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Abstract

The aim of the paper is to find some new determinants connected with Fibonacci
numbers. We generalize the result provided in Strang’s book because we derive
that two sequences of similar tridiagonal matrices are connected with Fibonacci
numbers.

AMS subject classification: Primary 15A15, 11B39; Secondary 11B37, 11B83.
Keywords: Tridiagonal matrix, determinant, Fibonacci number, recurrence rela-
tion.

1. Introduction

The Fibonacci sequence (or the sequence of Fibonacci numbers) (F;,), >0 is the sequence
of positive integers satisfying the recurrence

Foi2 = Fyr1 + Fy (1)
with the initial conditions Fo = Oand F; = 1. Leta and B be the roots of the characteristic
., 1++/5 1-+/5 o
equationx” —x — 1 =0 | thusa = 5 and 8 = 5 . Then Binet’s formula
for the Fibonacci numbers has the form B
o — B -

F, = :
a—p
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The Fibonacci numbers have many remarkable properties and many of their features
appear throughout nature (cf. [6, 15, 14]).

Strang [12] included probably the first example of determinant of n x n matrix, which
is equal to the Fibonacci number, as he showed that the determinant of the n x n matrix

(1 =1 0 == 0 0 0\
1 1 -1 0 - 0 0
01 1 -1 0 0
o 1 1 .o 2)
0 © . .. —1 0
00 -~ 0 1 1 -1
\o 0 0 - 0 1 1)

is equal to F, 41 for n > 1. Matrix (2) is a special case of a tridiagonal matrix, that is a
square matrix A = (a i) of the order n, whereajy = Ofor|k — j| > land1 < j, k <n,
i. e.,

ai1 a2 O e 0

a1 d22 dz3 .
An) = 0 ap az3z . 0
' ’ ’ apn—1,n
0 ce 0 an n—1 Ap.n

Many authors derived the similar types of matrices whose determinants are related to Fi-
bonacci numbers or different kinds of their generalizations, e. g. k-generalized Fibonacci
numbers, cf. [5, 8,7, 4,9, 10, 16].

At this point we turn our attention to the relation of determinants of special tridiagonal
matrices with Fibonacci numbers. Trojovsky [13] dealt with the sequence of generalized
matrices to matrix (2), which has also determinant equal to F},;;. We show that matrix
(2) can be easily changed into two different sequences of matrices, whose determinants
are connected with Fibonacci numbers.

2. Main results

We formulate the following theorem on determinants of sequences of tridiagonal matrices
with alternating 1’s and —1’s on the superdiagonal.
Theorem 2.1. Let (1535 (n) = (bi.k)lfj,kin)> p where § € {0, 1}, be a sequence of
n>
tridiagonal matrices in the form
1, k=jork=j—1;
by =D k=j+1;

0, otherwise
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i.e.,
(1 (=!I 0 0 \
1 1 (—1)>79
o | 0 ! 1 .
. 1 (_1)1’!—2—3 O
E .. . 1 (_ 1))’1—1—8
\ 0 0 1 1)
Then
5 Friaes n=0 (mod 2);
detB°(n) = 2 3)
nil n=1 (mod 2).

Now we show that matrix (2) can be changed into the sequence of matrices with
alternating 1’s and —1’s on the diagonal, whose determinants are equal to a term of the
Fibonacci sequence with the plus or minus sign.

Theorem 2.2. Let <@5(n) = (Ci'k)lij}kin)pl’ where § € {0, 1}, be a sequence of

tridiagonal matrices in the form

1, k=j+£1;
=D k=
0, otherwise
1. €.,
[ (—D'T? 1 0 0 )
1 (_1)2+5
Cs(n) _ 0 1 .
M (_l)n—2+6 1 O
: .. .. 1 (_l)n—l+8 1
\ 0 0 1 (_1)n+8 /
Then

det CP(n) = (=12 +1=2D F .

3. An auxiliary result

“4)

We recall the following lemma, which can be proved using cofactor expansion on the

last row and subsequently on the last column of matrix H(n).
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Lemma 3.1. (Lemma 3.1 of [3]) Let {H(n),n = 1,2, ...} be a sequence of tridiagonal
matrices of the form

/’l171 /’11,2 0 0

ha1 hap ha3 :

Hm) =1 0 h3n hzs . 0
E .'. ". .'- hn—l,n

0 - 0 hpu-1 han

Then the successive determinants of H(n) are given by recursive formula

detH(1) = hyy; (5)
detH(2) = hy1ha2+ hiph21;

4. Proofs of the main results

4.1. Proof of Theorem 1

Case § = 0.

