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Abstract

In this paper, we revisit nonlinear differential equations which are derived from
the generating function of the Bernoulli numbers of the second kind. In addition,
we give explicit and new identities for the Bernoulli numbers and higher-order
Bernoulli numbers of the second kind.
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1. Introduction

For r ∈ N, it is well known that the higher order Bernoulli numbers of the second kind
are defined by the generating function

(
t

log (1 + t)

)r

=
∞∑

n=0

b(r)
n

tn

n! , (see [1, 6, 11]) . (1)

From (1), we note that

b(r)
n = B(n−r+1)

n (1) , (n ≥ 0) ,

where B(r)
n (x) are Bernoulli polynomials of order r which are given by the generating

function (
t

et − 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n! , (see [2, 4, 7]) .

In particular, for r = 1, bn = b(1)
n are called the Bernoulli numbers of the second kind.

In [2], Bayad and Kim studied the following nonlinear differential equations

yN = 1

(N − 1)!
N∑

k=1

ak (N) yk−1, (k ∈ N) , (2)

where y(k) =
(

d

dt

)k

y (t).

For y = y (t) = 1

qet ± 1
, Bayad-Kim gave explicit formula for Apostol-Bernoulli

and Apostol-Euler numbers and polynomials arising from (2).
Recently, Kim and Kim introduced the following nonlinear differential equations

arising from the generating function of Bernoulli numbers of the second in order to
obtain explicit identities and formulas of the Bernoulli numbers of the second kind as
follows:

F (N) (t) = (−1)N

(1 + t)N

N+1∑
j=2

(j − 1)! (N − 1)!HN−1,j−2F
j , (see [6]) , (3)

where

HN,0 = 1 for all N

HN,1 = HN = 1 + 1

2
+ · · · + 1

N
,

HN,j = HN−1,j−1

N
+ HN−2,j−2

N − 1
+ · · · + H0,j−1

1
, H0,j−1 = 0 (2 ≤ j ≤ N) .
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Several authors have studied nonlinear differential equations arising from the gener-
ating functions of special numbers and polynomials (see [1, 2, 3, 4, 5, 8, 6, 7, 11, 9, 10,
12, 13, 14]).

In this paper, we revisit nonlinear differential equations which are derived from the
generating functions of the Bernoulli numbers of the second kind. In addition, we give
explicit and new identities for the Bernoulli numbers of the second kind and higher-order
Bernoulli numbers of the second kind.

2. Revisit nonlinear differential equations associated with
Bernoulli numbers of the second kind

Let

F = F (t) = 1

log (1 + t)
. (4)

Then, by (1), we get

F (1) = dF (t)

dt
= − 1

log (1 + t)2

1

1 + t
= − 1

1 + t
F 2. (5)

From (5), we can derive the following equations:

F 2 = − (1 + t) F (1), (6)

2!F 3 = (−1)2
{
(1 + t) F (1) + (1 + t)2 F (2)

}
, (7)

and

3!F 4 = (−1)3
{
(1 + t) F (1) + 3 (1 + t)2 F (2) + (1 + t)3 F (3)

}
. (8)

Thus, we are led to put

N !FN+1 = (−1)N
N∑

i=1

ai (N) (1 + t)i F (i), (N = 0, 1, 2, . . . ) , (9)

where F (i) =
(

d

dt

)i

F (t).

Taking derivatives on both sides of (9), we have

(N + 1)!FNF (1) = (−1)N

{
N∑

i=1

ai (N) i (1 + t)i−1 F (i) +
N∑

i=1

ai (N) (1 + t)i F (i+1)

}
.

(10)
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Thus, by (5) and (10), we get

(N + 1)!FN+2 = (−1)N+1

{
N∑

i=1

iai (N) (1 + t)i F (i) +
N∑

i=1

ai (N) (1 + t)i+1 F (i+1)

}

(11)

= (−1)N+1

{
N∑

i=1

iai (N) (1 + t)i F (i) +
N+1∑
i=2

ai−1 (N) (1 + t)i F (i)

}
.

On the other hand, by replacing N by N + 1 in (9), we get

(N + 1)!FN+2 = (−1)N+1
N+1∑
i=1

ai (N + 1) (1 + t)i F (i). (12)

Comparing the coefficients on both sides of (11) and (12), we have

a1 (N + 1) = a1 (N) , aN+1 (N + 1) = aN (N) , (13)

and
ai (N + 1) = iai (N) + ai−1 (N) , (2 ≤ i ≤ N) . (14)

In addition, by (6) and (9), we get

− (1 + t) F (1) = F 2 = −a1 (1) (1 + t) F (1). (15)

Thus, by (15), we see
a1 (1) = 1. (16)

From (7) and (9), we can derive the following equation:

(−1)2
{
(1 + t) F (1) + (1 + t)2 F (2)

}
= 2!F 3 (17)

= (−1)2
{
a1 (2) (1 + t) F (1) + a2 (2) (1 + t)2 F (2)

}
.

By comparing the coefficients on the both sides of (17), we get

a1 (2) = 1, a2 (2) = 1. (18)

From (13), we note that

a1 (N + 1) = a1 (N) = a1 (N − 1) = · · · = a1 (1) = 1, (19)

and
aN+1 (N + 1) = aN (N) = aN−1 (N − 1) = · · · = a1 (1) = 1. (20)
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For i = 2, 3, 4 in (14), we have

a2 (N + 1) =
N−1∑
k=0

2ka1 (N − k) , (21)

a3 (N + 1) =
N−2∑
k=0

3ka2 (N − k) , (22)

and

a4 (N + 1) =
N−3∑
k=0

4ka3 (N − k) . (23)

So, we can deduce that, for 2 ≤ i ≤ N ,

ai (N + 1) =
N−i+1∑

k=0

ikai−1 (N − k) . (24)

Now, we give explicit expressions for ai (N + 1).
By (21), we get

a2 (N + 1) =
N−1∑
k1=0

2k1 = 2N − 1, (25)

a3 (N + 1) =
N−2∑
k2=0

3k2a2 (N − k2) =
N−2∑
k2=0

N−2−k2∑
k1=0

3k22k1, (26)

and

a4 (N + 1) =
N−3∑
k3=0

4k3a3 (N − k3) (27)

=
N−3∑
k3=0

N−3−k3∑
k2=0

N−3−k3−k2∑
k1=0

4k33k22k1 .

