Identities arising from differential equations for generalized Laguerre polynomials

Taekyun Kim
Department of Mathematics,
Kwangwoon University,
Seoul 139-701, Republic of Korea.
E-mail: tkkim@kw.ac.kr

Dae San Kim
Department of Mathematics,
Sogang University, Seoul 121-742,
Republic of Korea.
E-mail: dskim@sogang.ac.kr

Hyuck-In Kwon
Department of Mathematics,
Kwangwoon University,
Seoul 139-701, Republic of Korea.
E-mail: sura@kw.ac.kr

Dmitry V. Dolgy
Institute of Mathematics and Computer Science,
Far Eastern Federal University,
690950 Vladivostok, Russia.
E-mail: dvdolgy@gmail.com

Jong-Jin Seo
Department of Applied Mathematics,
Pukyong National University,
Busan, Republic of Korea.
E-mail: seo2011@pknu.ac.kr

1Corresponding author.
Abstract

The purpose of this paper is to give some new and interesting identities related to generalized Laguerre polynomials arising from linear differential equations.

AMS subject classification: 05A19, 33C45, 11B37, 35G35.

Keywords: Generalized Laguerre polynomials, differential equations.

1. Introduction

For arbitrary real α, the polynomial solutions of the differential equations

$$xy'' + (\alpha + 1 - x) y' + ny = 0, \quad \text{(see [1, 12, 16])} \quad (1.1)$$

are called generalized Laguerre polynomials.

The generating function for the generalized Laguerre polynomials, $L^{(\alpha)}_n(x)$, $(n \geq 0)$, are given by

$$\frac{1}{(1-t)^{\alpha+1}} \exp \left(-\frac{xt}{1-t} \right) = \sum_{n=0}^{\infty} L^{(\alpha)}_n(x) t^n, \quad \text{(see [12])}. \quad (1.2)$$

From (1.2), we note that

$$\sum_{n=0}^{\infty} L^{(\alpha)}_n(x) t^n = \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} t^k \sum_{m=0}^{\infty} \binom{k+\alpha+m}{m} t^m$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} x^k \binom{n+\alpha}{n-k} \right) t^n. \quad (1.3)$$

Thus, by (1.3), we get

$$L^{(\alpha)}_n(x) = \sum_{k=0}^{n} \frac{(n+\alpha)}{n-k} \frac{(-1)^k}{k!} x^k, \quad (n \geq 0). \quad (1.4)$$

The first few generalized Laguerre polynomials are

$$L^{(\alpha)}_0(x) = 1$$
$$L^{(\alpha)}_1(x) = -x + \alpha + 1$$
$$L^{(\alpha)}_2(x) = \frac{x^2}{2} - (\alpha + 2)x + \frac{(\alpha + 2)(\alpha + 1)}{2}$$
$$L^{(\alpha)}_3(x) = -\frac{x^3}{6} + \frac{(\alpha + 3)}{2} x^2 - \frac{(\alpha + 2)(\alpha + 3)}{2} x + \frac{(\alpha + 1)(\alpha + 2)(\alpha + 3)}{6}, \ldots$$
From (1.4), we note that

\[L_n^{(\alpha)}(0) = \binom{n + \alpha}{n} \approx \frac{n^{\alpha}}{\Gamma(\alpha + 1)}, \quad \text{(see [1, 16]).} \] (1.5)

It is well known that the Rodrigues formula for \(L_n^{(\alpha)}(x) \) is given by

\[L_n^{(\alpha)}(x) = \frac{x^{-\alpha} e^x}{n!} \frac{d^n}{dx^n} \left(e^{-x} x^{n+\alpha} \right), \quad (n \geq 0), \] (1.6)

\[= x^{-\alpha} \frac{1}{n!} \left(\frac{d}{dx} - 1 \right)^n x^{n+\alpha}, \quad \text{(see [1, 2, 5, 3, 12, 16]).} \]

From Laurent series and (1.2), we note that

\[L_n^{(\alpha)}(x) = \frac{1}{2\pi i} \oint_C \frac{e^{-x t}}{(1-t)^{\alpha+1}} t^{-n-1} dt, \] (1.7)

where the contour circles the origin in a counterclockwise direction.