Using Lemma 3.1 we have det ]B%O(l) = 1, det IB%O(Z) = 2, and for n > 3 we obtain
the following recurrence relation

det B°(n) = detB°(n — 1) + (—1)" det B°(n — 2). (6)

Alladi and Hoggatt [1] mentioned recurrence relation (6). They showed that the number
of palindromic compositions of positive integer n using only numbers 1 and 2 is described
by (6) and they proved (in a different notation) that

F# n=0 (mod2);

(7
F%, n=1 (mod 2)

det B’(n) = {

holds for any positive integer n. Therefore identity (3) holds.

Case § = 1.
We easily obtain det B! (1) =1 and det B! (2) = 0. Using cofactor expansion on the
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first row and then on the first column of det B®(n + 1) we get for n > 3 the following

(1 (D' 0 e 0 0 0 \
1 1 (=D* o0 :
0 1 1 (=D* 0
gl P00 1 1
0 (=12 0
0 0 1 1 -t o0
\0 0o ... 0 1 1 )
= detB'(n) +
/1 (-2 0 0
0 1 (=D o 0 \
0 1 1 .
det| : -, L (=12 0 :
0 0 1 1 -t o0
: 0 1 1 (—1)"
\0 0 0o .. 0 1 1)
(1 (=1 0 \
1 1 (=D
= detB!(n) + det 0 ' 0
1 1 "=t o
o 0 1 1 (=1)"
\0 0 e 0 1 1 )

Thus we get the following recurrence
detB°(n + 1) = det B! (n) + det B°(n — 1)
for any n > 3. This recurrence can be rewritten as follows
det B! (n) = det B°(n + 1) — det B°(n — 1)
and using identity (7) we obtain
detB!(n) = detB°(n+1)—detB°(n — 1)
B {Fn-;z ~Fy=F.2, n=0 (mod2);
F% — F% = Fur1, n=1 (mod?2).

2
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4.2. Proof of Theorem 2

Case s = 1.
For simplicity of notation, we let D, stand for det C! (n). Using Lemma 3.1 we have
D=1, D, = ‘ } _11 = —2, and for n > 3 we obtain the following recurrence

relation
D, = (-D)""'D,_y — D, 5,

for n > 3. By substitution D,, = (—1)%("_])61’,1 we get

(=DF0Dd, = (1)) g — (-1E0 7,

n n+l1
dn+2 — (_1)n+1+(”+1)§+(”+2)%dn+1,
_(_1)%(71—1)4-(}’14—2)%61”
dyr = (D", 4 ()P,

As (n+ 1)(n +2) and (n — 1)(n + 2) are even for any positive integer n we obtain the
following recurrence for d,

dpyr =dpy1 +dy, do=1, di = 1.

This is recurrence (1) for Fibonacci numbers with shifted initial conditions one place to
the right, hence d,, = F;,+;. Thus, we finally obtain

detC'(n) = (=13 Foy. ®)
Therefore identity (4) holds.
Case § = 0.
We easily obtain det C'1)=1= F,,detC’(2) = —2 = —F3, and forn > 3 using

cofactor expansion on the first row and subsequently on the first column of det C'n+1)
we get the following

((=D* 1 0 o 0 - 0 )
G DL | 0 :
0 1 =D* 1 0 0
: : ‘ - 0
0 0 1 (=1t 1
\ 0o o0 0 0

1 (_1)n+2 )
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= detC'(n)
1 1 0 0 - .. 0 \
0 -D* 1 0
0 1 (=1 0
+(=D>det| .. - - 0
0 0 1 (=" 1 0
: 0 1 (=Dt 1
\o 0 0 - 0 S VA,
( (_1)4 1 0 0 - 0 \
1 (-1’ 1 0 :
6 -. ..
= detC%n) — det 0 ! =D ' ’ 0
. . , - 0
: 1 (=t 1
\ 0 0 - 0 1 (=)t

Thus we get the following recurrence
det C'(n + 1) = det CO(n) — det C'(n — 1),

which implies
det CO(n) = detC'(n + 1) + det C'(n — 1)
for n > 3. Using identity (8) we obtain
detC'(n) = detC'(n+1)+detCl(n—1)
= DT E 4 (=) Fup
= (D" (Fa + (=D F,)
= (D2 (Fpn — F)
= (D" F.
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