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Abstract

This work address the FitzHugh-Nagumo system which models the slow-fast dy-
namics of neuronal action potentials. We investigate global solution, stationary
points, asymptotic and global stability, bifurcation and limit cycles.
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1. Introduction

We study two particular cases of the system{
dx = 1

ε
(x − x3 + y)dt,

dy = (a − bx − cy)dt.
(1)

In this system: x is the membrane potential, y is the exchange of ions across the neuron
membrane, a, b, c ∈ R and ε is a small parameter which implies that x changes rapidly.
This FitzHugh-Nagumo system is a simplified model of the four dimensional Hodgkin-
Huxley system, which gives a description of the main ionic fluxes across the neuronal
membrane creating the neuronal signal. For more details of the understanding of the
biological meaning [7], [9], [10]. Results for this type of slow fast systems has been
obtained in different ways by many authors, numerically by [6], and using perturbation
techniques by [1]. Here, we investigate in another direction, qualitative way, where we
prove the existence of a global solution, stationary points, asymptotic and global stability,
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bifurcation and limit cycles. More precisely, it is difficult to study this system, so we
decompose it in two particular systems which give us some information for the study of
the general system. In the first part, let b = 0, c = 1 in (1), we obtain the system{

dx = 1

ε
(x − x3 + y)dt,

dy = (a − y)dt.
(2)

The study of this system allows us to find the equilibrium points as well as their asymptotic
stability. We show that the solution of this system is bounded and, using Bendixon-Dulac
criterion, we prove that there is no limit cycles.

In the second part, let b = 1, c = 0 in (1), we obtain the system{
dx = 1

ε
(x − x3 + y)dt,

dy = (a − x)dt.
(3)

Here, besides the existence of the global solution, we also show using some results on
Lienard systems together with the Normal Form Algorithm methods that there exists a
unique equilibrium point which is a global attractor if it is stable or an hyperbolic stable
limit cycle otherwise.

2. System 1

We consider the system {
dx = 1

ε
(x − x3 + y)dt,

dy = (a − y)dt.
(4)

The question of existence of equilibrium points is given in the following theorem.

Theorem 2.1. Let
� = 4 − 27a2.

Then the system (4) has

1. a unique equilibrium point if � < 0,

2. two equilibrium points if � = 0,

3. three equilibrium points if � > 0.

Proof. The existence of equilibrium points is given by solving of the following system{
x − x3 + y = 0,

a − y = 0,
(5)
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which yields the equation x3 − x − a = 0. By using Cardan formulas, we obtain the
expression

� = 4 − 27a2

which enables us to prove the theorem. �

The stability of equilibrium points is given in the following theorem

Theorem 2.2. We have that:

1. If |a| >
2
√

3

9
, the unique equilibrium point is a stable node.

2. If |a| <
2
√

3

9
, the three equilibrium points are two stable nodes and the third one

is a saddle point.

3. If |a| = 2
√

3

9
, the two equilibrium points are one stable node and the other a

saddle-node which is instable.

Proof. Let

A =

 1 − 3x2

ε

1

ε
0 −1




be the Jacobian matrix of the system (4). By [11], the nature of equilibrium points
is determined by eigenvalues of this matrix which are the roots of the characteristic
polynomial of the matrix A at the equilibrium points (x∗, y∗). As

det(A(x∗) − λI) = λ2 − Tr A(x∗).λ + det A(x∗),

where

Tr A(x∗) = 1

ε
− 3x∗2

ε
− 1

and

det A(x∗) = 3x∗2 − 1

ε
,

so, the polynomials Tr A(x∗) and det A(x∗) have two real roots

x∗
tr1 = +

√
3(1 − ε)

3
, x∗

tr2 = −
√

3(1 − ε)

3
,

and

x∗
d1 = +

√
3

3
, x∗

d2 = −
√

3

3
,
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respectively. On the other hand, the solutions of the characteristic polynomial are

λ1 = 1

2
[Tr A +

√
(Tr A)2 − 4 det A] and λ2 = 1

2
[Tr A −

√
(Tr A)2 − 4 det A].

Thus we have

If x ∈
]

−√
3

3
, −

√
3(1 − ε)

3

]
∪

[√
3(1 − ε)

3
,

√
3

3

[
then Tr A ≤ 0 and det A < 0,

so λ1 and λ2 are two opposite reals, therefor we have a saddle point.

