New System of a Parametric General Regularized Nonconvex Variational Inequalities in Banach Spaces

Jong Kyu Kim
Department of Mathemarics Education, Kyungnam University, Changwon, 631-701, Korea.
Salahuddin
Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia.
Jae Yull Sim
Department of Mathemarics, Kyungnam University, Changwon, 631-701, Korea.

Abstract

In this paper, we study the behaviour of solution sets for a new system of parametric general regularized nonconvex variational inequalities in q-uniformly smooth Banach spaces with locally relaxed (φ, ψ)-cocoercive mappings.

AMS subject classification: 49J40.
Keywords: New system of a parametric general regularized nonconvex variational inequalities, locally relaxed (φ, ψ)-cocoercive mapping, uniformly prox regular sets, q-uniformly smooth Banach spaces.

1. Introduction

Sensitivity analysis for the solutions of variational inequalities and inclusions have been studied by many authors via quite different methods. By the projection methods, Anastassiou et al. [2], Balooee and Kim [3], Chang et al. [7], Dafermos [9], Faraj and Salahuddin [10], Khan and Salahuddin [13], Lee and Salahuddin [18], Mohapatra and Verma [20], Pan [22], Qiu and Magnanti [23], Salahuddin [25, 26], Verma [27], and Yen [28] studied the sensitivity analysis for the solutions of some variational inequalities with single-valued mappings or set-valued mappings in finite dimensional spaces, or Hilbert spaces. By using the resolvent operator techniques, Agarwal et al. [1], Jeong [11, 12], Kim et al. [14], and Kim and Kim [16, 17] studied a new system of parametric generalized mixed quasi variational inclusions in Hilbert spaces and in $L_{p}(p \geq 2)$ spaces, respectively.

In this paper, we study the behaviour and sensitivity analysis of the solution set for a new system of parametric general regularized nonconvex variational inequalities with locally relaxed (φ, ψ)-cocoercive mappings in Banach spaces.

Let \mathcal{X} be a real Banach space with dual space \mathcal{X}^{*}, the norm $\|\cdot\|$ and a dual pairing $\langle\cdot, \cdot\rangle$ between \mathcal{X} and \mathcal{X}^{*}. Let $C B(\mathcal{X})$ denotes the family of all nonempty closed bounded subsets of \mathcal{X} and let $\mathfrak{D}(\cdot, \cdot)$ be the Hausdorff metric on $C B(\mathcal{X})$, that is, for all $A, B \in$ $C B(\mathcal{X}) *$,

$$
\mathfrak{D}(A, B)=\max \left\{\sup _{x \in A} \inf _{y \in B}\|x-y\|, \sup _{y \in B} \inf _{x \in A}\|x-y\|\right\}
$$

The generalized duality mapping $J_{q}: \mathcal{X} \rightarrow 2^{\mathcal{X}^{*}}$ is defined by

$$
J_{q}(x)=\left\{f^{*} \in \mathcal{X}^{*}:\left\langle x, f^{*}\right\rangle=\|x\|^{q},\left\|f^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in \mathcal{X}
$$

where $q>1$ is a constant. In particular, J_{2} is a usual normalized duality mapping. It is known that in general $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$ for all $x \neq 0$ and J_{q} is single-valued if \mathcal{X}^{*} is strictly convex.

In the sequel, we always assume that \mathcal{X} is a real Banach space such that J_{q} is singlevalued. If \mathcal{X} is a Hilbert space, then J_{q} becomes the identity mapping on \mathcal{X}. The modulus of smoothness of \mathcal{X} is the function $\rho_{\mathcal{X}}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{\mathcal{X}}(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1:\|x\| \leq 1,\|y\| \leq t\right\} .
$$

A Banach space \mathcal{X} is called uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho_{\mathcal{X}}(t)}{t}=0
$$

\mathcal{X} is called q-uniformly smooth if there exists a constant $c>0$ such that

$$
\rho_{\mathcal{X}}(t)<c t^{q}, q>1 .
$$

Note that J_{q} is single-valued if \mathcal{X} is uniformly smooth. Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces. Xu [29] proved the following results.

Lemma 1.1. [29] The real Banach space \mathcal{X} is q-uniformly smooth if and only if there exists a constant $c_{q}>0$ such that for all $x, y \in \mathcal{X}$

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+c_{q}\|y\|^{q} .
$$

Definition 1.2. Let \mathcal{K} be a nonempty closed subset of a Banach space \mathcal{X}. The proximal normal cone of \mathcal{K} at a point $u \in \mathcal{X}$ with $u \notin \mathcal{K}$ is given by

$$
N_{\mathcal{K}}^{P}(u)=\left\{\zeta \in \mathcal{X}: u \in P_{\mathcal{K}}(u+\alpha \zeta) \text { for some } \alpha>0\right\},
$$

where

$$
P_{\mathcal{K}}(u)=\left\{v \in \mathcal{K}: d_{\mathcal{K}}(u)=\|u-v\|\right\} .
$$

Here $d_{\mathcal{K}}(\cdot)$ is the usual distance function to the subset \mathcal{K}, i.e.,

$$
d_{\mathcal{K}}(u)=\inf _{v \in \mathcal{K}}\|u-v\| .
$$

We have the characterizations for the proximal normal cone $N_{\mathcal{K}}^{P}(u)$.
Lemma 1.3. [8] Let \mathcal{K} be a nonempty closed subset in \mathcal{X}. Then $\zeta \in N_{\mathcal{K}}^{P}(u)$ if and only if there exists a constant $\alpha=\alpha(\zeta, u)>0$ such that

$$
\left\langle\zeta, j_{q}(v-u)\right\rangle \leq \alpha\|v-u\|^{q}, \quad \forall v \in \mathcal{K} .
$$

Lemma 1.4. [8] Let \mathcal{K} be a nonempty closed and convex subset in \mathcal{X}. Then $\zeta \in N_{\mathcal{K}}^{P}(u)$ if and only if

$$
\left\langle\zeta, j_{q}(v-u)\right\rangle \leq 0, \quad \forall v \in \mathcal{K} .
$$

The Clarke normal cone $N_{\mathcal{K}}^{C}(u)$ is defined by

$$
N_{\mathcal{K}}^{C}(u)=\overline{c o}\left\{N_{\mathcal{K}}^{P}(u)\right\},
$$

where $\overline{c o}$ is the closure of the convex hull. Clearly $N_{\mathcal{K}}^{P}(u) \subseteq N_{\mathcal{K}}^{C}(u)$, but the converse is not true in general. Note that $N_{\mathcal{K}}^{C}(u)$ is always closed and convex where as $N_{\mathcal{K}}^{P}(u)$ is always convex but may not be closed (see [4, 5, 6, 8, 24]).

Definition 1.5. [8, 24] For any $r \in(0,+\infty]$, a subset \mathcal{K}_{r} of \mathcal{X} is said to be normalized uniformly r-prox regular (or uniformly r-prox regular) if and only if every nonzero proximal normal to \mathcal{K}_{r} can be realized by an r-ball, that is, for all $u \in \mathcal{K}_{r}$ and all $0 \neq \zeta \in N_{\mathcal{K}_{r}}^{P}(u)$ with $\|\zeta\|=1$,

$$
\langle\zeta, v-u\rangle \leq \frac{1}{2 r}\|v-u\|^{2}, \quad v \in \mathcal{K}_{r}
$$

Lemma 1.6. [8] A closed set $\mathcal{K} \subseteq \mathcal{X}$ is convex if and only if it is proximally smooth of radius r for every $r>0$.

If $r=\infty$ then uniformly prox regularity of \mathcal{K}_{r} is equivalent to the convexity of \mathcal{K}. If \mathcal{K}_{r} is a uniformly prox regular set, then the proximal normal cone $N_{\mathcal{K}_{r}}^{P}(u)$ is closed as a set-valued mapping. If we take $\eta=\frac{1}{2 r}$, it is clear that $r \rightarrow \infty$ then $\eta=0$.
Proposition 1.7. [24] Let $r>0$ and \mathcal{K}_{r} be a nonempty closed and uniformly r-prox regular subset of \mathcal{X}. Set

$$
\mathcal{U}(r)=\left\{u \in \mathcal{X}: 0 \leq d_{\mathcal{K}_{r}}(u)<r\right\} .
$$

Then the following statements hold.
(i) For all $u \in \mathcal{K}_{r}$, we have $P_{\mathcal{K}_{r}}(u) \neq \emptyset$;
(ii) For all $r^{\prime} \in(0, r), P_{\mathcal{K}_{r}}$ is a Lipschitz continuous mapping with constant $\delta=\frac{r}{r-r^{\prime}}$ on $\mathcal{U}\left(r^{\prime}\right)=\left\{u \in \mathcal{X}: 0 \leq d_{\mathcal{K}_{r}}(u)<r^{\prime}\right\} ;$
(iii) The proximal normal cone is closed as a set-valued mapping.

