT-Velocity

SkSrat
CE'SE
S60° ¥t
LBTY
SF9 T
4y
S6T'6E
LE'LE
SkLOE
Z5'5€E
SEZ'PE
LOEE
SFE'TE
Z9'0E
SBE'GT
LT'BL
SFE9E
[A=T4
iy
LTET
L
2oL
SES'ET
LEBT
SFTLT
65T
SR FT
LFET
SFECT
[
S6L6
LS8
SFE'L
[A%]
SE8'F
LOE
St

Time (seconds)

Figure 4: Velocity Vs Time
uvs Time

.l.....l....ll...’ll

au|

1200

g & § §& °

(s/w) Ayppojap

150
100
50
o]

2 8
_ =

sixe-X fuo|e 101pan AYoo|ap,

-150

3134

Time (seconds)
Figure 5: Velocity Vector along x-axis Vs. Time

3135

Implementation of Real Time Operating System based 6-degree-of-freedom...

wvs Time

s W BT (1 5
e BT w0 15

sIxe-z Fuoje 10199p, AND0|3A

Time (seconds)

Figure 6: Velocity Vector along z-axis Vs Time

Roll angle Vs Time

s | RT-Phi(de g)
s RT-Phi{deg)

89
SES'SE
LTFF
SO0ER
FLTE
SLvor
TZ'6E
Qe LE
B89'9E
ST SE
ST'FE
SER'ZE
Z9'TE
S9E'DE
6062
SERLT
959'9Z
S6Z'5Z
EQ0'FE
Q9428
ST
SEZ'0Z
L6'BT
SOLET
FFOT
SLT'ST
TE'ET
SF'ZT
BE'TT
STT'OT
98’8
989°L
CE'S
850'5
GLE
829
9z'T
W (s)awi)

P

(soa189p) 144

=]

Time (seconds)

Figure 7: Roll Angle

3136

Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

Pitch Angle vs Time
30
20
10
)
@
S 0
0 U 1w LWwmWmWwmwmLwWw wmwwwm mwmLwmwmwn L n uwwuwLwuwmwwm wn n wuwm wwm
Q Froivniogreom PR HRWNSLERE NHOYLEHE NN OgiLEd
o T A I B R R i = I A B T I I R —— NRT-Thetaldeg)
e E A N g U0 AN Mg N~ 0O o NM N T oOd Mg wdao MWW
i_: Ao H N NN N NN m M mmMm Mmoo s s s s s
S -10 = RT-Theta(deg)
£
o
- \
-30 M
-40
Time (seconds)
Yaw Angle Vs Time
328
327
326
325
‘6‘324
o
gp 323
a
Z sz
7 . | RT-Psi{deg)
[= %
321 s LT -Psi{ e g)
320
319
318
317
POy UNDn DO OO0 OO0 DD OGN LONDGNLNWLOLLLGNLLWGLNLWLWG
e ey N =y ey I R e o e I T O = I = = = » = = =y B =y I = B = = = I = = =y = = = = = =) =
v A MU~ AMmMOD~ROO AN SO A MO0 A MO S~S OA MO~ A MM~ A MW S
Edemagr o oS dmogwl UM ool mwwes 0o ool oo o 00 m S e Mo g
.: A A A A A A NN NN NN N MmMmMmoMm MmN s st s T s
Time(seconds)

Figure 9 : Yaw Angle

Figure 10 and Figure 11 gives the 3-D plot of the missile. The first plot represents free
flight missile trajectory. It means trajectory correction is not done here. It simply

gives

the path that missile is going to follow if no trajectory correction is applied. The

second plot, on the other hand, represents missile’s path when trajectory correction is

Implementation of Real Time Operating System based 6-degree-of-freedom... 3137

applied. As we can see from the figure that missile is changing its path to move
towards the target.

3000 ~

S 20004 f

5] |r \

£ [\
| \

£ 1000 + initial target \

< position

03 \
2.5 600

1 200

Range(meters) 0 -200 Drift(meters)

Figure 10: 3D plot of Free flight trajectory.

3000 ~
—_— ,‘/ ’1
3 2000 A '
£ apt
Py
T / '
3 1000 ‘
= target '
<
0. ‘ 400

200

! 100
0.5

Range(meters) 0 0 Drift(meters)

Figure 11: 3D plot of Guided flight trajectory.

