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1. Introduction

Sensitivity analysis for the solutions of variational inequalities and inclusions have been
studied by many authors via quite different methods. By the projection methods, Anas-
tassiou et al. [2], Balooee and Kim [3], Chang et al. [7], Dafermos [9], Faraj and
Salahuddin [10], Khan and Salahuddin [13], Lee and Salahuddin [18], Mohapatra and
Verma [20], Pan [22], Qiu and Magnanti [23], Salahuddin [25, 26], Verma [27], and Yen
[28] studied the sensitivity analysis for the solutions of some variational inequalities with
single-valued mappings or set-valued mappings in finite dimensional spaces, or Hilbert
spaces. By using the resolvent operator techniques, Agarwal et al. [1], Jeong [11, 12],
Kim et al. [14], and Kim and Kim [16, 17] studied a new system of parametric gen-
eralized mixed quasi variational inclusions in Hilbert spaces and in Lp(p ≥ 2) spaces,
respectively.

In this paper, we study the behaviour and sensitivity analysis of the solution set for
a new system of parametric general regularized nonconvex variational inequalities with
locally relaxed (ϕ, ψ)-cocoercive mappings in Banach spaces.

Let X be a real Banach space with dual space X ∗, the norm ‖ · ‖ and a dual pairing
〈·, ·〉 between X and X ∗. Let CB(X ) denotes the family of all nonempty closed bounded
subsets of X and let D(·, ·) be the Hausdorff metric on CB(X ), that is, for all A, B ∈
CB(X )∗,

D(A, B) = max

{
sup
x∈A

inf
y∈B

||x − y||, sup
y∈B

inf
x∈A

||x − y||
}
.

The generalized duality mapping Jq : X → 2X ∗
is defined by

Jq(x) = {f ∗ ∈ X ∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ X

where q > 1 is a constant. In particular, J2 is a usual normalized duality mapping. It is
known that in general Jq(x) = ‖x‖q−2J2(x) for all x 	= 0 and Jq is single-valued if X ∗
is strictly convex.

In the sequel, we always assume that X is a real Banach space such that Jq is single-
valued. If X is a Hilbert space, then Jq becomes the identity mapping on X . The modulus
of smoothness of X is the function ρX : [0, ∞) → [0, ∞) defined by

ρX (t) = sup

{
1

2

(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX (t)

t
= 0.

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX (t) < ctq, q > 1.
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Note that Jq is single-valued if X is uniformly smooth. Concerned with the characteristic
inequalities in q-uniformly smooth Banach spaces. Xu [29] proved the following results.

Lemma 1.1. [29] The real Banach space X is q-uniformly smooth if and only if there
exists a constant cq > 0 such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖q.

Definition 1.2. Let K be a nonempty closed subset of a Banach space X . The proximal
normal cone of K at a point u ∈ X with u 	∈ K is given by

NP
K (u) = {ζ ∈ X : u ∈ PK(u + αζ) for some α > 0},

where
PK(u) = {v ∈ K : dK(u) = ‖u − v‖}.

Here dK(·) is the usual distance function to the subset K, i.e.,

dK(u) = inf
v∈K

‖u − v‖.

We have the characterizations for the proximal normal cone NP
K (u).

Lemma 1.3. [8] Let K be a nonempty closed subset in X . Then ζ ∈ NP
K (u) if and only

if there exists a constant α = α(ζ, u) > 0 such that

〈ζ, jq(v − u)〉 ≤ α‖v − u‖q, ∀v ∈ K.

Lemma 1.4. [8] Let K be a nonempty closed and convex subset in X . Then ζ ∈ NP
K (u)

if and only if
〈ζ, jq(v − u)〉 ≤ 0, ∀v ∈ K.

The Clarke normal cone NC
K (u) is defined by

NC
K (u) = co

{
NP

K (u)
}
,

where co is the closure of the convex hull. Clearly NP
K (u) ⊆ NC

K (u), but the converse
is not true in general. Note that NC

K (u) is always closed and convex where as NP
K (u) is

always convex but may not be closed (see [4, 5, 6, 8, 24]).

Definition 1.5. [8, 24] For any r ∈ (0, +∞], a subset Kr of X is said to be normalized
uniformly r-prox regular (or uniformly r-prox regular) if and only if every nonzero
proximal normal to Kr can be realized by an r-ball, that is, for all u ∈ Kr and all
0 	= ζ ∈ NP

Kr
(u) with ‖ζ‖ = 1,

〈ζ, v − u〉 ≤ 1

2r
‖v − u‖2, v ∈ Kr .
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Lemma 1.6. [8] A closed set K ⊆ X is convex if and only if it is proximally smooth of
radius r for every r > 0.

If r = ∞ then uniformly prox regularity of Kr is equivalent to the convexity of K.