2. Sensitivity Analysis of Solution Sets

Now we consider a system of parametric general regularized nonconvex variational inequalities in a q-uniformly smooth Banach space \mathcal{X}. Let Ω and \wedge be two nonempty open subsets of \mathcal{X} in which the parameter λ and η take values, respectively. Let h : $\Omega \times \mathcal{X} \rightarrow \mathcal{X}, p: \wedge \times \mathcal{X} \rightarrow \mathcal{X}$ are single-valued mappings and $T: \wedge \times \mathcal{X} \rightarrow 2^{\mathcal{X}}, G:$ $\Omega \times \mathcal{X} \rightarrow 2^{\mathcal{X}}$ be the set-valued mappings. For any constants $\rho>0$ and $\mu>0$, we consider the problem of finding $(u, v) \in \mathcal{X} \times \mathcal{X}$ and $x \in T(u, \eta), y \in G(v, \lambda)$ such that $h(u, \lambda), p(v, \eta) \in \mathcal{K}_{r}$ and for all $(u, \lambda) \in \mathcal{X} \times \Omega,(v, \eta) \in \mathcal{X} \times \wedge, u^{*}, v^{*} \in \mathcal{K}_{r}$,

$$
\begin{gather*}
\left\langle\rho U(u, y, \lambda)+h(u, \lambda)-u, u^{*}-h(u, \lambda)\right\rangle+\frac{1}{2 r}\left\|u^{*}-h(u, \lambda)\right\|^{2} \geq 0 \\
\left\langle\mu V(x, v, \eta)+p(v, \eta)-v, v^{*}-p(v, \eta)\right\rangle+\frac{1}{2 r}\left\|v^{*}-p(v, \eta)\right\|^{2} \geq 0 \tag{1}
\end{gather*}
$$

where $U: \mathcal{X} \times \mathcal{X} \times \Omega \rightarrow \mathcal{X}$ and $V: \mathcal{X} \times \mathcal{X} \times \wedge \rightarrow \mathcal{X}$. The problem (1) is called a system of parametric general regularized nonconvex variational inequalities.

Definition 2.1. Let $h: \mathcal{X} \times \Omega \rightarrow \mathcal{X}$ be an operator. Then the operator $h(\cdot, \lambda)$ is said to be
(i) locally α_{h}-strongly accretive if there exists a constant $\alpha_{h}>0$ such that for all $\lambda \in \Omega, u, v \in \mathcal{X}$,

$$
\left\langle h(u, \lambda)-h(v, \lambda), j_{q}(u-v)\right\rangle \geq \alpha_{h}\|u-v\|^{q}
$$

(ii) locally β_{h}-Lipschitz continuous if there exists a constant $\beta_{h}>0$ such that for all $\lambda \in \Omega, u, v \in \mathcal{X}$,

$$
\|h(u, \lambda)-h(v, \lambda)\| \leq \beta_{h}\|u-v\|,
$$

(iii) locally α_{h}-relaxed accretive if there exists a constant $\alpha_{h}>0$ such that for all $\lambda \in \Omega, u, v \in \mathcal{X}$,

$$
\left\langle h(u, \lambda)-h(v, \lambda), j_{q}(u-v)\right\rangle \geq-\alpha_{h}\|u-v\|^{q} .
$$

Definition 2.2. A single-valued mapping $U: \mathcal{X} \times \mathcal{X} \times \Omega \rightarrow \mathcal{X}$ is said to be
(i) locally relaxed $\left(\varphi_{U}, \psi_{U}\right)$-cocoercive with respect to the first variable of U if there exist the constants $\varphi_{U}>0$ and $\psi_{U}>0$ such that for all $u_{1}, u_{2}, v \in \mathcal{X}, \lambda \in \Omega$,

$$
\begin{aligned}
\left\langle U\left(u_{1}, v, \lambda\right)-U\left(u_{2}, v, \lambda\right), j_{q}\left(u_{1}-u_{2}\right)\right\rangle \geq & -\varphi_{U}\left\|U\left(u_{1}, v, \lambda\right)-U\left(u_{2}, v, \lambda\right)\right\|^{q} \\
& +\psi_{U}\left\|u_{1}-u_{2}\right\|^{q},
\end{aligned}
$$

(ii) locally ζ_{U}-Lipschitz continuous with respect to the first variable of U if there exists a constant $\zeta_{U}>0$ such that for all $u_{1}, u_{2}, v \in \mathcal{X}, \lambda \in \Omega$,

$$
\left\|U\left(u_{1}, v, \lambda\right)-U\left(u_{2}, v, \lambda\right)\right\| \leq \zeta_{U}\left\|u_{1}-u_{2}\right\|,
$$

(iii) locally κ_{U}-Lipschitz continuous with respect to the second variable of U if there exists a constant $\kappa_{U}>0$ such that for all $v_{1}, v_{2}, u \in \mathcal{X}, \lambda \in \Omega$,

$$
\left\|U\left(u, v_{1}, \lambda\right)-U\left(u, v_{2}, \lambda\right)\right\| \leq \kappa_{U}\left\|v_{1}-v_{2}\right\| .
$$

Similarly we can define the locally relaxed $\left(\varphi_{V}, \psi_{V}\right)$-cocoercivity and locally $\zeta_{V}{ }^{-}$ Lipschitz continuity of V.

Definition 2.3. Let $G: \mathcal{X} \times \Omega \rightarrow 2^{\mathcal{X}}$ be a set-valued mapping. Then G is called locally $\xi_{G}-\mathfrak{D}$-Lipschitz continuous in the first argument if there exists a constant $\xi_{G}>0$ such that for all $u, v \in \mathcal{X}, \lambda \in \Omega$,

$$
\mathfrak{D}(G(u, \lambda), G(v, \lambda)) \leq \xi_{G}\|u-v\|,
$$

where $\mathfrak{D}: 2^{\mathcal{X}} \times 2^{\mathcal{X}} \rightarrow(-\infty,+\infty) \cup\{+\infty\}$ is the Hausdorff metric i.e., for all $A, B \in 2^{\mathcal{X}}$,

$$
\mathfrak{D}(A, B)=\max \left\{\sup _{u \in A} \inf _{v \in B}\|u-v\|, \sup _{u \in B} \inf _{v \in A}\|u-v\|\right\} .
$$

Lemma 2.4. [19] Let (\mathcal{X}, d) be a complete metric space and $T_{1}, T_{2}: \mathcal{X} \rightarrow C B(\mathcal{X})$ be two set-valued contraction mappings with the same constant $\theta \in(0,1)$ i.e.,

$$
\mathfrak{D}\left(T_{i}(u), T_{i}(v)\right) \leq \theta d(u, v), \forall u, v \in \mathcal{X}, i=1,2 .
$$

