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Abstract

In this paper we introduce two dimensional g-tangent numbers and polynomials.
We also give some properties, explicit formulas, several identities, a connection
with two dimensional g-tangent numbers and polynomials, and some integral for-
mulas.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler
numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7, 8, 9]). In this
paper, we study some properties of a new type of two dimensional g-tangent numbers
and polynomials.

Throughout this paper, we always make use of the following notations: N denotes the
set of natural numbers, Z = N U {0}, R denotes the set of real numbers, and C denotes
the set of complex numbers. For a real number (or complex number) x, g-number is

defined by
1 —g*
[y = T itg#£1, [xl,=xifq=1.

The g-binomial coefficients are defined for positive integer n, k as

|:n:| _ [n],! _ [nlgln — 11, [n —k+ 1],
k], [klg'ln — klg! [k],! ’
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where [n],! = [n]y[n — 1], ---[1lg,n = 1,2,3, ... and [0],! = 1, which is known as
g-factorial(see [1]). Note that

lim[n] _(n)_n(n—l)(n—2)---(n—k—|—1)
qg—1 kq_ k B k! '

The g-analogue of the function (x + y)" is defined by

n

1
Cryr=%" [1] NONE NI
q

=0

For any z € C with |z] < 1, the two form of g-exponential functions are given by

00 o © o
eq(z) = ,12:;) [n—]q! and E,(z) = ’gq(l’) [l (see [2, 5)).

From this form we easily see that ¢, (z) E;(—z) = 1. The g-derivative operator of a any
function f is defined by

fx) — flgx)
(I—g)x

and D, f(0) = f'(0), provided that f is differentiable at 0. It happens clearly that
Dyx" = [n]qx”_l.
The definite g-integral is defined as

Dy f(x) = ,x #0, (1.1)

b S ) )
/O Fdgx = (1= )b > g f(g7b). (1.2)
j=0

Clearly, if the function f(x) is differentiable on the point x, the g-derivative in (1.1)
tends to the ordinary derivative in the classical analysis when ¢ tends to 1. Identically,
if the function f(x) is Riemann integrable on the concerned intervals, the g-integral in
(1.2) tends to the Riemann integrals of f(x) on the corresponding intervals when g tends
to 1(see [2, 5]). In the following section, we introduce the two dimensional g-tangent
numbers and polynomials. After that we will investigate some their properties. Finally,
we give some relationships both between these polynomials and g-derivative operator
and between these polynomials and ¢g-integral.

2. Two dimensional g-tangent polynomials

In this section, we introduce the two dimensional g-tangent numbers and polynomials
and provide some of their relevant properties.
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The g-tangent polynomials T, (x) are defined by the generating function:

tn

(L) eqxt) =Y Ty g()—— (|2t] < 7). 2.1
e, (21) + 1 — [n],!

When x =0, T, 4,(0) = T, 4 are called the g-tangent numbers. Upon setting p = 1 in
(2.1), we have

2 s n
(62, " l)e“ =Y s (2 <m, 22)
n=0 ’

where T, (x) are called familiar Tangent polynomials. Numerous properties of tangent
numbers and polynomials are known. More studies and results in this subject we may
see references [4], [5], [6], [7]. About extensions for the tangent numbers can be found
in[5,7, 8].

The two dimensional g-tangent polynomials T, (x, y) in x, y are defined by means
of the generating function:

. ey = YT A 2.3
(m) eq(x )eq()’)—’; n,q(x, y)[n—]q‘ (12¢] < m). 2.3)

It is obvious that lim1 T,;(x,y)=T,(x+y)and T, 4(x,0) =T, 4(x).
q—)
By (2.1), we get

= 1" 2
T, -
’; 4, (eq @+ 1) € (x1)

" , 1"
_ ZTn,q[n—]q! X;)x K (2.4)

n=0 n=

oS " n
= Z (Z [l]q Tn—l,qyl) [I’l_]q'

n=0 \/=0

By comparing the coefficients on both sides of (2.4), we have the following theorem.
Theorem 2.1. Forn € Z, we have

n
Tog() = m T, s gx’
q

=0

By using Definition of g-derivative operator and Theorem 2.1, we have the following
theorem.