If Kr is a uniformly prox regular set, then the proximal normal cone NP
Kr

(u) is closed as

a set-valued mapping. If we take η = 1

2r
, it is clear that r → ∞ then η = 0.

Proposition 1.7. [24] Let r > 0 and Kr be a nonempty closed and uniformly r-prox
regular subset of X . Set

U(r) = {u ∈ X : 0 ≤ dKr
(u) < r}.

Then the following statements hold.

(i) For all u ∈ Kr , we have PKr
(u) 	= ∅;

(ii) For all r ′ ∈ (0, r), PKr
is a Lipschitz continuous mapping with constant δ = r

r − r ′
on U(r ′) = {u ∈ X : 0 ≤ dKr

(u) < r ′};
(iii) The proximal normal cone is closed as a set-valued mapping.

2. Sensitivity Analysis of Solution Sets

Now we consider a system of parametric general regularized nonconvex variational
inequalities in a q-uniformly smooth Banach space X . Let � and ∧ be two nonempty
open subsets of X in which the parameter λ and η take values, respectively. Let h :
� × X → X , p : ∧ × X → X are single-valued mappings and T : ∧ × X → 2X , G :
� × X → 2X be the set-valued mappings. For any constants ρ > 0 and µ > 0, we
consider the problem of finding (u, v) ∈ X ×X and x ∈ T (u, η), y ∈ G(v, λ) such that
h(u, λ), p(v, η) ∈ Kr and for all (u, λ) ∈ X × �, (v, η) ∈ X × ∧, u∗, v∗ ∈ Kr ,

〈ρU(u, y, λ) + h(u, λ) − u, u∗ − h(u, λ)〉 + 1

2r
‖u∗ − h(u, λ)‖2 ≥ 0,

〈µV (x, v, η) + p(v, η) − v, v∗ − p(v, η)〉 + 1

2r
‖v∗ − p(v, η)‖2 ≥ 0, (1)

where U : X × X × � → X and V : X × X × ∧ → X . The problem (1) is called a
system of parametric general regularized nonconvex variational inequalities.

Definition 2.1. Let h : X × � → X be an operator. Then the operator h(·, λ) is said to
be

(i) locally αh-strongly accretive if there exists a constant αh > 0 such that for all
λ ∈ �, u, v ∈ X ,

〈h(u, λ) − h(v, λ), jq(u − v)〉 ≥ αh‖u − v‖q,
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(ii) locally βh-Lipschitz continuous if there exists a constant βh > 0 such that for all
λ ∈ �, u, v ∈ X ,

‖h(u, λ) − h(v, λ)‖ ≤ βh‖u − v‖,
(iii) locally αh-relaxed accretive if there exists a constant αh > 0 such that for all

λ ∈ �, u, v ∈ X ,

〈h(u, λ) − h(v, λ), jq(u − v)〉 ≥ −αh‖u − v‖q.

Definition 2.2. A single-valued mapping U : X × X × � → X is said to be

(i) locally relaxed (ϕU, ψU)-cocoercive with respect to the first variable of U if there
exist the constants ϕU > 0 and ψU > 0 such that for all u1, u2, v ∈ X , λ ∈ �,

〈U(u1, v, λ) − U(u2, v, λ), jq(u1 − u2)〉 ≥ −ϕU‖U(u1, v, λ) − U(u2, v, λ)‖q

+ ψU‖u1 − u2‖q,

(ii) locally ζU -Lipschitz continuous with respect to the first variable of U if there exists
a constant ζU > 0 such that for all u1, u2, v ∈ X , λ ∈ �,

‖U(u1, v, λ) − U(u2, v, λ)‖ ≤ ζU‖u1 − u2‖,

(iii) locally κU -Lipschitz continuous with respect to the second variable of U if there
exists a constant κU > 0 such that for all v1, v2, u ∈ X , λ ∈ �,

‖U(u, v1, λ) − U(u, v2, λ)‖ ≤ κU‖v1 − v2‖.

Similarly we can define the locally relaxed (ϕV , ψV )-cocoercivity and locally ζV -
Lipschitz continuity of V .

Definition 2.3. Let G : X ×� → 2X be a set-valued mapping. Then G is called locally
ξG − D-Lipschitz continuous in the first argument if there exists a constant ξG > 0 such
that for all u, v ∈ X , λ ∈ �,

D(G(u, λ), G(v, λ)) ≤ ξG‖u − v‖,
where D : 2X × 2X → (−∞, +∞) ∪ {+∞} is the Hausdorff metric i.e., for all
A, B ∈ 2X ,

D(A, B) = max

{
sup
u∈A

inf
v∈B

‖u − v‖, sup
u∈B

inf
v∈A

‖u − v‖
}
.