Then

$$
\mathfrak{D}\left(F\left(T_{1}\right), F\left(T_{2}\right)\right) \leq \frac{1}{1-\theta} \sup _{u \in \mathcal{X}} \mathfrak{D}\left(T_{1}(u), T_{2}(v)\right),
$$

where $F\left(T_{1}\right)$ and $F\left(T_{2}\right)$ are fixed point sets of T_{1}, T_{2}, respectively.
Lemma 2.5. If \mathcal{K}_{r} is a uniformly r-prox regular set, then problem (1) is equivalent to that of finding $(\lambda, \eta) \in \Omega \times \wedge,(u, v) \in \mathcal{X} \times \mathcal{X}, x \in T(u, \eta), y \in G(v, \lambda)$ such that $h(u, \lambda), p(v, \eta) \in \mathcal{K}_{r}$ and

$$
\begin{align*}
& 0 \in \rho U(u, y, \lambda)+h(u, \lambda)-u+N_{\mathcal{K}_{r}}^{P}(h(u, \lambda)), \\
& 0 \in \mu V(x, v, \eta)+p(v, \eta)-v+N_{\mathcal{K}_{r}}^{P}(p(v, \eta)), \tag{2}
\end{align*}
$$

where $N_{\mathcal{K}_{r}}^{P}(s)$ denotes the P-normal cone of \mathcal{K}_{r} at s in the sense of nonconvex analysis.
Lemma 2.6. Let $U: \mathcal{X} \times \mathcal{X} \times \Omega \rightarrow \mathcal{X}$ and $V: \mathcal{X} \times \mathcal{X} \times \wedge \rightarrow \mathcal{X}$ be two mappings. Let $h: \Omega \times \mathcal{X} \rightarrow \mathcal{X}, p: \mathcal{X} \times \wedge \rightarrow \mathcal{X}$ be the single-valued mappings and let $T:$ $\wedge \times \mathcal{X} \rightarrow 2^{\mathcal{X}}, G: \Omega \times \mathcal{X} \rightarrow 2^{\mathcal{X}}$ be the set-valued mappings. Then (u, v, x, y) with $u, v \in \mathcal{X}, h(u, \lambda) \in \mathcal{K}_{r}$ and $x \in T(u, \eta), y \in G(v, \eta)$ is a solution of system (2) if and only if

$$
\begin{align*}
& h(u, \lambda)=P_{\mathcal{K}_{r}}(u-\rho U(u, y, \lambda)), \\
& p(v, \eta)=P_{\mathcal{K}_{r}}(v-\mu V(x, v, \eta)), \tag{3}
\end{align*}
$$

where $P_{\mathcal{K}_{r}}$ is the projection of \mathcal{X} on the uniformly r-prox regular set \mathcal{K}_{r} and $\rho, \mu>0$ on $(\lambda, \eta) \in \Omega \times \wedge$.

Theorem 2.7. Let $U: \mathcal{X} \times \mathcal{X} \times \Omega \rightarrow \mathcal{X}$ and $V: \mathcal{X} \times \mathcal{X} \times \wedge \rightarrow \mathcal{X}$ be two mappings. Let $h: \Omega \times \mathcal{X} \rightarrow \mathcal{X}, p: \mathcal{X} \times \wedge \rightarrow \mathcal{X}$ be the single-valued mappings and let $T: \wedge \times \mathcal{X} \rightarrow$ $2^{\mathcal{X}}, G: \Omega \times \mathcal{X} \rightarrow 2^{\mathcal{X}}$ be the set-valued mappings. Assume that the mappings satisfy the following conditions:
(i) U is a locally relaxed $\left(\varphi_{U}, \psi_{U}\right)$-cocoercive mapping with respect to the first variable of U with constants $\varphi_{U}, \psi_{U}>0$, respectively;
(ii) U is a locally ζ_{U}-Lipschitz continuous with respect to the first variable of U with constant $\zeta_{U}>0$ and locally κ_{U}-Lipschitz continuous mapping with respect to the second variable of U with constant $\kappa_{U}>0$;
(iii) V is a locally relaxed $\left(\varphi_{V}, \psi_{V}\right)$-cocoercive mapping with respect to the second variable of V with constants $\varphi_{V}, \psi_{V}>0$, respectively;
(iv) V is a locally ζ_{V}-Lipschitz continuous with respect to the first variable of V with constant $\zeta_{V}>0$ and locally κ_{V}-Lipschitz continuous mapping with respect to the second variable of V with constant $\kappa_{V}>0$;
(v) T is a locally $\vartheta_{T}-\mathfrak{D}$-Lipschitz continuous mapping with constant $\vartheta_{T}>0$;
(vi) G is a locally $\vartheta_{G}-\mathfrak{D}$-Lipschitz continuous mapping with constant $\vartheta_{G}>0$;
(vii) h is a locally α_{h}-strongly accretive with respect to constant $\alpha_{h}>0$ and locally β_{h}-Lipschitz continuous mapping with constant $\beta_{h}>0$;
(viii) p is a locally α_{p}-relaxed accretive and locally β_{p}-Lipschitz continuous mapping with constants $\alpha_{p}>0$ and $\beta_{p}>0$, respectively.

If the constants $\rho>0$ and $\mu>0$ satisfy the following conditions:

$$
\begin{gather*}
\pi_{h}=\sqrt[q]{1-q \alpha_{h}+\beta_{h}^{q}}, \quad \pi_{p}=\sqrt[q]{1+q \alpha_{p}+\beta_{p}^{q}} \\
\sigma_{1}=1-\pi_{h}+\delta \mu \zeta_{V} \vartheta_{T}, \sigma_{2}=1-\pi_{p}+\delta \rho \kappa_{U} \vartheta_{G} \\
\sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}<\sigma_{1} \delta^{-1} \\
\sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}<\sigma_{2} \delta^{-1} \tag{4}
\end{gather*}
$$

where $r^{\prime} \in(0, r)$, then for each $(\lambda, \eta) \in \Omega \times \wedge$, the system of parametric general regularized nonconvex variational inequalities (1) has a nonempty solution set $S(\lambda, \eta)$ which is a closed subset of $\mathcal{X} \times \mathcal{X}$.

Proof. From (3) we define $F_{1}: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \Omega \rightarrow \mathcal{X}, F_{2}: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \wedge \rightarrow \mathcal{X}$ as for all $(u, v, \lambda, \eta) \in \mathcal{X} \times \mathcal{X} \times \Omega \times \wedge, x \in T(u, \eta), y \in G(v, \lambda)$,

$$
\begin{align*}
& F_{1}(u, v, y, \lambda)=u-h(u, \lambda)+P_{\mathcal{K}_{r}}(u-\rho U(u, y, \lambda)) \\
& F_{2}(u, v, x, \eta)=v-p(v, \eta)+P_{\mathcal{K}_{r}}(v-\mu V(x, v, \eta)) \tag{5}
\end{align*}
$$

Now we define $\|\cdot\|_{1}$ on $\mathcal{X} \times \mathcal{X}$ by

$$
\|(u, v)\|_{1}=\|u\|+\|v\|, \forall(u, v) \in \mathcal{X} \times \mathcal{X} .
$$

Then we know that $\left(\mathcal{X} \times \mathcal{X},\|\cdot\|_{1}\right)$ is a Banach space. And also, for any $\rho>0, \mu>0$, we can define $F: \mathcal{X} \times \mathcal{X} \times \Omega \times \wedge \rightarrow 2^{\mathcal{X}} \times 2^{\mathcal{X}}$ by

$$
F(u, v, \lambda, \eta)=\left\{\left(F_{1}(u, v, y, \lambda), F_{2}(u, v, x, \eta)\right): x \in T(u, \eta), y \in G(v, \lambda)\right\}
$$

for every $(u, v, \lambda, \eta) \in \mathcal{X} \times \mathcal{X} \times \Omega \times \wedge$. Since $T(u, \eta) \in C B(\mathcal{X}), G(v, \lambda) \in C B(\mathcal{X})$ and $h, p, P_{\mathcal{K}_{r}}$ are continuous mappings, we have

$$
F(u, v, \lambda, \eta) \in C B(\mathcal{X} \times \mathcal{X}), \text { for every }(u, v, \lambda, \eta) \in \mathcal{X} \times \mathcal{X} \times \Omega \times \wedge .
$$

Now for each $(\lambda, \eta) \in \Omega \times \wedge$, we prove that $F(u, v, \lambda, \eta)$ is a multi-valued contractive mapping. In fact for any $\left(u_{1}, v_{1}, \lambda, \eta\right),\left(u_{2}, v_{2}, \lambda, \eta\right) \in \mathcal{X} \times \mathcal{X} \times \Omega \times \wedge$ and $\left(a_{1}, a_{2}\right) \in$ $F\left(u_{1}, v_{1}, \lambda, \eta\right)$ there exists $x_{1} \in T\left(u_{1}, \eta\right), y_{1} \in G\left(v_{1}, \lambda\right)$ such that

$$
a_{1}=u_{1}-h\left(u_{1}, \lambda\right)+P_{\mathcal{K}_{r}}\left(u_{1}-\rho U\left(u_{1}, y_{1}, \lambda\right)\right),
$$

$$
a_{2}=v_{1}-p\left(v_{1}, \eta\right)+P_{\mathcal{K}_{r}}\left(v_{1}-\mu V\left(x_{1}, v_{1}, \eta\right)\right) .
$$