Theorem 2.2. Forn € Z, we have

Dan,q (x) = [n]an—l,q (x)
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By Theorem 2.2 and Definition of the definite g-integral, we have

1
[n]q fo DyTy-1,q(x)dgx =Ty (1) — Ty 4(0). (2.5)

Since T, 4,(0) = T, 4, by (2.5), we have the following theorem.

Theorem 2.3. Forn € Z, we have

T,,(1)-T
[n]q

1
/ DT, 1 4(x)dyx =
0
Using the following identity:

eq(xt)eq(2t) + eq(xt) = 2e4(xt),

eq(2t) +1 eq(2t) +1
we have the following theorem.

Theorem 2.4. Forn € Z,, we have
Ty q(x,2) + T, 4(x) =2x".
Substituting x = 0 in Theorem 2.4, we have the following corollary.

Corollary 2.5. Forn € Z,, we have

T,y =-T,,2).

By (2.3) and the rule of Cauchy product, we get

HZ:OTn,q(x, y) ]! = (eq(2t) n 1) eq(xt)eq(yt)

—ZTM( >
_ n |
_ z (z [,] Tsgo0x ) .

By comparing the coefficients on both sides of (2.6), we have the following theorem.

(2.6)

Theorem 2.6. Forn € Z, we have

n

Tn,q(xv y) - Z [7] Tn—l,q(x)yl-

1=0 q
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Using the following identity:

9

meq (2t) + m =
we obtain the following theorem.
Theorem 2.7. Forn € Z, we have
n
1=0
By using Definition of g-derivative operator, we have the followi

Theorem 2.8. Forn € Z, we have

Dq,yTn,q(X, y) = [n]an—l,q(X, y)

3003

n n—l )2, ifn=0,
Z[sz Tl’q+T”’q_{o, i n £ 0.

ng theorem.

3. Some identities involving g-tangent numbers and polynomials

In this section, we give some relationships both between these polynomials and g-
derivative operator and between these polynomials and g-integral. By (2.1) and by

using Cauchy product, we get

ZTn g ) (eq(Zt) n 1) eq(xt)

2
eq(20) + eq(21)e, - (—2t)) 1

eq(xt)

_ 2e —1( 2t)

=\t eq(xt) 3.1
> Pi—— "

= T n
2 T O gy 2

n

- n ! w1} 1"
Z::O(Z[ L( DT, -1 (2)x ){n]q!.

By comparing the coefficients on both sides of (3.1), we have the following theorem.

Theorem 3.1. Forn € Z, we have

n

Tg() =Y m (D', 1 2)x"
q

=0



3004 C. S. Ryoo

By Definition of the definite g-integral and Theorem 2.1, we get

/ nq(x>dx—/ H o1y
0 =0l dq

R
== n—l,q7; . 14 *
pre L1, [+ 1],

We also get

1 1 n
/Tn,q(x)dqx:/ Zm (=)', 1 (2)x"dyx
0 0 1=0 q

n 1 1
— [CE DL VRT() pr—
|:l:|q b [I’L—l-l—l]q

By (3.2) and (3.3), we have the following theorem.

(3.3)

Theorem 3.2. Forn € Z, we have

. n Tn—l,q . |:l’l] i Tl,q*1(2)
_n-ha (=)l 24 77

Using the following identity:

2 eq (& ) m t
eq(xt)eq(yt):meq( xt) T q( 1 e\ my )

m

eq(2t) +1

we have

ZT

le

s M 0 I £ ¢
(Z )(gm ml)<—eq~ (2m))

=mY (Tup1qx.m™") = Tos1.0()) o7y ZBnq<my>m "
n=0

k—n+1

_ > n Tk—l—l,q(x’m_l)_ n—i—l,q(x))m t"
_Z(Z[ L [k + 1] Brka ) | Gy

n

n

Matching the coefficient of

o of both sides gives the following theorem.
n q .
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Theorem 3.3. Forn € Z, we have

k—n+1

Tn,q(x, y) = Bn—k,q(my)

Xn: [n] (Tk—i—l,q(xa m_l) - Tn—i—l,q(x)) m
q

L [k + 1l

n Xy
:2 En’q (5, 5) .