Lemma 2.4. [19] Let (X , d) be a complete metric space and T1, T2 : X → CB(X ) be
two set-valued contraction mappings with the same constant θ ∈ (0, 1) i.e.,

D(Ti(u), Ti(v)) ≤ θd(u, v),∀u, v ∈ X , i = 1, 2.
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Then

D(F (T1), F (T2)) ≤ 1

1 − θ
sup
u∈X

D(T1(u), T2(v)),

where F(T1) and F(T2) are fixed point sets of T1, T2, respectively.

Lemma 2.5. If Kr is a uniformly r-prox regular set, then problem (1) is equivalent to
that of finding (λ, η) ∈ � × ∧, (u, v) ∈ X × X , x ∈ T (u, η), y ∈ G(v, λ) such that
h(u, λ), p(v, η) ∈ Kr and

0 ∈ ρU(u, y, λ) + h(u, λ) − u + NP
Kr

(h(u, λ)),

0 ∈ µV (x, v, η) + p(v, η) − v + NP
Kr

(p(v, η)), (2)

where NP
Kr

(s) denotes the P -normal cone of Kr at s in the sense of nonconvex analysis.

Lemma 2.6. Let U : X × X × � → X and V : X × X × ∧ → X be two mappings.
Let h : � × X → X , p : X × ∧ → X be the single-valued mappings and let T :
∧ × X → 2X , G : � × X → 2X be the set-valued mappings. Then (u, v, x, y) with
u, v ∈ X , h(u, λ) ∈ Kr and x ∈ T (u, η), y ∈ G(v, η) is a solution of system (2) if and
only if

h(u, λ) = PKr
(u − ρU(u, y, λ)),

p(v, η) = PKr
(v − µV (x, v, η)), (3)

where PKr
is the projection of X on the uniformly r-prox regular set Kr and ρ, µ > 0

on (λ, η) ∈ � × ∧.

Theorem 2.7. Let U : X ×X ×� → X and V : X ×X ×∧ → X be two mappings. Let
h : � × X → X , p : X ×∧ → X be the single-valued mappings and let T : ∧ ×X →
2X , G : � × X → 2X be the set-valued mappings. Assume that the mappings satisfy
the following conditions:

(i) U is a locally relaxed (ϕU, ψU)-cocoercive mapping with respect to the first vari-
able of U with constants ϕU, ψU > 0, respectively;

(ii) U is a locally ζU -Lipschitz continuous with respect to the first variable of U with
constant ζU > 0 and locally κU -Lipschitz continuous mapping with respect to the
second variable of U with constant κU > 0;

(iii) V is a locally relaxed (ϕV , ψV )-cocoercive mapping with respect to the second
variable of V with constants ϕV , ψV > 0, respectively;

(iv) V is a locally ζV -Lipschitz continuous with respect to the first variable of V with
constant ζV > 0 and locally κV -Lipschitz continuous mapping with respect to the
second variable of V with constant κV > 0;

(v) T is a locally ϑT − D-Lipschitz continuous mapping with constant ϑT > 0;
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(vi) G is a locally ϑG − D-Lipschitz continuous mapping with constant ϑG > 0;

(vii) h is a locally αh-strongly accretive with respect to constant αh > 0 and locally
βh-Lipschitz continuous mapping with constant βh > 0;

(viii) p is a locally αp-relaxed accretive and locally βp-Lipschitz continuous mapping
with constants αp > 0 and βp > 0, respectively.

If the constants ρ > 0 and µ > 0 satisfy the following conditions:

πh = q

√
1 − qαh + β

q

h , πp = q

√
1 + qαp + β

q
p,

σ1 = 1 − πh + δµζV ϑT , σ2 = 1 − πp + δρκUϑG,

q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U < σ1δ
−1,

q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V < σ2δ
−1, (4)

where r ′ ∈ (0, r), then for each (λ, η) ∈ � × ∧, the system of parametric general
regularized nonconvex variational inequalities (1) has a nonempty solution set S(λ, η)

which is a closed subset of X × X .

Proof. From (3) we define F1 : X × X × X × � → X , F2 : X × X × X × ∧ → X as
for all (u, v, λ, η) ∈ X × X × � × ∧, x ∈ T (u, η), y ∈ G(v, λ),

F1(u, v, y, λ) = u − h(u, λ) + PKr
(u − ρU(u, y, λ)),

F2(u, v, x, η) = v − p(v, η) + PKr
(v − µV (x, v, η)). (5)

Now we define ‖ · ‖1 on X × X by

‖(u, v)‖1 = ‖u‖ + ‖v‖, ∀(u, v) ∈ X × X .

