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Abstract
The aim of the paper is to find some new determinants connected with Fibonacci
numbers. We generalize the result provided in Strang’s book because we derive
that two sequences of similar tridiagonal matrices are connected with Fibonacci
numbers.
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1. Introduction

The Fibonacci sequence (or the sequence of Fibonacci numbers) (Fn)n≥0 is the sequence
of positive integers satisfying the recurrence

Fn+2 = Fn+1 + Fn (1)

with the initial conditions F0 = 0 and F1 = 1. Let α and β be the roots of the characteristic

equation x2 − x − 1 = 0

(
thus α = 1 + √

5

2
and β = 1 − √

5

2

)
. Then Binet’s formula

for the Fibonacci numbers has the form

Fn = αn − βn

α − β
.
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The Fibonacci numbers have many remarkable properties and many of their features
appear throughout nature (cf. [6, 15, 14]).

Strang [12] included probably the first example of determinant of n×n matrix, which
is equal to the Fibonacci number, as he showed that the determinant of the n × n matrix



1 −1 0 · · · 0 0 0
1 1 −1 0 · · · 0 0
0 1 1 −1 0 · · · 0
... 0 1 1

. . .
. . .

...

0
...

. . .
. . .

. . . −1 0
0 0 · · · 0 1 1 −1
0 0 0 · · · 0 1 1




(2)

is equal to Fn+1 for n ≥ 1. Matrix (2) is a special case of a tridiagonal matrix, that is a
square matrix A = (ajk) of the order n, where ajk = 0 for |k − j | > 1 and 1 ≤ j, k ≤ n,

i. e.,

A(n) =




a1,1 a1,2 0 · · · 0

a2,1 a2,2 a2,3
. . .

...

0 a3,2 a3,3
. . . 0

...
. . .

. . .
. . . an−1,n

0 · · · 0 an,n−1 an,n




.

Many authors derived the similar types of matrices whose determinants are related to Fi-
bonacci numbers or different kinds of their generalizations, e. g. k-generalized Fibonacci
numbers, cf. [5, 8, 7, 4, 9, 10, 16].

At this point we turn our attention to the relation of determinants of special tridiagonal
matrices with Fibonacci numbers. Trojovský [13] dealt with the sequence of generalized
matrices to matrix (2), which has also determinant equal to Fn+1. We show that matrix
(2) can be easily changed into two different sequences of matrices, whose determinants
are connected with Fibonacci numbers.

2. Main results

We formulate the following theorem on determinants of sequences of tridiagonal matrices
with alternating 1′s and −1′s on the superdiagonal.

Theorem 2.1. Let
(
B

δ(n) = (bδ
jk)1≤j,k≤n)

)
n≥1

, where δ ∈ {0, 1}, be a sequence of

tridiagonal matrices in the form

bδ
jk =




1, k = j or k = j − 1;
(−1)j+δ, k = j + 1;
0, otherwise
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i. e.,

B
δ(n) =




1 (−1)1−δ 0 · · · · · · 0

1 1 (−1)2−δ . . .
. . .

...

0 1 1
. . .

. . .
...

...
. . .

. . . 1 (−1)n−2−δ 0
...

. . .
. . .

. . . 1 (−1)n−1−δ

0 · · · · · · 0 1 1




.

Then

det B
δ(n) =

{
Fn+4−6δ

2
n ≡ 0 (mod 2);

Fn+1
2

, n ≡ 1 (mod 2).
(3)

Now we show that matrix (2) can be changed into the sequence of matrices with
alternating 1′s and −1′s on the diagonal, whose determinants are equal to a term of the
Fibonacci sequence with the plus or minus sign.

Theorem 2.2. Let
(
C

δ(n) = (cδ
jk)1≤j,k≤n

)
n≥1

, where δ ∈ {0, 1}, be a sequence of

tridiagonal matrices in the form

cδ
jk =




1, k = j ± 1;
(−1)j+δ, k = j ;
0, otherwise

i. e.,

C
δ(n) =




(−1)1+δ 1 0 · · · · · · 0

1 (−1)2+δ 1
. . .

. . .
...

0 1
. . .

. . .
. . .

...
...

. . .
. . . (−1)n−2+δ 1 0

...
. . .

. . . 1 (−1)n−1+δ 1
0 · · · · · · 0 1 (−1)n+δ




.

Then
det C

δ(n) = (−1)
n
2 (n+1−2δ) Fn+1. (4)

3. An auxiliary result

We recall the following lemma, which can be proved using cofactor expansion on the
last row and subsequently on the last column of matrix H(n).
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Lemma 3.1. (Lemma 3.1 of [3]) Let {H(n), n = 1, 2, . . .} be a sequence of tridiagonal
matrices of the form

H(n) =




h1,1 h1,2 0 · · · 0

h2,1 h2,2 h2,3
. . .

...

0 h3,2 h3,3
. . . 0

...
. . .

. . .
. . . hn−1,n

0 · · · 0 hn,n−1 hn,n




.

Then the successive determinants of H(n) are given by recursive formula

det H(1) = h1,1; (5)

det H(2) = h1,1h2,2 + h1,2h2,1;

det H(n) = hn,n det H(n − 1) + hn−1,nhn,n−1 det H(n − 2).

4. Proofs of the main results

4.1. Proof of Theorem 1

Case δ = 0.