3138 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

We compared rotational angles (roll angle, pitch angle, and yaw angle), altitude, drift,
and velocity vectors for validation of real-time simulation. Total time required to
complete the simulation is 47.94 sec. The simulation cycle is of five milliseconds and
so there are 9590 iterations. From the above graphs, we can see that results of real-
time SILS matches with that of non-real time-based SILS proving that simulation
carried out in real time is correct. As mentioned earlier Altitude values and Drift
values are little different since in RT simulation there are actually 2 tasks running
simulating a real time scenario, unlike the NRT simulation where there is only linear
mathematical code being run. The solution file of the missile trajectory simulation is
shown in figure 12,

A s [cl ol e[Fl 6l w1 [T xl [w]IN[TolPr»lalr]Ss][T
Tincls] _ Aphaldeg Betaldeg) Diftm) _Heghtn) Mach _plrom] _Phifdeg) Poideg) _qldegs) rldegls] Rangelm) Thetadeg v uimls] _vinss) _wimls) _VWind_di vind velnls
2| 025 0596 L7357 0 01043403 30 0 a7 0 0 0 213 49 048503 06997042 25

3| 0255 022863 -L75657 361E-07 0.103088 0.140728 309.8821 9898220 217 0.002144 000812 0297 22.13001 5016817 0.007987 49.4177 0044947 6997042 25

4| 026 0119981 -1.70504 1.27E-06 0.288566 0.144054 3297618 19.79287 216.9999 0.001026 -0.01719 0464897 22.13003 513369 0.031185| 5056581 0.085798 6997042 25

5| 0265 0440538 158931 26E-06 0.385834 0.147382 320,630 2068385 216.9998 -0.00352 002632 0705504 22.13008 5250617 0.068196 5175456 0118711 6997042 25
5
7
8
9