Then we know that (X × X , ‖ · ‖1) is a Banach space. And also, for any ρ > 0, µ > 0,

we can define F : X × X × � × ∧ → 2X × 2X by

F(u, v, λ, η) = {
(F1(u, v, y, λ), F2(u, v, x, η)) : x ∈ T (u, η), y ∈ G(v, λ)

}
for every (u, v, λ, η) ∈ X × X × � × ∧. Since T (u, η) ∈ CB(X ), G(v, λ) ∈ CB(X )

and h, p, PKr
are continuous mappings, we have

F(u, v, λ, η) ∈ CB(X × X ), for every (u, v, λ, η) ∈ X × X × � × ∧.

Now for each (λ, η) ∈ �×∧,we prove thatF(u, v, λ, η) is a multi-valued contractive
mapping. In fact for any (u1, v1, λ, η), (u2, v2, λ, η) ∈ X × X × � × ∧ and (a1, a2) ∈
F(u1, v1, λ, η) there exists x1 ∈ T (u1, η), y1 ∈ G(v1, λ) such that

a1 = u1 − h(u1, λ) + PKr
(u1 − ρU(u1, y1, λ)),
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a2 = v1 − p(v1, η) + PKr
(v1 − µV (x1, v1, η)).

From the Nadler Theorem [21], there exists x2 ∈ T (u2, η), y2 ∈ G(v2, λ) such that

‖x1 − x2‖ ≤ D(T (u1, η), T (u2, η)),

‖y1 − y2‖ ≤ D(G(v1, λ), G(v2, λ)). (6)

Let
b1 = u2 − h(u2, λ) + PKr

(u2 − ρU(u2, y2, λ)),

b2 = v2 − p(v2, η) + PKr
(v2 − µV (x2, v2, η)).

Then we have (b1, b2) ∈ F(u2, v2, λ, η). Therefore, from Proposition 1.7, we have

‖a1 − b1‖ ≤ ‖u1 − u2 − (h(u1, λ) − h(u2, λ))‖
+ ‖PKr

(u1 − ρU(u1, y1, λ)) − PKr
(u2 − ρU(u2, y2, λ))‖

≤ ‖u1 − u2 − (h(u1, λ) − h(u2, λ))‖
+ δ‖u1 − u2 − ρ(U(u1, y1, λ) − U(u2, y2, λ))‖

≤ ‖u1 − u2 − (h(u1, λ) − h(u2, λ))‖
+ δ‖u1 − u2 − ρ(U(u1, y1, λ) − U(u2, y1, λ))‖
+ ρ‖U(u2, y1, λ) − U(u2, y2, λ)‖ (7)

and

‖a2 − b2‖ ≤ ‖v1 − v2 − (p(v1, η) − p(v2, η))‖
+ ‖PKr

(v1 − µV (x1, v1, η)) − PKr
(v2 − µV (x2, v2, η))‖

≤ ‖v1 − v2 − (p(v1, η) − p(v2, η))‖
+ δ‖v1 − v2 − µ(V (x1, v1, η) − V (x2, v2, η))‖

≤ ‖v1 − v2 − (p(v1, η) − p(v2, η))‖
+ δ‖v1 − v2 − µ(V (x1, v1, η) − V (x1, v2, η))‖
+ µ‖V (x1, v2, η) − V (x2, v2, η)‖. (8)

Since h is a locally αh-strongly accretive and locally βh-Lipschitz continuous mapping
with constants αh > 0 and βh > 0 respectively, we have

‖u1 − u2 − (h(u1, λ) − h(u2, λ))‖q

≤ ‖u1 − u2‖q − q〈h(u1, λ) − h(u2, λ), jq(u1 − u2)〉 + cq‖h(u1, λ) − h(u2, λ)‖q

≤ ‖u1 − u2‖q − qαh‖u1 − u2‖q + cqβ
q

h‖u1 − u2‖q

≤ (1 − qαh + cqβ
q

h )‖u1 − u2‖q. (9)
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Similarly, since p is a locally αp-relaxed accretive with respect to constant αp > 0 and
locally βp-Lipschitz continuous mapping with respect to constant βp > 0, we have

‖v1 − v2 − (p(v1, η) − p(v2, η))‖q

≤ ‖v1 − v2‖q − q〈p(v1, η) − p(v2, η), jq(v1 − v2)〉 + cq‖p(v1, η) − p(v2, η)‖q

≤ ‖v1 − v2‖q + qαp‖v1 − v2‖q + cqβ
q
p‖v1 − v2‖q

≤ (1 + qαp + cqβ
q
p)‖v1 − v2‖q. (10)

Since U is a locally κU -Lipschitz continuous mapping with respect to the second variable
with constant κU > 0 and G is a locally ϑG − D-Lipschitz continuous mapping with
constant ϑG > 0, we have

‖U(u2, y1, λ) − U(u2, y2, λ)‖ ≤ κU‖y1 − y2‖
≤ κUD(G(v1, λ) − G(v2, λ))