From the Nadler Theorem [21], there exists $x_{2} \in T\left(u_{2}, \eta\right), y_{2} \in G\left(v_{2}, \lambda\right)$ such that

$$
\begin{align*}
&\left\|x_{1}-x_{2}\right\| \leq \mathfrak{D}\left(T\left(u_{1}, \eta\right), T\left(u_{2}, \eta\right)\right), \\
&\left\|y_{1}-y_{2}\right\| \leq \mathfrak{D}\left(G\left(v_{1}, \lambda\right), G\left(v_{2}, \lambda\right)\right) . \tag{6}
\end{align*}
$$

Let

$$
\begin{aligned}
& b_{1}=u_{2}-h\left(u_{2}, \lambda\right)+P_{\mathcal{K}_{r}}\left(u_{2}-\rho U\left(u_{2}, y_{2}, \lambda\right)\right), \\
& b_{2}=v_{2}-p\left(v_{2}, \eta\right)+P_{\mathcal{K}_{r}}\left(v_{2}-\mu V\left(x_{2}, v_{2}, \eta\right)\right) .
\end{aligned}
$$

Then we have $\left(b_{1}, b_{2}\right) \in F\left(u_{2}, v_{2}, \lambda, \eta\right)$. Therefore, from Proposition 1.7, we have

$$
\begin{align*}
\left\|a_{1}-b_{1}\right\| \leq & \left\|u_{1}-u_{2}-\left(h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right)\right)\right\| \\
& +\left\|P_{\mathcal{K}_{r}}\left(u_{1}-\rho U\left(u_{1}, y_{1}, \lambda\right)\right)-P_{\mathcal{K}_{r}}\left(u_{2}-\rho U\left(u_{2}, y_{2}, \lambda\right)\right)\right\| \\
\leq & \left\|u_{1}-u_{2}-\left(h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right)\right)\right\| \\
& +\delta\left\|u_{1}-u_{2}-\rho\left(U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{2}, \lambda\right)\right)\right\| \\
\leq & \left\|u_{1}-u_{2}-\left(h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right)\right)\right\| \\
& +\delta\left\|u_{1}-u_{2}-\rho\left(U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{1}, \lambda\right)\right)\right\| \\
& +\rho\left\|U\left(u_{2}, y_{1}, \lambda\right)-U\left(u_{2}, y_{2}, \lambda\right)\right\| \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
\left\|a_{2}-b_{2}\right\| \leq & \left\|v_{1}-v_{2}-\left(p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right)\right)\right\| \\
& +\left\|P_{\mathcal{K}_{r}}\left(v_{1}-\mu V\left(x_{1}, v_{1}, \eta\right)\right)-P_{\mathcal{K}_{r}}\left(v_{2}-\mu V\left(x_{2}, v_{2}, \eta\right)\right)\right\| \\
\leq & \left\|v_{1}-v_{2}-\left(p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right)\right)\right\| \\
& +\delta\left\|v_{1}-v_{2}-\mu\left(V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{2}, v_{2}, \eta\right)\right)\right\| \\
\leq & \left\|v_{1}-v_{2}-\left(p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right)\right)\right\| \\
& +\delta\left\|v_{1}-v_{2}-\mu\left(V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{1}, v_{2}, \eta\right)\right)\right\| \\
& +\mu\left\|V\left(x_{1}, v_{2}, \eta\right)-V\left(x_{2}, v_{2}, \eta\right)\right\| . \tag{8}
\end{align*}
$$

Since h is a locally α_{h}-strongly accretive and locally β_{h}-Lipschitz continuous mapping with constants $\alpha_{h}>0$ and $\beta_{h}>0$ respectively, we have

$$
\begin{align*}
& \left\|u_{1}-u_{2}-\left(h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right)\right)\right\|^{q} \\
& \leq\left\|u_{1}-u_{2}\right\|^{q}-q\left\langle h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right), j_{q}\left(u_{1}-u_{2}\right)\right\rangle+c_{q}\left\|h\left(u_{1}, \lambda\right)-h\left(u_{2}, \lambda\right)\right\|^{q} \\
& \leq\left\|u_{1}-u_{2}\right\|^{q}-q \alpha_{h}\left\|u_{1}-u_{2}\right\|^{q}+c_{q} \beta_{h}^{q}\left\|u_{1}-u_{2}\right\|^{q} \\
& \leq\left(1-q \alpha_{h}+c_{q} \beta_{h}^{q}\right)\left\|u_{1}-u_{2}\right\|^{q} . \tag{9}
\end{align*}
$$

Similarly, since p is a locally α_{p}-relaxed accretive with respect to constant $\alpha_{p}>0$ and locally β_{p}-Lipschitz continuous mapping with respect to constant $\beta_{p}>0$, we have

$$
\begin{align*}
& \left\|v_{1}-v_{2}-\left(p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right)\right)\right\|^{q} \\
& \leq\left\|v_{1}-v_{2}\right\|^{q}-q\left\langle p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right), j_{q}\left(v_{1}-v_{2}\right)\right\rangle+c_{q}\left\|p\left(v_{1}, \eta\right)-p\left(v_{2}, \eta\right)\right\|^{q} \\
& \leq\left\|v_{1}-v_{2}\right\|^{q}+q \alpha_{p}\left\|v_{1}-v_{2}\right\|^{q}+c_{q} \beta_{p}^{q}\left\|v_{1}-v_{2}\right\|^{q} \\
& \leq\left(1+q \alpha_{p}+c_{q} \beta_{p}^{q}\right)\left\|v_{1}-v_{2}\right\|^{q} . \tag{10}
\end{align*}
$$

Since U is a locally κ_{U}-Lipschitz continuous mapping with respect to the second variable with constant $\kappa_{U}>0$ and G is a locally $\vartheta_{G}-\mathfrak{D}$-Lipschitz continuous mapping with constant $\vartheta_{G}>0$, we have

$$
\begin{align*}
\left\|U\left(u_{2}, y_{1}, \lambda\right)-U\left(u_{2}, y_{2}, \lambda\right)\right\| & \leq \kappa_{U}\left\|y_{1}-y_{2}\right\| \\
& \leq \kappa_{U} \mathfrak{D}\left(G\left(v_{1}, \lambda\right)-G\left(v_{2}, \lambda\right)\right) \\
& \leq \kappa_{U} \vartheta_{G}\left\|v_{1}-v_{2}\right\| . \tag{11}
\end{align*}
$$

Since V is a locally ζ_{V}-Lipschitz continuous mapping with respect to the first variable with constant $\zeta_{V}>0$ and T is a locally $\vartheta_{T}-\mathfrak{D}$-Lipschitz continuous mapping with constant $\vartheta_{T}>0$, we have

$$
\begin{align*}
\left\|V\left(x_{1}, v_{2}, \eta\right)-V\left(x_{2}, v_{2}, \eta\right)\right\| & \leq \zeta_{V}\left\|x_{1}-x_{2}\right\| \\
& \leq \zeta_{V} \mathfrak{D}\left(T\left(u_{1}, \eta\right)-T\left(u_{2}, \eta\right)\right) \\
& \leq \zeta_{V} \vartheta_{T}\left\|u_{1}-u_{2}\right\| . \tag{12}
\end{align*}
$$

Since U is a locally relaxed $\left(\varphi_{U}, \psi_{U}\right)$-cocoercive mapping with respect to the first variable with constants $\varphi_{U}>0$ and $\psi_{U}>0$, respectively, we have

$$
\begin{align*}
\| & u_{1}-u_{2}-\rho\left(U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{1}, \lambda\right)\right) \|^{q} \\
\leq & \left\|u_{1}-u_{2}\right\|^{q}-q \rho\left\langle U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{1}, \lambda\right), j_{q}\left(u_{1}-u_{2}\right)\right\rangle \\
\quad & +c_{q} \rho^{q}\left\|U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{1}, \lambda\right)\right\|^{q} \\
\leq & \left\|u_{1}-u_{2}\right\|^{q}-q \rho\left(-\varphi_{U}\left\|U\left(u_{1}, y_{1}, \lambda\right)-U\left(u_{2}, y_{1}, \lambda\right)\right\|^{q}+\psi_{U}\left\|u_{1}-u_{2}\right\|^{q}\right) \\
& \quad+c_{q} \rho^{q} \zeta_{U}^{q}\left\|u_{1}-u_{2}\right\|^{q} \\
\leq & \left\|u_{1}-u_{2}\right\|^{q}-q \rho\left(-\varphi_{U} \zeta_{U}^{q}\left\|u_{1}-u_{2}\right\|^{q}+\psi_{U}\left\|u_{1}-u_{2}\right\|^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}\left\|u_{1}-u_{2}\right\|^{q} \\
\leq & \left(1+q \rho \varphi_{U} \zeta_{U}^{q}-q \rho \psi_{U}+c_{q} \rho^{q} \zeta_{U}^{q}\right)\left\|u_{1}-u_{2}\right\|^{q} . \tag{13}
\end{align*}
$$