027 072308 -1.41952 4.29-06 0.485095 0.150712 329.514 39.57109] 216.9996 -0.01144 -0.03456 0.951795 22.13013 53.67598 0.116768 52.92394 0.140245 69.97042 25
0275 0.959552 -1.20518 6.32-06 0.586348 0.154044 329.3862 49.45452 216.9994 -0.02243 -0.04096 1.2035 22.13021 54.84634 0.1739 54.09395 0.147535 69.97042 25
028 1.143969 -0.95681 8.76E-06 0.689596 0.157378 329.2558 59.33406 216.9992 -0.03595 -0.04467 1460713 221303 56.01724 0.23598 55.26457 0.138442 69.97042 25
| 0285 12725 -0.68557 117E-05 0.794839 0.160713 329.1231 69.20963 216.9989 -0.05127 -0.04494 1723436 22.13041 57.18869 0.298%45 56.43581 0.111677 69.97042 25
10/ 029 134348 -0.40278 1.54E-05 0.902079 0.16405 328.9879 79.08116 2169985 -0.06746 -0.0412 1.991672 22.13054 58.36068 0.358472 57.60767 0.066884 69.97042 25
11 0295 1357354 -0.11961 1.98E-05 1.011317 0.167389 328.8505 88.94858 2169981 -0.08348 -0.03311 2.265423 22.13069 59.53323 0410179 58.78014 0.004677 69.97042 25
1| 03 1316557 0.153357 2.53E-05 1122554 0.17073 3287109 98.81183 216.9976 -0.09819 -0.02054 2544691 22.13085 60.70632 0449839 59.95321 -0.07335 6997042 25
13 0305 1.225344 0406383 3.19E-05 1235791 0.174072 328.5691 108.6708 216.997 -0.11043 -0.00366 2.829479 22.13104 61.879%6 0473582 61.12689 -0.16467 69.97042 25
14 031 1.089555 0.630915 3.97E-05 1351028 0.177416 3284248 118.5255 216.9965 -0.11907 0.017113 3.11979 22.13124 63.05415 0478089 62.30116 -0.26589 69.97042 25
15 0315 0916358 0.819806 4.88E-05 1468267 0.180762 328.278 1283758 2169958 -0.12309 0.041083 3.415627 22.13146 64.22888 0460771 6347603 -0.37291 69.97042 25
16 032 0.713951 0.967496 5.92E-05 1.587509 0.184109 328.1288 138.2217 216.9951 -0.12162 0.067308 3.716991 22.13168 65.40415 0.419916 64.65149 -0.48102 69.97042 25
17 0325 0491231 1.070145 7.07€-05 1.708755 0.187458 327.9774 148.063 2169944 -0.11402 0.094633 4.023885 22.13191 66.57998 0.354804 65.82755 -0.58516 69.97042 25
18 033 0.257464 1.125691 8.33E-05 1832005 0.190809 327.8238 157.8997 2169936 -0.09992 0.121735 4336313 22.13215 67.75635 0.26579 67,0042 -0.68006 6997042 25
19| 0335 0.021953 1133851 9.66E-05 1957261 0.194161 327.668 167.7318| 216.9928 -0.07922 0.147178 4.654276 22.13238 68.93327 0.154334 68.18145 -0.76049 69.97042 25
20| 034 -0.20629 1.096064 0.00011 2.084523 0.197515 327.5103 177.5591 216.9919 -0.05219 0.169475 4.977777 22.13261 70.11075 0.02299 6935928 -0.8215 69.97042 25
2| 0345 -0.41885 1.015382 0.000124 2213793 0.200871 327.3503 187.3817 216.9909 -0.0194 0.18716 5306819 22.13283 71.28877 -0.12465 7053769 -0.85862 69.97042 25
22| 035 -0.60818 0.896302 0.000138 2.345072 0204229 327.188 197.1994 216.9899 0.018204 0.198861 5641404 22.13304 72.46734 -0.28405 71.71669 -0.86809 69.97042 25
23| 0355 -0.76782 0.74456 0.000152 2.478361 0.207588 327.0234 207.0122 216.9888 0.0593%6 0.203377 5981534 22.13324 73.64645 -0.44988 72.89626 -0.84704 69.97042 25
24| 036 -0.89261 0.56689 0.000166 2.613661 0.210949 326.8566 216.8199 216.9877 0.102656 0.199748 6.327213 22.13344 74.82611 -0.61618 74.07642 -0.79364 69.97042 25
25| 0365 -0.97881 0.370751 0.000179 2.750974 0.214311 326.6876 226.6226 216.9864 0.146239 0.187311 6.678442 2213362 76.00633 -0.77657 75.25716 -0.70724 69.97042 25
2| 037 -102418 0.164053 0.000191 2.890301 0217675 326.5167 236.4202 216.9851 0.188241 0.165754 7.035223 22.13379 77.18709 -0.92451 76.43847 -0.58846 69.97042 25
27| 0375 -1.02802 -0.04514 0.000203 3.031644 0.221041 326.3438 246.2126 216.9838 0.226672 0.135155 7.39756 22.13396 78.3684 -1.05352 77.62037 -043921 69.97042 25
28| 038 -0.99116 -0.24889 0.000214 3175002 0.224408 326.169 255.9997 216.9823 0.25954 0.096006 7.765455 2213411 79.55027 -1.15744 78.80283 -0.26268 69.97042 25
29| 0385 -0.91585 -0.43965 0.000226 3320379 0.227777 325.9922 265.7816 216.9808 0.284935 0.049219 8.13891 22.13426 80.73269 -1.23069 79.98587 -0.06329 69.97042 25
30| 039 -0.8057 -0.61054 0.000236 3467774 0.231148 325813 275.5581 216.9792 0301128 -0.00389 8.517928 22.13439 81.91565 -1.2685 81.16948 0.153434 69.97042 25
31 0395 -0.66547 -0.75553 0.000247 3.617189 0.23452 325.6317 285.3291 216.9775 0.306655 -0.06161 8.902511 22.13451 83.09916 -1.26713 82.35366 0.380993 69.97042 25
17: N4 -nsnnat -0 RAAGAR. 0.000257. 3 76RA25. N1.237804 325 4484 2050047 21A.0758 0.30030R -0.12193 0 202AR2. 22 13461 RA2R3)) 122406 R353R42 N A12135 AAQ704). D5 |

Figure 12: Solution file of 6-DOF missile

We made use of “Tracealyzer software” for debugging and optimizing our real time
model. There is no delay while switching context between the tasks. We found out
that context switching time involved is zero for real time SILS in a windows
environment. Figure.13 shows how the 2 tasks are running and give all the execution
details of the tasks involved. The first graph gives horizontal trace view of the tasks
and the second graph gives details about CPU load graph of tasks. Horizontal trace
view provides details such as start time, end time, execution time, response time, wait
time, etc of each task instance.