It is well known that the generalized Laguerre polynomials satisfy a three-term recurrence relation

\[(n + 1) L_{n+1}^{(\alpha)}(x) = (2n + 1 + \alpha - x) L_n^{(\alpha)}(x) - (n + \alpha) L_{n-1}^{(\alpha)}(x). \]

Several authors have studied some interesting extensions and modifications of Laguerre polynomials along with related mathematical physics, combinatorial, probabilistic, and statistical applications (see [1, 2, 5, 3, 6, 8, 7, 9, 10, 11, 4, 12, 13, 14, 15, 16]).

In [7], Kim studied nonlinear differential equations arising from Frobenius-Euler numbers and polynomials.

In this paper, we study identities arising from differential equations for the generalized Laguerre polynomials. From our study for the generalized Laguerre polynomials, we derive some explicit and new identities related to those polynomials.

2. Identities arising from differential equations for generalized Laguerre polynomials

Let

\[F = F(t \mid x, \alpha) = \frac{1}{(1-t)^{\alpha+1}} e^{-\frac{xt}{1-t}}, \quad (\alpha > -1). \] (2.8)

Then, by (2.8), we get

\[F^{(1)} = \frac{d}{dt} (F(t \mid x, \alpha)) = \left\{ (\alpha + 1) (1-t)^{-1} - x (1-t)^{-2} \right\} F, \] (2.9)

\[F^{(2)} = \frac{d}{dt} F^{(1)} = \left\{ (\alpha + 1) (\alpha + 2) (1-t)^{-2} - 2x (\alpha + 2) (1-t)^{-3} + x^2 (1-t)^{-4} \right\} F, \] (2.10)
and

\[
F^{(3)} = \frac{d}{dt} F^{(2)} = \left\{ (\alpha + 1) (\alpha + 2) (\alpha + 3) (1 - t)^{-3} \\
-3x (\alpha + 2) (\alpha + 3) (1 - t)^{-4} \\
+3 (\alpha + 3) x^2 (1 - t)^{-5} \\
-x^3 (1 - t)^{-6} \right\} F.
\]

Continuing this process, we set, for \(N = 0, 1, 2, \ldots\),

\[
F^{(N)} = \left(\frac{d}{dt} \right)^N F (t | x, \alpha) = \left(\sum_{i=N}^{2N} b_{i-N}^{(\alpha)} (N, x) (1 - t)^{-i} \right) F.
\]

(2.11)

On the one hand, by (2.11), we get

\[
F^{(N+1)} = \frac{d}{dt} \left(F^{(N)} \right) = \left(\sum_{i=N+1}^{2N+1} (\alpha + i) b_{i-N-1}^{(\alpha)} (N, x) (1 - t)^{-i} \right) F \\
- \left(x \sum_{i=N+2}^{2N+2} b_{i-N-2}^{(\alpha)} (N, x) (1 - t)^{-i} \right) F.
\]

(2.12)

On the other hand, by replacing \(N\) by \(N + 1\) in (2.11), we have

\[
F^{(N+1)} = \left(\sum_{i=N+1}^{2N+2} b_{i-N-1}^{(\alpha)} (N + 1, x) (1 - t)^{-i} \right) F.
\]

(2.13)

From (2.12) and (2.13), we can derive the following equations:

\[
b_0^{(\alpha)} (N + 1, x) = (\alpha + N + 1) b_0^{(\alpha)} (N, x),
\]

(2.14)

\[
b_{N+1}^{(\alpha)} (N + 1, x) = -x b_N^{(\alpha)} (N, x),
\]