≤ κUϑG‖v1 − v2‖. (11)

Since V is a locally ζV -Lipschitz continuous mapping with respect to the first variable
with constant ζV > 0 and T is a locally ϑT − D-Lipschitz continuous mapping with
constant ϑT > 0, we have

‖V (x1, v2, η) − V (x2, v2, η)‖ ≤ ζV ‖x1 − x2‖
≤ ζV D(T (u1, η) − T (u2, η))

≤ ζV ϑT ‖u1 − u2‖. (12)

Since U is a locally relaxed (ϕU, ψU)-cocoercive mapping with respect to the first vari-
able with constants ϕU > 0 and ψU > 0, respectively, we have

‖u1 − u2 − ρ(U(u1, y1, λ) − U(u2, y1, λ))‖q

≤ ‖u1 − u2‖q − qρ〈U(u1, y1, λ) − U(u2, y1, λ), jq(u1 − u2)〉
+ cqρ

q‖U(u1, y1, λ) − U(u2, y1, λ)‖q

≤ ‖u1 − u2‖q − qρ(−ϕU‖U(u1, y1, λ) − U(u2, y1, λ)‖q + ψU‖u1 − u2‖q)

+ cqρ
qζ

q

U‖u1 − u2‖q

≤ ‖u1 − u2‖q − qρ(−ϕUζ
q

U‖u1 − u2‖q + ψU‖u1 − u2‖q) + cqρ
qζ

q

U‖u1 − u2‖q

≤ (1 + qρϕUζ
q

U − qρψU + cqρ
qζ

q

U)‖u1 − u2‖q. (13)

Since V is a locally relaxed (ϕV , ψV )-cocoercive mapping with respect to the second
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variable with constants ϕV > 0 and ψV > 0, respectively, we have

‖v1 − v2 − µ(V (x1, v1, η) − V (x1, v2, η))‖q

≤ ‖v1 − v2‖q − qµ〈V (x1, v1, η) − V (x1, v2, η), jq(v1 − v2)〉
+ cqµ

q‖V (x1, v1, η) − V (x1, v2, η)‖q

≤ ‖v1 − v2‖q − qµ(−ϕV ‖V (x1, v1, η) − V (x1, v2, η)‖q + ψV ‖v1 − v2‖q)

+ cqµ
qκ

q

V ‖v1 − v2‖q

≤ ‖v1 − v2‖q − qµ(−ϕV κ
q

V ‖v1 − v2‖q + ψV ‖v1 − v2‖q) + cqµ
qκ

q

V ‖v1 − v2‖q

≤ (1 + qµϕV κ
q

V − qµψV + cqµ
qκ

q

V )‖v1 − v2‖q. (14)

It follows from (7), (9), (11) and (13) that

‖a1 − b1‖ ≤ q

√
1 − qαh + cqβ

q

h‖u1 − u2‖
+ δ

q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U‖u1 − u2‖
+ δρκUϑG‖v1 − v2‖

=
[

q

√
1 − qαh + cqβ

q

h + δ
q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U

]
‖u1 − u2‖

+ δρκUϑG‖v1 − v2‖
≤ θ1‖u1 − u2‖ + θ2‖v1 − v2‖ (15)

and

‖a2 − b2‖ ≤ q

√
1 + qαp + cqβ

q
p‖v1 − v2‖

+ δ
q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V ‖v1 − v2‖
+ δµζV ϑT ‖u1 − u2‖

≤
[

q

√
1 + qαp + β

q
p + δ

q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V

]
‖v1 − v2‖

+ δµζV ϑT ‖u1 − u2‖
≤ θ3‖u1 − u2‖ + θ4‖v1 − v2‖, (16)

where θ1 = q

√
1 − qαh + β

q

h + δ
q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U ,

θ2 = δρκUϑG, θ3 = δµζV ϑT ,

θ4 = q

√
1 + qαp + cqβ

q
p + δ

q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V .

By (15) and (16), we have

‖a1 − b1‖ + ‖a2 − b2‖ ≤ θ(‖u1 − u2‖ + ‖v1 − v2‖), (17)
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where θ = max{θ1 + θ3, θ2 + θ4}. Hence, we have

d((a1, a2), F (u2, v2, λ, η)) = inf
(b1,b2)∈F(u2,v2,λ,η)

(
‖a1 − b1‖ + ‖a2 − b2‖

)

≤ θ(‖u1 − u2‖ + ‖v1 − v2‖)
= θ‖(u1, v1) − (u2, v2)‖1

and
d((b1, b2), F (u1, v1, λ, η)) ≤ θ‖(u1, v1) − (u2, v2)‖1.