Implementation of Real Time Operating System based 6-degree-of-freedom... 3139

bstanc
Total CPU time: 44,080 (0.51 %)
Total Wat tme: 0 s}

Figure 13: Trace view and CPU Load Graph

As we can see from the figure: 14, Six-DOF task and trajectory correction task runs
periodically at the 5 os-tick gap (since simulation cycle i.e At is of 5 milliseconds).
Figure 15 show the communication flow of the 2 tasks i.e the semaphore used for
controlling access to critical section shared by the two tasks to avoid a race condition.

51110
B 6-dof-soive]
[trajectory_

— - !: —{ xSemaphoreTake(Mutex #2) |

A “rxSemaphorerel_Mutex #2)]

1
7‘ lActorRendy:trajectovy_]

B &-dof-soive] [| —
trajectory_ e

Figure 14: Trace Window

3140 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

|:| trajectory_

/

. E-dof-solve

Figurel5: Communication Flow

Figure 16 gives the statics report of the task:-

Included Actor Properties:
e Priority: The scheduling priority of the actor (Task, Thread or Exception).
o Count: The number of instances (jobs/executions) of the actor.
e CPU Usage: The amount of CPU time used by the actor (in percent).

o [Execution Time: The actual CPU time used an actor instance (in
microseconds).

o Response Time: The real time between start and completion an actor instance
(in microseconds).

o Periodicity: The real time between the starts of two adjacent actor instances
(in microseconds).

e Separation: The real time between the ends of an actor instance to the start of
the next instance of that actor (in microseconds).

Note: The Min and Max values in the below table are links, which shows the
corresponding actor instance in the trace window.

Actor Priority Count CPU Usage Execution Time Response Time Periodicity Separation

Min Max % Min Avg Max Min Avg Max Min Avg Max Min Avg Max
Task trajectory_ 1 1 882 0551 30 50 340 40 60 430 7.400 9.710 12430 7.330 9.650 12.370
Task 6-dof-solve 2 2 8832 3.065 220 290 12340 230 290 12340 7.680 9.710 12330 7.160 9430 12.060

Figure 16: Statics report of two tasks.

Implementation of Real Time Operating System based 6-degree-of-freedom... 3141

Figure 17 gives actor instance graphs. The first graph represents periodicity from
execution start of the instances of the 2 tasks. It represents the time between the
instance start time and the previous instance finish. The second graph represents
separation from execution start of the instances of the 2 tasks. It represents the time
between the instance start time and the previous instance start time. Both separation
and periodicity are available in two versions, depending on where to count the
instance start time: from Ready and from Execution Start.

e
Start Time: 1:40.947 030 fms ms 14
i End Time: 1:40547 320 m s ms 45|

e o Tme 250
12000 Response Time: 230 (s}

Wat Time: 0 15)

Startup Time: 0 (1)

Response intedference: 0.00%

Fragmentation: 1

Prodty. 2
Previous bstance (443 882)
Next Instance (451 /882)

Task 6-dof-solve

s Instances: 882
Total CPU time: 263.150 (3.07 %)
4000 Total Wat tme: 0 s}

140.700.000 1:40.800.000 1:40.900.000 1:41.000.000 141100,

10000
8.000

1:40.700.000 1:40.800.000 1:40.900.000 1:41.000.000 1411000

Figure 17: Separation and Periodicity from execution start of the task instances

5. CONCLUSION

We have introduced a new method to simulate Six-DOF missile trajectory using open
source RTOS. We have shown how to build the real-time model for missile trajectory
system. We made use of FreeRTOS running on top of windows operating system as a
deployment platform for performing SILS. Finally, the results of non-real time-based
SIL-simulation and real-time based SIL-simulation are compared for validation of the
real-time model. Both the result matches proving that real-time simulation carried out
using FreeRTOS is indeed valid. FreeRTOS switches context very fast in the win32
environment and hence can be used for the hard real-time system. At this moment we
are able to run the tasks on the raspberry pi and see the output log on the monitor. As
a future direction, we will be working on bare-metal FAT file-system driver for
reading and writing data to either USB storage or sd card itself for storing output
generated by the pi board instead of seeing it on the monitor. We are also currently
working on “FreeRTOS + Trace” as there is no official trace library support for
raspberry pi 2 yet for using tracealyzer for tracing the tasks on the raspberry pi.