(2.15)

and

\[
b_{i-N-1}^{(\alpha)} (N + 1, x) = -x b_{i-N-2}^{(\alpha)} (N, x) + (\alpha + i) b_{i-N-1}^{(\alpha)} (N, x), \quad (N + 2 \leq i \leq 2N + 1).
\]

(2.16)
In addition, by (2.11), we get

\[F = F^{(0)} = b_0^{(\alpha)} (0, x) F. \]

(2.17)

By comparing the coefficients on both sides of (2.17), we have

\[b_0^{(\alpha)} (0, x) = 1. \]

(2.18)

From (2.9) and (2.11), we note that

\[\left\{(\alpha + 1) (1 - t)^{-1} - x (1 - t)^{-2}\right\} F \]

\[= F^{(1)} \]

\[= \left(\sum_{i=1}^{2} b_{i-1}^{(\alpha)} (1, x) (1 - t)^{-i} \right) F \]

\[= \left\{ b_0^{(\alpha)} (1, x) (1 - t)^{-1} + b_1^{(\alpha)} (1, x) (1 - t)^{-2} \right\} F. \]

(2.19)

Thus, by (2.19), we get

\[b_0^{(\alpha)} (1, x) = \alpha + 1, \quad b_1^{(\alpha)} (1, x) = -x. \]

(2.20)

Moreover, from (2.14) and (2.15), we have

\[b_0^{(\alpha)} (N + 1, x) = (\alpha + N + 1) b_0^{(\alpha)} (N, x) \]

\[= (\alpha + N + 1) (\alpha + N) b_0^{(\alpha)} (N - 1, x) \]

\[\vdots \]

\[= (\alpha + N + 1) (\alpha + N) \cdots (\alpha + 2) b_0^{(\alpha)} (1, x) \]

\[= (\alpha + N + 1)^N, \]

(2.21)

and

\[b_{N+1}^{(\alpha)} (N + 1, x) = -x b_N^{(\alpha)} (N, x) \]

\[= (-x)^2 b_{N-1}^{(\alpha)} (N - 1, x) \]

\[\vdots \]

\[= (-x)^N b_1^{(\alpha)} (1, x) \]

\[= (-x)^{N+1}, \]

(2.22)

where \((x)_n = x (x - 1) \cdots (x - n + 1), \) \((n \geq 0).\)
Hence, the matrix \(\left(b_i^{(\alpha)}(j, x) \right) \) is given by

\[
\begin{pmatrix}
0 & 1 & \cdots & 2 & N \\
0 & \alpha & \cdots & (\alpha + 2) & (\alpha + N) \\
1 & (-x) & \cdots & & \\
2 & (-x)^2 & \cdots & & \\
N & 0 & \cdots & & (-x)^N
\end{pmatrix}
\]

By (2.16), we get

\[
b_1^{(\alpha)}(N + 1, x) = -xb_0^{(\alpha)}(N, x) + (\alpha + N + 2) b_1^{(\alpha)}(N, x)
\]

\[
= -x \left(b_1^{(\alpha)}(N, x) + (\alpha + N + 2) b_0^{(\alpha)}(N - 1, x) \right)
\]

\[
+ (\alpha + N + 2) (\alpha + N + 1) b_1^{(\alpha)}(N - 1, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 2)_i b_0^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 2) (\alpha + N + 1) \cdots (\alpha + 3) b_1^{(\alpha)}(1, x)
\]

\[
= -x \sum_{i=0}^{N} (\alpha + N + 2)_i b_0^{(\alpha)}(N - i, x)
\]

\[
b_2^{(\alpha)}(N + 1, x) = -xb_1^{(\alpha)}(N, x) + (\alpha + N + 3) b_2^{(\alpha)}(N, x)
\]

\[
= -x \left(b_2^{(\alpha)}(N, x) + (\alpha + N + 3) b_1^{(\alpha)}(N - 1, x) \right)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) b_2^{(\alpha)}(N - 1, x)
\]