If x ∈
[
−

√
3(1 − ε)

3
,

√
3(1 − ε)

3

]
, we can show that Tr A ≥ 0 and det A < 0, thus

λ1 and λ2 are two opposite reals, thus we have a saddle point.

If |x| >

√
3

3
, then Tr A < 0, det A > 0 and (Tr A)2 > 4 det A, thus λ1 and λ2 are

two negative reals thus we have a stable node.

If |x| =
√

3

3
, then f (x, y) = 0 and det A = 0, by the definition 3.9, p. 77 in

[4], the two points

(
−√

3

3
,

2
√

3

9

)
and

(√
3

3
,
−2

√
3

9

)
are two saddle-node points since

∂2f

∂x2
�= 0 and

∂f

∂y
�= 0 for these two points.

Now, from previous results, we can prove the theorem. Indeed, it is easy to de-

termine the equilibrium points. For the assertion 1, since |a| >
2
√

3

9
, the equi-

librium point is given by





a +

√
27a2−4

27

2




1
3

+

a −

√
27a2−4

27

2




1
3

, a


, and since





a +

√
27a2−4

27

2




1
3

+

a −

√
27a2−4

27

2




1
3

>

√
3

3


, the equilibrium point is a stable

node. The assertions 2 and 3 of the theorem are obtained similarly. �

Theorem 2.3. Assume that the system (4) with the initial condition (x(0), y(0)) has a
unique solution. Then there exist β > 0 and T > 0 depending on the initial condition,
such that, for all t > T , |(x(t), y(t))| < β.

Proof. Let � = εx2 + y2. The system (4) yields

d�

dt
= −x4 + x2 + xy + ay − y2.



A study of a class of a dynamic system of Fitzhugh-Nagumo type 1877

The Cauchy-Schwarz inequality gives

d�

dt
≤ −x4 + 3

2
x2 + ay − 1

2
y2,

and by Young inequality, we get

d�

dt
≤ −x4 + 3

2

(
h

2
x4 + 1

2h

)
+ a

(
k

2
y2 + 1

2k

)
− 1

2
y2, for all h, k > 0.

For h and k sufficiently small, we can find some constants α, β, γ > 0, such that

d�

dt
≤ −αx4 − βy2 + γ, (*)

and since

x2 ≤ x4

2
+ 1

2
,

we have
−αx4 ≤ −2αx2 + α,

then the inequality (*) becomes

d�

dt
≤ −2αx2 + α − βy2 + γ.

Thus, we can find two constants C0, C1 > 0, such that

d�

dt
≤ −C0� + C1.

Multiplying the inequality by exp(C0t), we obtain after integration

(εx2 + y2)(t) ≤ (exp(−C0t))(εx
2(0) + y2(0)) + C1

C0
(1 − exp(−C0t)),

which proves the theorem. �

Theorem 2.4. The system (4) has no limit cycle.

Proof. Let be S = (f, g)T where (., .)T is the transposed vector,

f (x, y) = 1

ε
(x − x3 + y) and g(x, y) = a − y.

As

divS = ∂f

∂x
+ ∂g

∂y
,
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we have

divS = −3

ε
x2 − 1 + 1

ε
,

thus

divS < 0 if |x| >

√
3(1 − ε)

3
,

and

divS > 0 if |x| <

√
3(1 − ε)

3
.

In both cases, the Bendixon-Dulac criterion allows us to conclude that we have not a limit

cycle in these two regions. As, in the case where |x| =
√

3(1 − ε)

3
, we have proved that

the equilibrium point is a saddle point and then there is no limit cycle; thus the theorem
is proved. �

3. System 2

We consider the system {
dx = 1

ε
(x − x3 + y)dt,

dy = (a − x)dt.
(6)

By the Cauchy-Lipschitz theorem, one can easily prove that the system (6) has a unique
local solution. It is clear that the point (a, a3 − a) is the unique stationary point. The
transformation x = x − a and y = y − a3 + a leads to{

dx = 1

ε
(ga(x) + y)dt,

dy = −xdt,
(7)

where ga(x) = (1 − 3a2)x − 3ax2 − x3 and (0, 0) is the equilibrium point. We have the
following result given the nature of the equilibrium point.