3142 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

6. ACKNOWLEDGEMENTS:

We express our deepest gratitude to Zeus Numerix Pvt. Ltd, Pune, India for providing
the resources and support in our work. Our special thanks to Director of Zeus
Numerix, Pune, Mr. Irshad khan. We express our deepest thanks to Dr.Sudhir
Muthyala and Mr.Sanjay Kumar at Zeus Numerix, Pune, who took time out to hear,
guide, and keep us on the correct path. Finally, we would also like to thank “Percepio
AB” industry for providing a 1-year academic license for using Tracealyzer software.

REFERENCES

[1] S. K.chaudhuri, G. Venkatachalam and M. Prabhakar, “Hardware in the loop
simulation for missile guidance and control”, Research Centre Imarat,
Hyderabad, Defence Science Journal-1997

[2] Siouris G.M, “The Generalized Missile Equations of Motion”, Missile
Guidance and Control System”, Springer Journal-2004

[3] https://www.acm-sigsim-
mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm

[4] S.K. Gupta, S. Saxena, Ankur Singhal and A.K. Ghosh, “Trajectory Correction
Flight Control System using Pulsejet on an Artillery Rocket”, IIT Kanpur.
Defense Science Journal-2008.

[5] R.Liu, A.Monti, G. Francis, R. Burgos, F. Wang and D. Boroyevich”,
Implementing processor in the loop with universal controller in virtual testbed”,
IEEE, 2007.

[6] Xiaofei Chang, Tao Yang, Jie Yan, and Mingang Wang, “Design and
Integration of Hardware-in-the-Loop Simulation System for Certain Missile”,
College of Astronautics, Northwestern Polytechnical University, Xi China,
Springer Journal-2012

[7] Chai Lina, Zhou Qiang, "Design and Implementation of Real-Time HILS Based
on RTX Platform", School of Automation Science and Electrical Engineering,
Beijing University of Aeronautics and Astronautics Beijing 100083, IEEE,
China

[8] Qianlong Yang, Qifeng Zhao, Tao Min, Chuanyan Tian, Gang Zhou, Fengqi
Zhou , “Research of Flight Control Hardware-in-the-loop Simulation Based on
Windows Operation System”, People’s Republic of China, IEEE-2013

[9] Rajesh S Karvande, B. Ramesh Kumar, "Development of Hardware-In-Loop
Simulation Testbed for testing of Navigation System-INS", Research Centre
Imarat, Hyderabad-500069, India, 2013

[10] Z.Y. Luo and M. Li, “Simulation environment for a missile based on Matlab or
Simulink development”, Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, China, 2014

[11] Romulo Rodrigues, Rafael C. B. Sampaio, A. Pedro Aguiar, Marcelo Becker,
“FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance,
Navigation and Control”, Joint Conference on Robotics: SBR-LARS Robotics
Symposium and Robocontrol, 2014.

https://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm
https://www.acm-sigsim-mskr.org/MSAreas/InTheLoop/softwareInTheLoop.htm

Implementation of Real Time Operating System based 6-degree-of-freedom... 3143

[12]

[13]

[14]

[15]
[16]
[17]
[18]

Adriano Bittar, Helosman V. Figuereido, Poliana Avelar Guimaraes and
Alessandro Correa Mendes, “Guidance Software-in-The-Loop Simulation Using
X-Plane and Simulink for UAVs.”, International Conference on Unmanned
Aircraft Systems (ICUAS), Orlando, FL, USA, 2014.

Calvin Coopmans, Michal Podhradsk’y and Nathan V. Hoffer, “Software- and
Hardware-in-the-Loop Verification of Flight Dynamics Model and Flight
Control Simulation of a Fixed-Wing Unmanned Aerial Vehicle”, Workshop on
Research, Education and Development of Unmanned Aerial Systems (RED-
UAS), Cancun, Mexico, 2015

Harsh Vardhan, Bilal Akin, and Hua Jin, “A Low-Cost, High-Fidelity
Processor-in-the-Loop Platform”, IEEE power electronics magazine, June 2016.
http://www.freertos.org/RTOS-task-states.html

http://www.freertos.org/

http://percepio.com/tz/freertostrace
https://github.com/Forty-TwO0/RaspberryPi-FreeRTOS

http://www.freertos.org/RTOS-task-states.html
http://www.freertos.org/
https://github.com/Forty-Tw0/RaspberryPi-FreeRTOS

3144 Prathik Sargar, Dr. Himanshu Agrawal & Suman Mohandaas