\[
= -x \sum_{i=0}^{N-2} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) \cdots (\alpha + 5) b_2^{(\alpha)}(2, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) \cdots (\alpha + 5) b_2^{(\alpha)}(2, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) \cdots (\alpha + 5) b_2^{(\alpha)}(2, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) \cdots (\alpha + 5) b_2^{(\alpha)}(2, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]

\[
+ (\alpha + N + 3) (\alpha + N + 2) \cdots (\alpha + 5) b_2^{(\alpha)}(2, x)
\]

\[
= -x \sum_{i=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N - i, x)
\]
\[b_3^{(\alpha)}(N+1, x) = -x b_2^{(\alpha)}(N, x) + (\alpha + N + 4) b_3^{(\alpha)}(N, x) \]
\[= -x \left(b_2^{(\alpha)}(N, x) + (\alpha + N + 4) b_2^{(\alpha)}(N-1, x) \right) \]
\[+ (\alpha + N + 4) (\alpha + N + 3) b_3^{(\alpha)}(N-1, x) \]
\[\vdots \]
\[= -x \sum_{i=0}^{N-3} (\alpha + N + 4)_i b_2^{(\alpha)}(N-i, x) \]
\[+ (\alpha + N + 4) (\alpha + N + 3) \cdots (\alpha + 7) b_3^{(\alpha)}(3, x) \]
\[= -x \sum_{i=0}^{N-2} (\alpha + N + 4)_i b_2^{(\alpha)}(N-i, x). \]

Hence, by continuing this process, we get
\[b_j^{(\alpha)}(N+1, x) = -x \sum_{i=0}^{N-j+1} (\alpha + N + j + 1)_i b_{j-1}^{(\alpha)}(N-i, x). \] (2.26)

Now, we give explicit expressions for \(b_j^{(\alpha)}(N+1, x) \). From (2.21), we can derive the following equations:

\[b_1^{(\alpha)}(N+1, x) \] (2.27)
\[= -x \sum_{i_1=0}^{N} (\alpha + N + 2)_i b_0^{(\alpha)}(N-i_1, x) \]
\[= -x \sum_{i_1=0}^{N} (\alpha + N + 2)_i (\alpha + N_1)_{N-i_1}, \]

\[b_2^{(\alpha)}(N+1, x) \] (2.28)
\[= -x \sum_{i_2=0}^{N-1} (\alpha + N + 3)_i b_1^{(\alpha)}(N-i_2, x) \]
\[= (-x)^2 \sum_{i_2=0}^{N-1} \sum_{i_1=0}^{N-i_2-1} (\alpha + N + 3)_i \]
\[\times (\alpha + N - i_2 + 1)_i (\alpha + N - i_2 - i_1 - 1)_{N-i_2-i_1-1} \]
and
\[
b_j^{(\alpha)} (N + 1, x) = (-x)^j \sum_{i_j=0}^{N-j} \sum_{i_{j-1}=0}^{N-j-i_j} \cdots \sum_{i_1=0}^{N-j-i_1-\cdots-i_2} \prod_{k=1}^{j} \left(\alpha + N - j - 1 - \sum_{l=k+1}^{j} i_l + 2k \right)_{i_k}
\times \left(\alpha + N - j + 1 - \sum_{l=1}^{j} i_l \right)_{N-j+1-\sum_{k=1}^{j} i_k}.
\]

Continuing this process, we get
\[
b_j^{(\alpha)} (N + 1, x) = (-x)^j \sum_{i_j=0}^{N-j+1} \sum_{i_{j-1}=0}^{N-j+1-i_j} \cdots \sum_{i_1=0}^{N-j+1-i_1-\cdots-i_2} \prod_{k=1}^{j} \left(\alpha + N - j + 1 - \sum_{l=k+1}^{j} i_l + 2k \right)_{i_k}
\times \left(\alpha + N - j + 1 - \sum_{l=1}^{j} i_l \right)_{N-j+1-\sum_{k=1}^{j} i_k}.
\]

Therefore, we obtain the following theorem.