Since V is a locally relaxed $\left(\varphi_{V}, \psi_{V}\right)$-cocoercive mapping with respect to the second
variable with constants $\varphi_{V}>0$ and $\psi_{V}>0$, respectively, we have

$$
\begin{align*}
&\left\|v_{1}-v_{2}-\mu\left(V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{1}, v_{2}, \eta\right)\right)\right\|^{q} \\
& \leq\left\|v_{1}-v_{2}\right\|^{q}-q \mu\left\langle V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{1}, v_{2}, \eta\right), j_{q}\left(v_{1}-v_{2}\right)\right\rangle \\
&+c_{q} \mu^{q}\left\|V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{1}, v_{2}, \eta\right)\right\|^{q} \\
& \leq\left\|v_{1}-v_{2}\right\|^{q}-q \mu\left(-\varphi_{V}\left\|V\left(x_{1}, v_{1}, \eta\right)-V\left(x_{1}, v_{2}, \eta\right)\right\|^{q}+\psi_{V}\left\|v_{1}-v_{2}\right\|^{q}\right) \\
&+c_{q} \mu^{q} \kappa_{V}^{q}\left\|v_{1}-v_{2}\right\|^{q} \\
& \leq\left\|v_{1}-v_{2}\right\|^{q}-q \mu\left(-\varphi_{V} \kappa_{V}^{q}\left\|v_{1}-v_{2}\right\|^{q}+\psi_{V}\left\|v_{1}-v_{2}\right\|^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}\left\|v_{1}-v_{2}\right\|^{q} \\
& \leq\left(1+q \mu \varphi_{V} \kappa_{V}^{q}-q \mu \psi_{V}+c_{q} \mu^{q} \kappa_{V}^{q}\right)\left\|v_{1}-v_{2}\right\|^{q} . \tag{14}
\end{align*}
$$

It follows from (7), (9), (11) and (13) that

$$
\begin{align*}
\left\|a_{1}-b_{1}\right\| \leq & \sqrt[q]{1-q \alpha_{h}+c_{q} \beta_{h}^{q}}\left\|u_{1}-u_{2}\right\| \\
& +\delta \sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}\left\|u_{1}-u_{2}\right\| \\
& +\delta \rho \kappa_{U} \vartheta_{G}\left\|v_{1}-v_{2}\right\| \\
= & {\left[\sqrt[q]{1-q \alpha_{h}+c_{q} \beta_{h}^{q}}+\delta \sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}\right]\left\|u_{1}-u_{2}\right\| } \\
& +\delta \rho \kappa_{U} \vartheta_{G}\left\|v_{1}-v_{2}\right\| \\
\leq & \theta_{1}\left\|u_{1}-u_{2}\right\|+\theta_{2}\left\|v_{1}-v_{2}\right\| \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
\left\|a_{2}-b_{2}\right\| \leq & \sqrt[q]{1+q \alpha_{p}+c_{q} \beta_{p}^{q}}\left\|v_{1}-v_{2}\right\| \\
& +\delta \sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}\left\|v_{1}-v_{2}\right\| \\
& +\delta \mu \zeta_{V} \vartheta_{T}\left\|u_{1}-u_{2}\right\| \\
\leq & {\left[\sqrt[q]{1+q \alpha_{p}+\beta_{p}^{q}}+\delta \sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}\right]\left\|v_{1}-v_{2}\right\| } \\
& +\delta \mu \zeta_{V} \vartheta_{T}\left\|u_{1}-u_{2}\right\| \\
\leq & \theta_{3}\left\|u_{1}-u_{2}\right\|+\theta_{4}\left\|v_{1}-v_{2}\right\| \tag{16}
\end{align*}
$$

where $\theta_{1}=\sqrt[q]{1-q \alpha_{h}+\beta_{h}^{q}}+\delta \sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}$,

$$
\begin{gathered}
\theta_{2}=\delta \rho \kappa_{U} \vartheta_{G}, \quad \theta_{3}=\delta \mu \zeta_{V} \vartheta_{T} \\
\theta_{4}=\sqrt[q]{1+q \alpha_{p}+c_{q} \beta_{p}^{q}}+\delta \sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}
\end{gathered}
$$

By (15) and (16), we have

$$
\begin{equation*}
\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\| \leq \theta\left(\left\|u_{1}-u_{2}\right\|+\left\|v_{1}-v_{2}\right\|\right), \tag{17}
\end{equation*}
$$

where $\theta=\max \left\{\theta_{1}+\theta_{3}, \theta_{2}+\theta_{4}\right\}$. Hence, we have

$$
\begin{aligned}
d\left(\left(a_{1}, a_{2}\right), F\left(u_{2}, v_{2}, \lambda, \eta\right)\right) & =\inf _{\left(b_{1}, b_{2}\right) \in F\left(u_{2}, v_{2}, \lambda, \eta\right)}\left(\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\|\right) \\
& \leq \theta\left(\left\|u_{1}-u_{2}\right\|+\left\|v_{1}-v_{2}\right\|\right) \\
& =\theta\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|_{1}
\end{aligned}
$$

and

$$
d\left(\left(b_{1}, b_{2}\right), F\left(u_{1}, v_{1}, \lambda, \eta\right)\right) \leq \theta\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|_{1} .
$$

From the definition of Hausdorff metric \mathfrak{D} on $C B(\mathcal{X} \times \mathcal{X})$, we have, for all $u_{1}, u_{2}, v_{1}, v_{2} \in$ \mathcal{X} and $(\lambda, \eta) \in \Omega \times \wedge$,

$$
\begin{align*}
& \mathfrak{D}\left(F\left(u_{1}, v_{1}, \lambda, \eta\right), F\left(u_{2}, v_{2}, \lambda, \eta\right)\right) \\
& \quad=\max \left\{\sup _{\left(a_{1}, a_{2}\right) \in F\left(u_{1}, v_{1}, \lambda, \eta\right)} d\left(\left(a_{1}, a_{2}\right), F\left(u_{2}, v_{2}, \lambda, \eta\right)\right),\right. \\
& \left.\sup _{\left(b_{1}, b_{2}\right) \in F\left(u_{2}, v_{2}, \lambda, \eta\right)} d\left(\left(b_{1}, b_{2}\right), F\left(u_{1}, v_{1}, \lambda, \eta\right)\right)\right\} \\
& \quad \leq \theta\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|_{1} . \tag{18}
\end{align*}
$$

We know that $\theta<1$ from condition (4). Thus (18) implies that F is a contractive mapping which is uniform with respect to $(\lambda, \eta) \in \Omega \times \wedge$. By the Nadler fixed point Theorem [21], $F(u, v, \lambda, \eta)$ has a fixed point (\bar{u}, \bar{v}) for each $(\lambda, \eta) \in \Omega \times \wedge$. From the definition of F there exist $\bar{x} \in T(\bar{u}, \eta)$ and $\bar{y} \in G(\bar{v}, \lambda)$ such that (3) holds. By Lemma 2.6, $S(\lambda, \eta) \neq \emptyset$.