Here B, ;,(x, y) and E, 4 (x, y) denote the g-Bernoulli and g-Euler polynomials in x, y
which are defined by

B, ,(x,y) = eq(xt)ey(yt) and E, 4(x, y) = eq(xt)ey(yt).

t 2
eq(t) — 1 eq(t) +1
By Definition (2.1) and by using the following identity:

_ (xt) (,)_# (L )eq(Z%)—Fl ! (xt)
eq) — 10 = oy U™ 2 e -1

we get

0
2B
; (Z Ty g (my)m™"

o) () (5
[

o0 n n—k
n n—=k "
= Z Z Bk, (_x) i| Tl, (my)zﬂ—k—l—lmk—n)
n=0 (k:O [k]q ! 1=0 ! q ! [n]y!
+ <Z [Z] 2“m"‘”Bk,q<x>Tn_k,q<my)) .
— [n],!
n=0 \k=0 q

n

By comparing coefficients of in the above equation, we arrive at the following

nly !
theorem.

Theorem 3.4. Forn € Z, we have

Bn,q(xa y)
1 n n n—k n—k
= 2 L [k]q Bt [ [ z L 2 Ony) ’""Tn—kﬂmy)} |
k=0 1=0
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By Definition of the definite g-integral and Theorem 2.6, get

1 1 n
n
/ ynTn,q(X, y)dqy:/ E |:l] Tn—l,q(x)yl+ndqy

= Z[’}] Ty ()
P q [n+1+ 1]

By (1.2), we see that

1
/ ynTn,q(X, }’)dqy
0

n+1 T, q(x y)
[n+ 1]q

1.q(x, y)
/[]qqn—H n+1 ” q dqy

[n+ 1],
Ty D) g / ntl
= T TEST V' Tho1,4(x, y)dgy
Tpgx, 1) q" ]y Tao1,q4(x, 1)

n+l[n

T+ 1, [n + 11,[n + 2],
B 2qn-f—lqn-f-Z[n]q [n — 1]q /1 2
+ (=1 1, 2l Jo V' T 2,4(x, y)dyy

_ Thg(x, 1) | q" T nlyTho,q(x, 1)
[n+1]4 [n + 1]4[n + 2],
2q" M q" 2 nly [n =11 Ty 2,4 (x, 1)
[n+1], [n+2]; [n+3]
3qn+1qn+2qn+3[n]q n— 1]q [n — 2]q
[n+ 1], [n + 2], [n + 3]y

1
+ (=D / y”+3Tn_3,q(x, V)dgy.
0

Continuing this process, we obtain

Tnq(x, 1)

1
"T, .(x,y)d,y =
fo v Ty q(x, y)dgy i+ 1,

N i‘ gt g = 1y [ —m 1 (=)™
[n+ 140 +2];---[n+m+ 1],
n+1 |

Tn—m,q(x’ D (3.5)

q g n]q!

+(=1)"
D T 21,2,

1
/ ¥ To 4 (x, ¥)dyy
0

Hence, by (3.4) and (3.5), we have the following theorem.
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Theorem 3.5. For n € N, we have

n

n 1 Tn q(x’ 1)
T, _
ZO: [ZL LT, T It 1

. i‘ gt g ) — 1] [ — m 4 1] (=)™

Ty mgq(x, 1)
[n+1l4n+2];---[n+m+ 1],

m=1
n+l . 2m
[n+ 1]4[n + 2], - - - [2n]y[2n + 1],
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