Theorem 2.1. The linear differential equations
\[
F^{(N)} = \left(\frac{d}{dt} \right)^N F(t \mid x, \alpha)
= \left(\sum_{j=N}^{2N} b_j^{(\alpha)} (N, x) (1-t)^{-j} \right) F, \quad (N \in \mathbb{N} \cup \{0\}),
\]
has a solution
\[
F = F(t \mid x, \alpha) = \frac{1}{(1-t)^{\alpha+1}} e^{-\frac{t}{1-t}},
\]
where \(b_0^{(\alpha)} (N, x) = (\alpha + N)_N \), \(b_N^{(\alpha)} (N, x) = (-x)^N \),
\[
b_j^{(\alpha)} (N, x) = (-x)^j \sum_{i_j=0}^{N-j} \sum_{i_{j-1}=0}^{N-j-i_j} \cdots \sum_{i_1=0}^{N-j-i_1-\cdots-i_2} \prod_{k=1}^{j} \left(\alpha + N - j - 1 - \sum_{l=k+1}^{j} i_l + 2k \right)_{i_k}
\times \left(\alpha + N - j + 1 - \sum_{l=1}^{j} i_l \right)_{N-j+1-\sum_{k=1}^{j} i_k}, \quad (j = 1, \ldots, N - 1).
From (1.2), we note that

$$F^{(N)} = \left(\frac{d}{dt} \right)^N F(t \mid x, \alpha)$$

(2.30)

$$= \sum_{n=N}^{\infty} (n)_N L_n^{(\alpha)}(x) t^{n-N}$$

$$= \sum_{n=0}^{\infty} L_{n+N}^{(\alpha)}(x) (n+N)_N t^n.$$

On the other hand, by Theorem 2.1, we get

$$F^{(N)} = \left(\sum_{i=N}^{2N} b_{i-N}^{(\alpha)}(N,x) (1-t)^{-i} \right) F$$

(2.31)

$$= \sum_{i=N}^{2N} b_{i-N}^{(\alpha)}(N,x) \sum_{l=0}^{\infty} \left(\binom{i+l-1}{l} t^l \sum_{k=0}^{\infty} L_k^{(\alpha)}(x) t^k \right)$$

$$= \sum_{i=N}^{2N} b_{i-N}^{(\alpha)}(N,x) \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{i+l-1}{l} L_{n-l}^{(\alpha)}(x) \right) t^n$$

$$= \sum_{n=0}^{\infty} \left\{ \sum_{i=N}^{2N} b_{i-N}^{(\alpha)}(N,x) \sum_{l=0}^{n} \binom{i+l-1}{l} L_{n-l}^{(\alpha)}(x) \right\} t^n.$$

Therefore, by (2.30) and (2.31), we obtain the following theorem.

Theorem 2.2. For $n, N \in \mathbb{N} \cup \{0\}$, we have

$$L_{n+N}^{(\alpha)}(x) = \frac{1}{(n+N)_N} \sum_{i=N}^{2N} b_{i-N}^{(\alpha)}(N,x) \sum_{l=0}^{n} \binom{i+l-1}{l} L_{n-l}^{(\alpha)}(x),$$

where

$$b_{0}^{(\alpha)}(N,x) = (\alpha + N)_N, \quad b_{N}^{(\alpha)}(N,x) = (-x)^N,$$

and

$$b_{j}^{(\alpha)}(N,x) = (-x)^j \sum_{l+j-1=0}^{N-j-1} \cdots \sum_{i_1=0}^{N-j-i_1-\cdots-i_2} \prod_{k=1}^{j} \left(\alpha + N - j - \sum_{l=k+1}^{j} i_l + 2k \right)_{i_k}$$

$$\times \left(\alpha + N - j - \sum_{l=1}^{j} i_l \right)_{N-j-\sum_{l=1}^{j} i_l}$$

($j = 1, 2, \ldots, N-1$).
Acknowledgements

This paper is supported by grant NO 14-11-00022 of Russian Scientific Fund.

References