Now we have to prove that $S(\lambda, \eta)$ is closed. In fact, for each $(\lambda, \eta) \in \Omega \times \wedge$, let $\left(u_{n}, v_{n}\right) \in S(\lambda, \eta)$ and $u_{n} \rightarrow u_{0}, v_{n} \rightarrow v_{0}$ as $n \rightarrow \infty$. Then we have

$$
\left(u_{n}, v_{n}\right) \in F\left(u_{n}, v_{n}, \lambda, \eta\right), n=1,2, \cdots .
$$

And also, we have

$$
\mathfrak{D}\left(F\left(u_{n}, v_{n}, \lambda, \eta\right), F\left(u_{0}, v_{0}, \lambda, \eta\right)\right) \leq \theta\left\|\left(u_{n}, v_{n}\right)-\left(u_{0}, v_{0}\right)\right\|_{1} .
$$

It follows that

$$
\begin{aligned}
d\left(\left(u_{0}, v_{0}\right), F\left(u_{0}, v_{0}, \lambda, \eta\right)\right) \leq & \left\|\left(u_{0}, v_{0}\right)-\left(u_{n}, v_{n}\right)\right\|_{1} \\
& +d\left(\left(u_{n}, v_{n}\right), F\left(u_{n}, v_{n}, \lambda, \eta\right)\right) \\
& +\mathfrak{D}\left(F\left(u_{n}, v_{n}, \lambda, \eta\right), F\left(u_{0}, v_{0}, \lambda, \eta\right)\right) \\
\leq & (1+\theta)\left\|\left(u_{n}, v_{n}\right)-\left(u_{0}, v_{0}\right)\right\|_{1} \\
\rightarrow & 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence, we have $\left(u_{0}, v_{0}\right) \in F\left(u_{0}, v_{0}, \lambda, \eta\right)$. From Lemma 2.6, we have $\left(u_{0}, v_{0}\right) \in$ $S(\lambda, \eta)$. Therefore $S(\lambda, \eta)$ is a nonempty closed subset of $\mathcal{X} \times \mathcal{X}$. This completes the proof.

Theorem 2.8. The hypothesises of Theorem 2.7 are hold and assume that for any $u, v \in$ \mathcal{X}, the mappings $\lambda \rightarrow U(u, v, \lambda), \eta \rightarrow V(u, v, \eta), \lambda \rightarrow h(u, \lambda), \eta \rightarrow p(v, \eta)$ are locally Lipschitz continuous with constants $\ell_{U}, \ell_{V}, \ell_{p}, \ell_{h}$, respectively. Let $\eta \rightarrow T(u, \eta)$ be a locally $\ell_{T}-\mathfrak{D}$-Lipschitz continuous mapping and $\lambda \rightarrow G(v, \lambda)$ be a locally $\ell_{G}-\mathfrak{D}$ Lipschitz continuous mapping for $u, v \in \mathcal{X}$. Let $P_{\mathcal{K}_{r}}$ be a Lipschitz continuous operator with constant $\delta=\frac{r}{r-r^{\prime}}$. Then the solution $S(\lambda, \eta)$ for a system of parametric general regularized nonconvex variational inequalities is locally Lipschitz continuous from $\Omega \times \wedge$ to $\mathcal{X} \times \mathcal{X}$.

Proof. By Theorem 2.7, for any $(t, \lambda, \bar{\lambda}) \in \mathcal{X} \times \Omega \times \Omega$ and $(z, \eta, \bar{\eta}) \in \mathcal{X} \times \wedge \times \wedge$, $S(\lambda, \eta)$ and $S(\bar{\lambda}, \bar{\eta})$ are nonempty closed subsets. Also, for each $(\lambda, \eta),(\bar{\lambda}, \bar{\eta}) \in \Omega \times \wedge$, $F(u, v, \lambda, \eta)$ and $F(u, v, \bar{\lambda}, \bar{\eta})$ are contractive mappings with some constant $\theta \in(0,1)$ and have fixed points $(u(\lambda, \eta), v(\lambda, \eta))$ and $(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}))$, respectively. Hence, by Lemma 2.4, for any fixed $(\lambda, \eta),(\bar{\lambda}, \bar{\eta}) \in \Omega \times \wedge$, we have

$$
\begin{align*}
& \mathfrak{D}(S(\lambda, \eta), S(\bar{\lambda}, \bar{\eta})) \\
& \leq \frac{1}{1-\theta} \sup _{(u, v) \in \mathcal{X} \times \mathcal{X}} \mathfrak{D}(F(u(\lambda, \eta), v(\lambda, \eta), \lambda, \eta), F(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}, \bar{\eta})) . \tag{19}
\end{align*}
$$

For any $\left(a_{1}, a_{2}\right) \in F(u(\lambda, \eta), v(\lambda, \eta), \lambda, \eta)$, there exists $x(\lambda, \eta) \in T(u(\lambda, \eta), \eta)$, $y(\lambda, \eta) \in G(v(\lambda, \eta), \lambda)$ such that

$$
\begin{align*}
& a_{1}=u(\lambda, \eta)-h(u(\lambda, \eta), \lambda)+P_{\mathcal{K}_{r}}(u(\lambda, \eta)-\rho U(u(\lambda, \eta), y(\lambda, \eta), \lambda)) \\
& a_{2}=v(\lambda, \eta)-p(v(\lambda, \eta), \eta)+P_{\mathcal{K}_{r}}(v(\lambda, \eta)-\mu V(x(\lambda, \eta), v(\lambda, \eta), \eta)) . \tag{20}
\end{align*}
$$

From the Nadler Theorem [21], there exists $x(\bar{\lambda}, \bar{\eta}) \in T(u(\bar{\lambda}, \bar{\eta}), \bar{\eta}), y(\bar{\lambda}, \bar{\eta})$ $\in G(v(\bar{\lambda}, \bar{\eta}), \bar{\lambda})$ such that

$$
\begin{align*}
& \|x(\lambda, \eta)-x(\bar{\lambda}, \bar{\eta})\| \leq \mathfrak{D}(T(u(\lambda, \eta), \eta), T(u(\bar{\lambda}, \bar{\eta}), \bar{\eta})), \\
& \|y(\lambda, \eta)-y(\bar{\lambda}, \bar{\eta})\| \leq \mathfrak{D}(G(v(\lambda, \eta), \lambda), G(v(\bar{\lambda}, \bar{\eta}), \bar{\lambda})) . \tag{21}
\end{align*}
$$

Let

$$
\begin{align*}
& b_{1}=u(\bar{\lambda}, \bar{\eta})-h(u(\bar{\lambda}, \bar{\eta}), \bar{\lambda})+P_{\mathcal{K}_{r}}(u(\bar{\lambda}, \bar{\eta})-\rho U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \bar{\lambda})), \\
& b_{2}=v(\bar{\lambda}, \bar{\eta})-p(v(\bar{\lambda}, \bar{\eta}), \bar{\eta})+P_{\mathcal{K}_{r}}(v(\bar{\lambda}, \bar{\eta})-\mu V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\eta})) . \tag{22}
\end{align*}
$$

Then, we have

$$
\left(b_{1}, b_{2}\right) \in F(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}, \bar{\eta}) .
$$