Using Lemma 3.1 we have det B
0(1) = 1, det B

0(2) = 2, and for n ≥ 3 we obtain
the following recurrence relation

det B
0(n) = det B

0(n − 1) + (−1)n det B
0(n − 2). (6)

Alladi and Hoggatt [1] mentioned recurrence relation (6). They showed that the number
of palindromic compositions of positive integer n using only numbers 1 and 2 is described
by (6) and they proved (in a different notation) that

det B
0(n) =

{
Fn+4

2
, n ≡ 0 (mod 2);

Fn+1
2

, n ≡ 1 (mod 2)
(7)

holds for any positive integer n. Therefore identity (3) holds.

Case δ = 1.

We easily obtain det B
1(1) = 1 and det B

1(2) = 0. Using cofactor expansion on the
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first row and then on the first column of det B
0(n + 1) we get for n ≥ 3 the following

det




1 (−1)1 0 · · · 0 0 · · · 0

1 1 (−1)2 0
...

0 1 1 (−1)3 0 0
... 0 1 1

. . .
. . . 0

0
. . .

. . .
. . . (−1)n−2 0

...

0 0 1 1 (−1)n−1 0
... 0 1 1 (−1)n

0 · · · · · · 0 · · · 0 1 1




= det B
1(n) +

det




1 (−1)2 0 · · · · · · · · · 0
0 1 (−1)3 0 0

0 1 1
. . .

. . . 0
...

. . .
. . .

. . . (−1)n−2 0
...

0 0 1 1 (−1)n−1 0
... 0 1 1 (−1)n

0 0 0 · · · 0 1 1




.

= det B
1(n) + det




1 (−1)3 0 · · · · · · 0

1 1 (−1)4 . . .
. . . 0

0
. . .

. . .
. . . 0

...
...

. . . 1 1 (−1)n−1 0
...

. . . 0 1 1 (−1)n

0 0 · · · 0 1 1




Thus we get the following recurrence

det B
0(n + 1) = det B

1(n) + det B
0(n − 1)

for any n ≥ 3. This recurrence can be rewritten as follows

det B
1(n) = det B

0(n + 1) − det B
0(n − 1)

and using identity (7) we obtain

det B
1(n) = det B

0(n + 1) − det B
0(n − 1)

=
{

Fn+2
2

− Fn
2

= Fn−2
2

, n ≡ 0 (mod 2);
Fn+5

2
− Fn+3

2
= Fn+1

2
, n ≡ 1 (mod 2).

�
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4.2. Proof of Theorem 2

Case δ = 1.

For simplicity of notation, we let Dn stand for det C
1(n). Using Lemma 3.1 we have

D1 = 1, D2 =
∣∣∣∣ 1 1

1 −1

∣∣∣∣ = −2, and for n ≥ 3 we obtain the following recurrence

relation

Dn = (−1)n+1Dn−1 − Dn−2,

for n ≥ 3. By substitution Dn = (−1)
n
2 (n−1)dn we get

(−1)
n+2

2 (n+1)dn+2 = (−1)n+1(−1)
n+1

2 ndn+1 − (−1)
n
2 (n−1)dn,

dn+2 = (−1)n+1+(n+1) n
2 +(n+2) n+1

2 dn+1,

−(−1)
n
2 (n−1)+(n+2) n+1

2 dn,

dn+2 = (−1)(n+1)(n+2)dn+1 + (−1)(n−1)(n+2)dn.

As (n + 1)(n + 2) and (n − 1)(n + 2) are even for any positive integer n we obtain the
following recurrence for dn

dn+2 = dn+1 + dn, d0 = 1, d1 = 1.

This is recurrence (1) for Fibonacci numbers with shifted initial conditions one place to
the right, hence dn = Fn+1. Thus, we finally obtain

det C
1(n) = (−1)

n
2 (n−1) Fn+1. (8)

Therefore identity (4) holds.

Case δ = 0.

We easily obtain det C
0(1) = 1 = F2, det C

0(2) = −2 = −F3, and for n ≥ 3 using
cofactor expansion on the first row and subsequently on the first column of det C

1(n+1)

we get the following

det




(−1)2 1 0 0 0 · · · 0

1 (−1)3 1 0 0 · · · ...

0 1 (−1)4 1 0
. . . 0

0 0 1 (−1)5 . . .
. . .

...
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 1 (−1)n+1 1
0 0 · · · 0 0 1 (−1)n+2
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= det C
0(n)

+(−1)3 det




1 1 0 0 · · · · · · 0
0 (−1)4 1 0 · · · 0

0 1 (−1)5 0
. . . 0

...
. . .

. . .
. . .

. . . 0
...

0 0 1 (−1)n 1 0
... 0 1 (−1)n+1 1
0 0 0 · · · 0 1 (−1)n+2




= det C
0(n) − det




(−1)4 1 0 0 · · · 0

1 (−1)5 1 0
. . .

...

0 1 (−1)6 . . .
. . . 0

...
...

. . .
. . .

. . . 0
... 1 (−1)n+1 1
0 0 · · · 0 1 (−1)n+2




.

Thus we get the following recurrence

det C
1(n + 1) = det C

0(n) − det C
1(n − 1),

which implies
det C

0(n) = det C
1(n + 1) + det C

1(n − 1)

for n ≥ 3. Using identity (8) we obtain

det C
0(n) = det C

1(n + 1) + det C
1(n − 1)

= (−1)
n−1

2 (n−2) Fn + (−1)
n+1

2 n Fn+2

= (−1)
n
2 (n+1)

(
Fn+2 + (−1)1−2n Fn

)
= (−1)

n
2 (n+1) (Fn+2 − Fn)

= (−1)
n
2 (n+1) Fn+1.

�
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