From the definition of Hausdorff metricDonCB(X×X ), we have, for allu1, u2, v1, v2 ∈
X and (λ, η) ∈ � × ∧,

D(F (u1, v1, λ, η), F (u2, v2, λ, η))

= max

{
sup

(a1,a2)∈F(u1,v1,λ,η)

d((a1, a2), F (u2, v2, λ, η)),

sup
(b1,b2)∈F(u2,v2,λ,η)

d((b1, b2), F (u1, v1, λ, η))

}

≤ θ‖(u1, v1) − (u2, v2)‖1. (18)

We know that θ < 1 from condition (4). Thus (18) implies that F is a contractive
mapping which is uniform with respect to (λ, η) ∈ � × ∧. By the Nadler fixed point
Theorem [21], F(u, v, λ, η) has a fixed point (u, v) for each (λ, η) ∈ � × ∧. From
the definition of F there exist x ∈ T (u, η) and y ∈ G(v, λ) such that (3) holds. By
Lemma 2.6, S(λ, η) 	= ∅.

Now we have to prove that S(λ, η) is closed. In fact, for each (λ, η) ∈ � × ∧, let
(un, vn) ∈ S(λ, η) and un → u0, vn → v0 as n → ∞. Then we have

(un, vn) ∈ F(un, vn, λ, η), n = 1, 2, · · · .

And also, we have

D(F (un, vn, λ, η), F (u0, v0, λ, η)) ≤ θ‖(un, vn) − (u0, v0)‖1.

It follows that

d((u0, v0), F (u0, v0, λ, η)) ≤ ‖(u0, v0) − (un, vn)‖1

+ d((un, vn), F (un, vn, λ, η))

+ D(F (un, vn, λ, η), F (u0, v0, λ, η))

≤ (1 + θ)‖(un, vn) − (u0, v0)‖1

→ 0, as n → ∞.
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Hence, we have (u0, v0) ∈ F(u0, v0, λ, η). From Lemma 2.6, we have (u0, v0) ∈
S(λ, η). Therefore S(λ, η) is a nonempty closed subset of X × X . This completes the
proof. �

Theorem 2.8. The hypothesises of Theorem 2.7 are hold and assume that for any u, v ∈
X , the mappings λ → U(u, v, λ), η → V (u, v, η), λ → h(u, λ), η → p(v, η) are lo-
cally Lipschitz continuous with constants �U, �V , �p, �h, respectively. Let η → T (u, η)

be a locally �T −D-Lipschitz continuous mapping and λ → G(v, λ) be a locally �G−D-
Lipschitz continuous mapping for u, v ∈ X . Let PKr

be a Lipschitz continuous operator

with constant δ = r

r − r ′ . Then the solution S(λ, η) for a system of parametric gen-

eral regularized nonconvex variational inequalities is locally Lipschitz continuous from
� × ∧ to X × X .

Proof. By Theorem 2.7, for any (t, λ, λ) ∈ X × � × � and (z, η, η) ∈ X × ∧ × ∧,

S(λ, η) and S(λ, η) are nonempty closed subsets. Also, for each (λ, η), (λ, η) ∈ �×∧,
F(u, v, λ, η) and F(u, v, λ, η) are contractive mappings with some constant θ ∈ (0, 1)

and have fixed points (u(λ, η), v(λ, η)) and (u(λ, η), v(λ, η)), respectively. Hence, by
Lemma 2.4, for any fixed (λ, η), (λ, η) ∈ � × ∧, we have

D(S(λ, η), S(λ, η))

≤ 1

1 − θ
sup

(u,v)∈X×X
D(F (u(λ, η), v(λ, η), λ, η), F (u(λ, η), v(λ, η), λ, η)). (19)

For any (a1, a2) ∈ F(u(λ, η), v(λ, η), λ, η), there exists x(λ, η) ∈ T (u(λ, η), η),

y(λ, η) ∈ G(v(λ, η), λ) such that

a1 = u(λ, η) − h(u(λ, η), λ) + PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))

a2 = v(λ, η) − p(v(λ, η), η) + PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), η)). (20)

From the Nadler Theorem [21], there exists x(λ, η) ∈ T (u(λ, η), η), y(λ, η)

∈ G(v(λ, η), λ) such that

‖x(λ, η) − x(λ, η)‖ ≤ D(T (u(λ, η), η), T (u(λ, η), η)),

‖y(λ, η) − y(λ, η)‖ ≤ D(G(v(λ, η), λ), G(v(λ, η), λ)). (21)

Let

b1 = u(λ, η) − h(u(λ, η), λ) + PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ)),

b2 = v(λ, η) − p(v(λ, η), η) + PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), η)). (22)

Then, we have
(b1, b2) ∈ F(u(λ, η), v(λ, η), λ, η).
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From (20), (22) and Proposition 1.7, we have