Theorem 3.1. Let the system (7) be given. Then the equilibrium point (0, 0) is

1. a focus if a2 ∈]1

3
(1 − 2

√
ε),

1

3
(1 + 2

√
ε)[ and a node elsewhere,

2. asymptotically instable if |a| <

√
3

3
,

3. asymptotically stable if |a| >

√
3

3
,

4. a Hopf bifurcation point if |a| =
√

3

3
.
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Proof. It suffices to consider the linearized system of (7),

{
dx = 1

ε
((1 − 3a2)x + y)dt,

dy = −xdt.
(8)

The eigenvalues of the associated matrix
 1 − 3a2

ε

1

ε−1 0




are

λ1,2 =




1

2ε
((1 − 3a2) ± √

�ε), if �ε ≥ 0

1

2ε
((1 − 3a2) ± i

√−�ε), if �ε < 0
,

where �ε = (1 − 3a2)2 − 4ε. Using the classic theory of dynamical systems ( [8], [11]),
we obtain:

For a2 >
1

3
, we have Re(λ1,2) < 0 and thus the equilibrium point (0, 0) is stable.

For a2 <
1

3
, we have Re(λ1,2) > 0 and thus the equilibrium point is instable.

For a2 ∈]1

3
(1 − 2

√
ε),

1

3
(1 + 2

√
ε)[, the two eigenvalues are complex conjugated,

thus the equilibrium point is a focus, and for a2 /∈]1

3
(1 − 2

√
ε),

1

3
(1 + 2

√
ε)[, the two

eigenvalues are reals, and thus the equilibrium point is a node.

For |a| =
√

3

3
, let λ1,2 = z(a) ± iw(a) where z(a) = 1

2ε
((1 − 3a2) and w(a) =

√
4ε − (1 − 3a2)2. Since z

(
±

√
3

3

)
= 0, w

(
±

√
3

3

)
= √

4ε and
∂z

∂a

(
±

√
3

3

)
=

±
√

3

ε
, using the theorem 36 p. 61 in [8], the system undergoes so-called singular Hopf

bifurcations [2], [3], [5] at a = ±
√

3

3
. So the theorem is proved. �

We will discuss the global stability of the equilibrium point in the next theorem,
which allows us to show the existence and uniqueness of a global solution of the system
(7).

Theorem 3.2. The system (7) has a unique global solution and we have

1. if |a| �
√

3

3
, then the equilibrium point is a global attractor.
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2. if |a| <

√
3

3
, then there exists a unique hyperbolic stable limit cycle.

To prove this theorem, we need these two technical results.

Lemma 3.3. Let us consider the system{
dx = 1

ε
(−3ax2 + y)dt,

dy = −xdt,
(9)

where |a| >

√
3

3
. Then the point (0, 0) is a center for the system (9), and all the

trajectories passing through y− axis (x = 0, y < 0) are periodic.

Proof of Lemma 3.3. We consider only the case a < −
√

3

3
, the other case will be deduced

in the same way. It is clear that the trajectories of (9) are symmetric with respect to the
axis x = 0. So we only prove that any trajectory starting from y− attains y+ in finite
time. To do that, we remark that, for any initial condition (0, y0), y0 < 0, the trajectory

attains the branch (x < 0, 3ax2) in finite time since
dx

dt
< 0 and

dy

dt
> 0. Next, the

trajectory attains the semi-axis (x < 0, y = 0) in finite time since
dx

dt
> 0 and

dy

dt
> 0

and finally, it attains the semi-axis y > 0, x = 0 in finite time since
dx

dt
> 0 and

dy

dt
< 0.

�

Lemma 3.4. [12] Let us consider the system


dx

dt
= α(y) − β(y)F (x)),

dy

dt
= −g(x),

(10)

where α, β, F and g are continuous functions and we assume that the system (10) has

one and only one solution. Let G(x) =
∫ x

0
g(s)ds, and let us assume the following

conditions.

1. α(0) = 0, α is strictly increasing and α(±∞) = ±∞.

2. xg(x) > 0 when x �= 0 and G(±∞) = ∞.