From (20), (22) and Proposition 1.7, we have

$$
\begin{align*}
& \left\|a_{1}-b_{1}\right\| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\| \\
& +\|h(u(\bar{\lambda}, \bar{\eta}), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \bar{\lambda})\| \\
& +\| P_{\mathcal{K}_{r}}(u(\lambda, \eta)-\rho U(u(\lambda, \eta), y(\lambda, \eta), \lambda)) \\
& -P_{\mathcal{K}_{r}}(u(\bar{\lambda}, \bar{\eta})-\rho U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \bar{\lambda})) \| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\| \\
& +\|h(u(\bar{\lambda}, \bar{\eta}), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \bar{\lambda})\| \\
& +\| P_{\mathcal{K}_{r}}(u(\lambda, \eta)-\rho U(u(\lambda, \eta), y(\lambda, \eta), \lambda)) \\
& -P_{\mathcal{K}_{r}}(u(\bar{\lambda}, \bar{\eta})-\rho U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)) \| \\
& +\| P_{\mathcal{K}_{r}}(u(\bar{\lambda}, \bar{\eta})-\rho U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)) \\
& -P_{\mathcal{K}_{r}}(u(\bar{\lambda}, \bar{\eta})-\rho U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \bar{\lambda})) \| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\| \\
& +\|h(u(\bar{\lambda}, \bar{\eta}), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \bar{\lambda})\| \\
& +\delta\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda))\| \\
& +\delta\|u(\bar{\lambda}, \bar{\eta})-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \bar{\lambda}))\| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\| \\
& +\|h(u(\bar{\lambda}, \bar{\eta}), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \bar{\lambda})\| \\
& +\delta\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda))\| \\
& +\delta \rho\|U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)\| \\
& +\delta \rho\|U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \bar{\lambda})\| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\|+\ell_{h}\|\lambda-\bar{\lambda}\| \\
& +\delta\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda))\| \\
& +\delta \rho\|U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)\| \\
& +\delta \rho \ell_{U}\|\bar{\lambda}-\bar{\lambda}\| \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\|+\ell_{h}\|\lambda-\bar{\lambda}\| \\
& +\delta\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda))\| \\
& +\delta \rho\|U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)\| \\
& +\delta \rho \ell_{U}\|\bar{\lambda}-\bar{\lambda}\| \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
&\left\|a_{2}-b_{2}\right\| \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-(p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta))\| \\
&+\|p(v(\bar{\lambda}, \bar{\eta}), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \bar{\eta})\| \\
&-\| P_{\mathcal{K}_{r}}(v(\lambda, \eta)-\mu V(x(\lambda, \eta), v(\lambda, \eta), \eta)) \\
&-P_{\mathcal{K}_{r}}(v(\bar{\lambda}, \bar{\eta})-\mu V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\eta})) \| \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-(p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta))\| \\
&+\|p(v(\bar{\lambda}, \bar{\eta}), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \bar{\eta})\| \\
&+\| P_{\mathcal{K}_{r}}(v(\lambda, \eta)-\mu V(x(\lambda, \eta), v(\lambda, \eta), \eta)) \\
&-P_{\mathcal{K}_{r}}(v(\bar{\lambda}, \bar{\eta})-\mu V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \eta)) \| \\
&+\| P_{\mathcal{K}_{r}}(v(\bar{\lambda}, \bar{\eta})-\mu V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \eta)) \\
&-P_{\mathcal{K}_{r}}(v(\bar{\lambda}, \bar{\eta})-\mu V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda})) \| \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-(p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta))\| \\
&+\|p(v(\bar{\lambda}, \bar{\eta}), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \bar{\eta})\| \\
&+\delta\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-\mu(V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta))\| \\
&+\delta\|v(\bar{\lambda}, \bar{\eta})-v(\bar{\lambda}, \bar{\eta})-\mu(V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \eta)-V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\eta}))\| \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-(p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta))\|+\ell_{p}\|\eta-\bar{\eta}\| \\
&+\delta\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-\mu(V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta))\| \\
&+\delta \mu\|V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta)-V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \eta)\|+\delta \mu \ell_{V}\|\eta-\bar{\eta}\| . \tag{24}
\end{align*}
$$

Now, we know that

$$
\begin{align*}
&\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-(h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda))\|^{q} \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q}-q\left\langle h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda), j_{q}(u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta}))\right\rangle \\
& \quad+c_{q}\|h(u(\lambda, \eta), \lambda)-h(u(\bar{\lambda}, \bar{\eta}), \lambda)\|^{q} \\
& \leq\left(1-q \alpha_{h}+c_{q} \beta_{h}^{q}\right)\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q}, \tag{25}\\
&\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})-\rho(U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda))\|^{q} \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q} \\
&-q \rho\left\langle U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda), j_{q}(u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta}))\right\rangle \\
&+c_{q} \rho^{q}\|U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)\|^{q} \\
& \leq\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q} \\
& \quad-q \rho\left(-\varphi_{U}\|U(u(\lambda, \eta), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)\|^{q}\right. \\
&\left.-\psi_{U}\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q} \\
& \leq\left(1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}\right)\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|^{q} \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& \|U(u(\bar{\lambda}, \bar{\eta}), y(\lambda, \eta), \lambda)-U(u(\bar{\lambda}, \bar{\eta}), y(\bar{\lambda}, \bar{\eta}), \lambda)\| \\
& \leq \kappa_{U}\|y(\lambda, \eta)-y(\bar{\lambda}, \bar{\eta})\| \\
& \leq \kappa_{U} \mathfrak{D}(G(v(\lambda, \eta), \lambda)-G(v(\bar{\lambda}, \bar{\eta}), \bar{\lambda})) \\
& \leq \kappa_{U}[\mathfrak{D}(G(v(\lambda, \eta), \lambda)-G(v(\bar{\lambda}, \bar{\eta}), \lambda))+\mathfrak{D}(G(v(\bar{\lambda}, \bar{\eta}), \lambda)-G(v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}))] \\
& \leq \kappa_{U}\left[\vartheta_{G}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|+\ell_{G}\|\lambda-\bar{\lambda}\|\right] . \tag{27}
\end{align*}
$$

And also, we know that

$$
\begin{align*}
& \| v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-(p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta)) \|^{q} \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}-q\left\langle p(v(\lambda, \eta), \eta)-p(v(\bar{\lambda}, \bar{\eta}), \eta), j_{q}(v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta}))\right\rangle \\
&+c_{q}\|p(v(\lambda, \eta), \eta)-p(v(\lambda, \eta), \eta)\|^{q} \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}+q \alpha_{p}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}+c_{q} \beta_{p}^{q}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \\
& \leq\left(1+q \alpha_{p}+c_{q} \beta_{p}^{q}\right)\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}, \tag{28}\\
&\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})-\mu(V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta))\|^{q} \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \\
&-q \mu\left\langle V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta), j_{q}(v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta}))\right\rangle \\
&+c_{q} \mu^{q}\|V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta)\|^{q} \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \\
&-q \mu\left(-\varphi_{V}\|V(x(\lambda, \eta), v(\lambda, \eta), \eta)-V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta)\|^{q}\right. \\
&\left.+\psi_{V}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \\
& \leq\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}-q \mu\left(-\varphi_{V} \kappa_{V}^{q}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}\right. \\
&\left.+\psi_{V}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \\
& \leq\left(1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}\right)\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|^{q} \tag{29}
\end{align*}
$$

and

$$
\begin{align*}
& \|V(x(\lambda, \eta), v(\bar{\lambda}, \bar{\eta}), \eta)-V(x(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \eta)\| \\
& \leq \zeta_{V}\|x(\lambda, \eta)-x(\bar{\lambda}, \bar{\eta})\| \\
& \leq \zeta_{V} \mathfrak{D}(T(u(\lambda, \eta), \eta), T(u(\bar{\lambda}, \bar{\eta}), \bar{\eta})) \\
& \leq \zeta_{V}[\mathfrak{D}(T(u(\lambda, \eta), \eta), T(u(\bar{\lambda}, \bar{\eta}), \eta))+\mathfrak{D}(T(u(\bar{\lambda}, \bar{\eta}), \eta), T(u(\bar{\lambda}, \bar{\eta}), \bar{\eta}))] \\
& \leq \zeta_{V}\left[\vartheta_{T}\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|+\ell_{T}\|\eta-\bar{\eta}\|\right] . \tag{30}
\end{align*}
$$

Therefore, from (23)-(30), we have

$$
\begin{align*}
&\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\| \\
& \leq {\left[\sqrt[q]{1-q \alpha_{h}+c_{q} \beta_{h}^{q}}+\delta \sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}+\delta \mu \zeta_{V} \vartheta_{T}\right] } \\
& \times\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\| \\
&+\left[\sqrt[q]{1+q \alpha_{p}+c_{q} \beta_{p}^{q}}+\delta \sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}+\delta \rho \kappa_{U} \vartheta_{G}\right] \\
& \times\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\| \\
&+\left[\ell_{h}+\delta \rho \ell_{U}+\mu \delta \kappa_{U} \ell_{G}\right]\|\lambda-\bar{\lambda}\|+\left[\ell_{p}+\delta \mu \ell_{V}+\rho \delta \zeta_{V} \ell_{T}\right]\|\eta-\bar{\eta}\| \\
&= \theta_{1}\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|+\theta_{2}\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|+J_{1}\|\lambda-\bar{\lambda}\|+J_{2}\|\eta-\bar{\eta}\| \\
& \leq \theta[\|u(\lambda, \eta)-u(\bar{\lambda}, \bar{\eta})\|+\|v(\lambda, \eta)-v(\bar{\lambda}, \bar{\eta})\|]+J_{1}\|\lambda-\bar{\lambda}\|+J_{2}\|\eta-\bar{\eta}\| \\
& \leq \theta\left[\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\|\right]+J_{1}\|\lambda-\bar{\lambda}\|+J_{2}\|\eta-\bar{\eta}\|, \tag{31}
\end{align*}
$$