‖a1 − b1‖
≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖

+ ‖h(u(λ, η), λ) − h(u(λ, η), λ)‖
+ ‖PKr

(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))

− PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))‖

≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖
+ ‖h(u(λ, η), λ) − h(u(λ, η), λ)‖
+ ‖PKr

(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))

− PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))‖

+ ‖PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))

− PKr
(u(λ, η) − ρU(u(λ, η), y(λ, η), λ))‖

≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖
+ ‖h(u(λ, η), λ) − h(u(λ, η), λ)‖
+ δ‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖
+ δ‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖

≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖
+ ‖h(u(λ, η), λ) − h(u(λ, η), λ)‖
+ δ‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖
+ δρ‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖
+ δρ‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖

≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖ + �h‖λ − λ‖
+ δ‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖
+ δρ‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖
+ δρ�U‖λ − λ‖

≤ ‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖ + �h‖λ − λ‖
+ δ‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖
+ δρ‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖
+ δρ�U‖λ − λ‖ (23)
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and

‖a2 − b2‖
≤ ‖v(λ, η) − v(λ, η) − (p(v(λ, η), η) − p(v(λ, η), η))‖

+ ‖p(v(λ, η), η) − p(v(λ, η), η)‖
− ‖PKr

(v(λ, η) − µV (x(λ, η), v(λ, η), η))

− PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), η))‖

≤ ‖v(λ, η) − v(λ, η) − (p(v(λ, η), η) − p(v(λ, η), η))‖
+ ‖p(v(λ, η), η) − p(v(λ, η), η)‖
+ ‖PKr

(v(λ, η) − µV (x(λ, η), v(λ, η), η))

− PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), η))‖

+ ‖PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), η))

− PKr
(v(λ, η) − µV (x(λ, η), v(λ, η), λ))‖

≤ ‖v(λ, η) − v(λ, η) − (p(v(λ, η), η) − p(v(λ, η), η))‖
+ ‖p(v(λ, η), η) − p(v(λ, η), η)‖
+ δ‖v(λ, η) − v(λ, η) − µ(V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η))‖
+ δ‖v(λ, η) − v(λ, η) − µ(V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η))‖

≤ ‖v(λ, η) − v(λ, η) − (p(v(λ, η), η) − p(v(λ, η), η))‖ + �p‖η − η‖
+ δ‖v(λ, η) − v(λ, η) − µ(V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η))‖
+ δµ‖V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η)‖ + δµ�V ‖η − η‖. (24)

Now, we know that

‖u(λ, η) − u(λ, η) − (h(u(λ, η), λ) − h(u(λ, η), λ))‖q

≤ ‖u(λ, η) − u(λ, η)‖q − q〈h(u(λ, η), λ) − h(u(λ, η), λ), jq(u(λ, η) − u(λ, η))〉
+ cq‖h(u(λ, η), λ) − h(u(λ, η), λ)‖q

≤ (1 − qαh + cqβ
q

h )‖u(λ, η) − u(λ, η)‖q, (25)

‖u(λ, η) − u(λ, η) − ρ(U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ))‖q

≤ ‖u(λ, η) − u(λ, η)‖q

− qρ〈U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ), jq(u(λ, η) − u(λ, η))〉
+ cqρ

q‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖q

≤ ‖u(λ, η) − u(λ, η)‖q

− qρ(−ϕU‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖q

− ψU‖u(λ, η) − u(λ, η)‖q) + cqρ
qζ

q

U‖u(λ, η) − u(λ, η)‖q

≤ (1 − qρ(ψU − ϕUζ
q

U) + cqρ
qζ

q

U)‖u(λ, η) − u(λ, η)‖q (26)
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and

‖U(u(λ, η), y(λ, η), λ) − U(u(λ, η), y(λ, η), λ)‖
≤ κU‖y(λ, η) − y(λ, η)‖
≤ κUD(G(v(λ, η), λ) − G(v(λ, η), λ))

≤ κU

[
D(G(v(λ, η), λ) − G(v(λ, η), λ)) + D(G(v(λ, η), λ) − G(v(λ, η), λ))

]
≤ κU

[
ϑG‖v(λ, η) − v(λ, η)‖ + �G‖λ − λ‖]. (27)

And also, we know that

‖v(λ, η) − v(λ, η) − (p(v(λ, η), η) − p(v(λ, η), η))‖q

≤ ‖v(λ, η) − v(λ, η)‖q − q〈p(v(λ, η), η) − p(v(λ, η), η), jq(v(λ, η) − v(λ, η))〉
+ cq‖p(v(λ, η), η) − p(v(λ, η), η)‖q

≤ ‖v(λ, η) − v(λ, η)‖q + qαp‖v(λ, η) − v(λ, η)‖q + cqβ
q
p‖v(λ, η) − v(λ, η)‖q

≤ (1 + qαp + cqβ
q
p)‖v(λ, η) − v(λ, η)‖q, (28)