3. β(y) > 0 for y ∈ R, and β is non-increasing.

4. There exist constants x1, x2 with x1 < 0 < x2 such that F(x1) = F(0) = F(x2) =
0 and xF(x) < 0 for x ∈ ]x1, x2[ \ {0}.
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5. F(x) is non-decreasing for x ∈ ]−∞, x1[ ∪ ]x2, ∞[.

6. There exist constants M > 0, k, k0 with k > k0, such that F(x) < k0 for x ≤ −M

and F(x) > k for x ≥ M .

7. G(−x) ≥ G(x) for x > 0.

Assume that the conditions 1-7 are satisfied, then the system (10) has exactly one
closed orbit, a hyperbolic stable limit.

Proof of the Theorem 3.2. First, we begin with the case where |a| >

√
3

3
. By Lemma 3.3,

we know that the trajectories of system (9) passing through y− are periodic. We show
now that the equilibrium point is a global attractor. Indeed, the vector field of (7) is
directed towards the "interior" of the trajectories of (9), since (1 − 3a2)x − x3 is strictly
positive if x < 0, and strictly negative if x > 0. Finally we can prove in the same way as
in Lemma 3.3 that, for any initial condition, the trajectories of (7) hit y− in finite time.

Next, in the case where |a| <

√
3

3
, we use Lemma 3.4, with

α(y) = y

ε
, β(y) = 1, F (x) = (−1 + 3a2)x + 3ax2 + x3

ε
and g(x) = x.

We show that the conditions of Lemma 3.4 are satisfied. As we have: α(0) = 0

ε
= 0,

the function α is strictly increasing, and α(±∞) = ±∞. As xg(x) = x2, we have
xg(x) > 0 when x �= 0, and G(±∞) = ∞. β is non-increasing function. As the
solutions of the equation F(x) = 0 are

x1 = −3a − √
4 − 3a2

2
, x2 = −3a + √

4 − 3a2

2
and x3 = 0

and the roots of the function F ′(x) = 3x2 + 6ax + 3a2 − 1 are

x∗
1 = −a −

√
3

3
and x∗

2 = −a +
√

3

3
,

we can deduce that xF(x) < 0 for x ∈ ]x1, x2[\{0}, and that the function F is increasing
for x ∈ ]−∞, x1[ ∪ ]x2, ∞[. We can always find γ > 0 such that, if a > 0, we can
choose

M = x2 + γ, k = F(x∗
1 ) and k0 = F(x∗

2 ),

and if a < 0, we can take

M = x2 + γ, k = F(x∗
2 ) and k0 = F(x∗

1 ).
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We have also G(−x) = G(x). Thus, by Lemma 3.4, the system (7) has a unique stable

hyperbolic limit cycle. Finally, in the case where |a| =
√

3

3
, we prove the result if

a =
√

3

3
. The case a = −

√
3

3
is obtained similarly. Thus, the system (7) becomes

{
dx = 1

ε
(−√

3x2 − x3 + y)dt,

dy = −xdt.
(11)

In this case, the previous methods cannot be applied since the characteristic polynomial of
the Jacobian matrix of the system (11) has two purely imaginary eigenvalues. Therefore
we use the Normal FormAlgorithm method to deduce the nature of the equilibrium point.
In order to do that, we need that the eigenvalues of the Jacobian matrix to be equal at i

and −i. For this, by the following judicious transformation

X = (ε)
1
4 x, Y = y

(ε)
1
4

and τ = t√
ε
,

the system (11) becomes


dX = (−
√

3

(ε)
5
4

X2 − X3

(ε)
3
2

+ Y )dτ,

dY = −Xdτ.

(12)

The Jacobian matrix for the system (12) is

A =
(

0 1
−1 0

)
.

Using the Normal Form Algorithm [13], after some computation, we find that the second
Lyaponov coefficient is negative. Thus, we can deduce that the equilibrium point is a
spiral sink. �

4. Conclusion

In this paper, a theoretical analysis of the two particular cases of the FitzHugh-Nagumo
system has been done. For the two systems, we have discussed the global stability of the
equilibrium points which enable us to prove the existence of a global solution and the
existence of a hyperbolic stable limit cycle. These results reflect the biological aspect of
these systems and give us useful informations to analysis the general system.
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