where

$$
\begin{gathered}
\theta_{1}=\sqrt[q]{1-q \alpha_{h}+c_{q} \beta_{h}^{q}}+\delta \sqrt[q]{1-q \rho\left(\psi_{U}-\varphi_{U} \zeta_{U}^{q}\right)+c_{q} \rho^{q} \zeta_{U}^{q}}+\delta \mu \zeta_{V} \vartheta_{T} \\
\theta_{2}=\sqrt[q]{1+q \alpha_{p}+c_{q} \beta_{p}^{q}}+\delta \sqrt[q]{1-q \mu\left(\psi_{V}-\varphi_{V} \kappa_{V}^{q}\right)+c_{q} \mu^{q} \kappa_{V}^{q}}+\delta \rho \kappa_{U} \vartheta_{G} \\
J_{1}=\ell_{h}+\delta \rho \ell_{U}+\mu \delta \kappa_{U} \ell_{G} \\
J_{2}=\ell_{p}+\delta \mu \ell_{V}+\rho \delta \zeta_{V} \ell_{T} \\
\theta=\max \left\{\theta_{1}, \theta_{2}\right\}
\end{gathered}
$$

It follows from (4) and (31) that

$$
\begin{aligned}
\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\| & \leq \frac{1}{1-\theta}\left[J_{1}\|\lambda-\bar{\lambda}\|+j_{2}\|\eta-\bar{\eta}\|\right] \\
& \leq \frac{1}{1-\theta} \max \left\{J_{1}, J_{2}\right\}(\|\lambda-\bar{\lambda}\|+\|\eta-\bar{\eta}\|) \\
& \leq \wp(\|\lambda-\bar{\lambda}\|+\|\eta-\bar{\eta}\|),
\end{aligned}
$$

where $\wp=\frac{1}{1-\theta} \max \left\{J_{1}, J_{2}\right\}$. Hence, we have

$$
\begin{align*}
& d\left(\left(a_{1}, a_{2}\right), F(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}, \bar{\eta})\right) \\
& \quad=\inf _{\left(b_{1}, b_{2}\right) \in F(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}, \bar{\eta})}\left(\left\|a_{1}-b_{1}\right\|+\left\|a_{2}-b_{2}\right\|\right) \\
& \quad \leq \wp(\|\lambda-\bar{\lambda}\|+\|\eta-\bar{\eta}\|) \\
& \quad=\wp\|(\lambda, \eta)-(\bar{\lambda}, \bar{\eta})\|_{1} . \tag{32}
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
d\left(\left(b_{1}, b_{2}\right), F(u(\lambda, \eta), v(\lambda, \eta), \lambda, \eta)\right) \leq \wp\|(\lambda, \eta)-(\bar{\lambda}, \bar{\eta})\|_{1} . \tag{33}
\end{equation*}
$$

Hence from (19),(32) and (33), we have

$$
\begin{aligned}
& \mathfrak{D}(S(\lambda, \eta), S(\bar{\lambda}, \bar{\eta})) \\
& \leq \frac{1}{1-\theta} \sup _{(u, v) \in H \times H} \mathfrak{D}(F(u(\lambda, \eta), v(\lambda, \eta), \lambda, \eta), F(u(\bar{\lambda}, \bar{\eta}), v(\bar{\lambda}, \bar{\eta}), \bar{\lambda}, \bar{\eta})) \\
& \leq \frac{\wp}{1-\theta}\|(\lambda, \eta)-(\bar{\lambda}, \bar{\eta})\| .
\end{aligned}
$$

This means that $S(\lambda, \eta)$ is Lipschitz continuous with respect to $(\lambda, \eta) \in \Omega \times \wedge$.

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) Grant funded by Ministry of Education of the republic of Korea (2014046293).

References

[1] R. P. Agarwal, N. J. Huang and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi variational inclusions, Appl. Math. Letters, 17(3)(2004), 345-352.
[2] G. A. Anastassiou, Salahuddin and M. K. Ahmad, Sensitivity analysis for generalized set valued variational inclusions, J. Concrete Appl. Math., 11(3-4)(2013), 292-302.
[3] J. Balooee and J. K. Kim, Some remarks on regularized nonconvex variational inequalities, Journal of Inequalities and Applications, 2013, 2013:531, 16 pages.
[4] M. Bounkhel and D. L. Azzam, Existence results on the second order nonconvex sweeping process with unbounded perturbations, Set Valued Analysis, 12(2004), 291-318.
[5] M. Bounkhel and L. Thibault, Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process, Preprint Centro de Modela Minto Matematica (CMM), Universidad de chile 2000.
[6] M. Bounkhel, L. Tadj and A. Hamdi, Iterative schemes to solve nonconvex variational problems, J. Inequal. Pure Appl. Math., 4(2003), 1-14.
[7] S. S. Chang, H. W. J. Lee and C. K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Letters, 20(3)(2007), 329334.
[8] F. H. Clarke, Y. S. Ledyaw, R. J. Stern and P. R. Wolenski, Nonsmooth analysis and control theory, Springer-Verlag, New York, 1998.
[9] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res., 13(3) (1988), 421-434.
[10] A. Farajzadeh and Salahuddin, Sensitivity analysis for nonlinear setvalued variational equations in Banach framework, Journal of Function Spaces and Applications, Volume 2013, Article ID: 258543 (2013), 6 pages, http://dx.doi.org/10.1155/2013/258543.
[11] J. U. Jeong, A system of parametric generalized nonlinear mixed quasi variational inclusionsin L_{p}-spaces, J. Appl. Math. Comput., 19 (1-2) (2005), 493-506.
[12] J. U. Jeong, Sensitivity analysis for a new system of variational inequalities, Commun. Korean. Math. Soc., 25 (3) (2010), 427-441.
[13] M. F. Khan and Salahuddin, Sensitivity analysis for completely generalized nonlinear variational inclusions, East Asian Math. Jour., 25(1) (2009), 45-53.
[14] J. K. Kim, H. Y. Lan and Y.J. Cho, Solution sensitivity of generalized nonlinear parametric (A, η, m)-proximal operator system of equations in Hilbert spaces, Journal of Inequalities and Applications, 2014, 2014:362, 17 pages.
[15] J. K. Kim, Salahuddin and A. Farajzadeh, A new system of extended nonlinear regularized nonconvex set-valued variational inequalities, Commu. Appl. Nonlinear Anal., 21(3) (2014), 21-40.
[16] J. K. Kim and K.S. Kim, On new systems of generalized nonlinear mixed quasivariational inequalities with two-variable operators, Taiwanese J. math., 11(3) (2007), 8867-881.
[17] J. K. Kim and D.S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal., 11(1) (2004), 235-243.
[18] B. S. Lee and Salahuddin, Sensitivity analysis for generalized nonlinear quasi variational inclusions, Nonlinear Anal. Forum, 8(2)(2004), 223-232.
[19] T. C. Lim, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110 (2)(2005), 436-441.
[20] R. M. Mohapatra and R. U. Verma, Sensitivity analysis for cocoercivity monotone variational inclusions and (A, η)-maximal monotonicity, J. Appl. Math. Comput., 26 (2008).
[21] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475488.
[22] Y. H. Pan, Sensitivity analysis for general quasi variational inequalities in parametric form, Sichuan Shifan Daxue, Xuebao Ziran Kexue Ban. 19 (2)(1996), 56-59.
[23] Y. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper Res., 14(1989), 410-432.
[24] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352(2000), 5231-5249.
[25] Salahuddin, Some Aspects of Variational Inequalities, Ph. D. Thesis, AMU, Aligarh, India, 2000.
[26] Salahuddin, Parametric generalized set valued variational inclusions and resolvent equations, J. Math. Anal. Appl., 298(2004), 146-156.
[27] R. U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl., 121(1) (2004), 203-210.
[28] N. D. Yen, Holder cobntinuity of solutions to a parametric variational inequalities Appl. Math. Optim., 31(1995), 245-255.
[29] H. K. Xu, A regularization methodfor the proximal point algorithm, J. Glob. Optim., 36 (2006), 115-125.