‖v(λ, η) − v(λ, η) − µ(V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η))‖q

≤ ‖v(λ, η) − v(λ, η)‖q

− qµ〈V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η), jq(v(λ, η) − v(λ, η))〉
+ cqµ

q‖V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η)‖q

≤ ‖v(λ, η) − v(λ, η)‖q

− qµ(−ϕV ‖V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η)‖q

+ ψV ‖v(λ, η) − v(λ, η)‖q) + cqµ
qκ

q

V ‖v(λ, η) − v(λ, η)‖q

≤ ‖v(λ, η) − v(λ, η)‖q − qµ(−ϕV κ
q

V ‖v(λ, η) − v(λ, η)‖q

+ ψV ‖v(λ, η) − v(λ, η)‖q) + cqµ
qκ

q

V ‖v(λ, η) − v(λ, η)‖q

≤ (1 − qµ(ψV − ϕV κ
q

V ) + cqµ
qκ

q

V )‖v(λ, η) − v(λ, η)‖q (29)

and

‖V (x(λ, η), v(λ, η), η) − V (x(λ, η), v(λ, η), η)‖
≤ ζV ‖x(λ, η) − x(λ, η)‖
≤ ζV D(T (u(λ, η), η), T (u(λ, η), η))

≤ ζV

[
D(T (u(λ, η), η), T (u(λ, η), η)) + D(T (u(λ, η), η), T (u(λ, η), η))

]
≤ ζV

[
ϑT ‖u(λ, η) − u(λ, η)‖ + �T ‖η − η‖]. (30)
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Therefore, from (23)–(30), we have

‖a1 − b1‖ + ‖a2 − b2‖
≤

[
q

√
1 − qαh + cqβ

q

h + δ
q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U + δµζV ϑT

]

× ‖u(λ, η) − u(λ, η)‖
+

[
q

√
1 + qαp + cqβ

q
p + δ

q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V + δρκUϑG

]

× ‖v(λ, η) − v(λ, η)‖
+ [

�h + δρ�U + µδκU�G

]‖λ − λ‖ + [
�p + δµ�V + ρδζV �T

]‖η − η‖
= θ1‖u(λ, η) − u(λ, η)‖ + θ2‖v(λ, η) − v(λ, η)‖ + 1‖λ − λ‖ + 2‖η − η‖
≤ θ

[‖u(λ, η) − u(λ, η)‖ + ‖v(λ, η) − v(λ, η)‖] + 1‖λ − λ‖ + 2‖η − η‖
≤ θ

[‖a1 − b1‖ + ‖a2 − b2‖
] + 1‖λ − λ‖ + 2‖η − η‖, (31)

where

θ1 = q

√
1 − qαh + cqβ

q

h + δ
q

√
1 − qρ(ψU − ϕUζ

q

U) + cqρqζ
q

U + δµζV ϑT ,

θ2 = q

√
1 + qαp + cqβ

q
p + δ

q

√
1 − qµ(ψV − ϕV κ

q

V ) + cqµqκ
q

V + δρκUϑG,

1 = �h + δρ�U + µδκU�G,

2 = �p + δµ�V + ρδζV �T ,

θ = max{θ1, θ2}.
It follows from (4) and (31) that

‖a1 − b1‖ + ‖a2 − b2‖ ≤ 1

1 − θ

[
1‖λ − λ‖ + 2‖η − η‖

]

≤ 1

1 − θ
max{1, 2}

(
‖λ − λ‖ + ‖η − η‖

)

≤ ℘(‖λ − λ‖ + ‖η − η‖),

where ℘ = 1

1 − θ
max{1, 2}. Hence, we have

d((a1, a2), F (u(λ, η), v(λ, η), λ, η))

= inf
(b1,b2)∈F(u(λ,η),v(λ,η),λ,η)

(
‖a1 − b1‖ + ‖a2 − b2‖

)

≤ ℘(‖λ − λ‖ + ‖η − η‖)
= ℘‖(λ, η) − (λ, η)‖1. (32)



General Regularized Nonconvex Variational Inequalities in Banach Spaces 1869

Similarly, we have

d((b1, b2), F (u(λ, η), v(λ, η), λ, η)) ≤ ℘‖(λ, η) − (λ, η)‖1. (33)

Hence from (19),(32) and (33), we have

D(S(λ, η), S(λ, η))

≤ 1

1 − θ
sup

(u,v)∈H×H

D(F (u(λ, η), v(λ, η), λ, η), F (u(λ, η), v(λ, η), λ, η))

≤ ℘

1 − θ
‖(λ, η) − (λ, η)‖.

This means that S(λ, η) is Lipschitz continuous with respect to (λ, η) ∈ � × ∧. �
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