So, we deduce that, for 2 ≤ i ≤ N ,

ai (N + 1) =
N−i+1∑
ki−1=0

N−i+1−ki−1∑
k2=0

· · ·
N−i+1−ki−1−···−k2∑

k1=0

iki−1 (i − 1)ki−2 · · · 2k1 . (28)

Therefore, we obtain the following theorem.
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Theorem 2.1. For N ∈ N, the nonlinear differential equations

N !FN+1 = (−1)N
N∑

i=1

ai (N) (1 + t)i F (i) (N = 1, 2, · · · )

have a solution F = F (t) = 1

log (1 + t)
, where a1 (N) = 1 and

ai (N) =
N−i∑

ki−1=0

N−i−ki−1∑
ki−2=0

· · ·
N−i−ki−1−···−k2∑

k1=0

iki−1 (i − 1)ki−2 · · · 2k1, (2 ≤ i ≤ N) .

Now, we recall that the Bernoulli numbers of the second kind, bk(k ≥ 0) , are defined
by the generating function

t

log (1 + t)
=

∞∑
k=0

bk

tk

k! .

Also, the Bernoulli numbers of the second kind of order r , b
(r)
k (r ∈ N), are given by

the generating function (
t

log (1 + t)

)r

=
∞∑

k=0

b
(r)
k

tk

k! .

From (4), we note that

F = F (t) (29)

= t

log (1 + t)
· 1

t

=
∞∑

k=0

bk

tk−1

k!

=
∞∑

k=1

bk

tk−1

k! + 1

t

=
∞∑

k=0

bk+1

k + 1

tk

k! + 1

t
.

For a positive integer i, we have

F (i) =
(

d

dt

)i (
1

log (1 + t)

)
(30)

=
∞∑
k=i

bk+1

k + 1

tk−i

(k − i)! + (−1)i i!t−i−1

=
∞∑

k=0

bk+i+1

k + i + 1

tk

k! + (−1)i i!t−i−1.
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From Theorem 2.1, we note that

N !tN+1FN+1 = N !
(

t

log (1 + t)

)N+1

(31)

= N !
∞∑

n=0

b(N+1)
n

tn

n! .

From Theorem 2.1, we can derive the following equation:

(−1)N tN+1
N∑

i=1

ai (N) (1 + t)i F (i) (32)

= (−1)N tN+1
N∑

i=1

ai (N)

∞∑
l=0

(i)l
t l

l!

( ∞∑
k=0

bk+i+1

k + i + 1

tk

k! + (−1)i i!t−i−1

)
.

Now, we observe that

(−1)N tN+1
N∑

i=1

ai (N)

∞∑
l=0

(i)l
t l

l!
∞∑

k=0

bk+i+1

k + i + 1

tk

k! (33)

= (−1)N tN+1
N∑

i=1

ai (N)

∞∑
n=0

n∑
k=0

(
n

k

)
(i)n−k

bk+i+1

k + i + 1

tn

n!

=
∞∑

n=0

n∑
k=0

N∑
i=1

ai (N) (−1)N
(

n

k

)
(i)n−k

bk+i+1

k + i + 1

tn+N+1

n!

=
∞∑

n=N+1

n−N−1∑
k=0

N∑
i=1

ai (N) (−1)N
(

n − N − 1

k

)
(i)n−N−k−1

bk+i+1

k + i + 1

tn

(n − N − 1)!

=
∞∑

n=N+1

n−N−1∑
k=0

N∑
i=1

(−1)N
(

n − N − 1

k

)
(i)n−N−k−1 (n)N+1 ai (N)

bk+i+1

k + i + 1

tn

n! ,
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and

(−1)N tN+1
N∑

i=1

ai (N)

∞∑
l=0

(i)l
t l

l! (−1)i i!t−i−1 (34)

= (−1)N
N∑

i=1

ai (N)

∞∑
l=0

(i)l
1

l! (−1)i i!tN−i+l

= (−1)N
N−1∑
i=0

aN−i (N)

∞∑
l=0

(N − i)l
1

l! (−1)N−i (N − i)!t i+l

= (−1)N
∞∑

n=0

min{N−1,n}∑
i=0

aN−i (N) (N − i)n−i

1

(n − i)! (−1)N−i (N − i)!tn

=
∞∑

n=0

min{N−1,n}∑
i=0

(−1)i (N − i)n−i (n)i (N − i)!aN−i (N)
tn

n! .

Therefore, by Theorem 2.1, (31), (32), (33) and (34), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, N ≥ 1, we have

b(N+1)
n =




min{N−1,n}∑
i=0

(−1)i (N − i)n−i

(
n

i

)(
N

i

)−1

aN−i (N) , if 0 ≤ n ≤ N,

N−1∑
i=0

(−1)i (N − i)n−i

(
n

i

)(
N

i

)−1

aN−i (N)

+ (−1)N
(

n

N + 1

)
(N + 1)

×
n−N−1∑

k=0

N∑
i=1

(
n − N − 1

k

)
(i)n−N−k−1 ai (N)

bk+i+1

k + i + 1
if n ≥ N + 1.
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