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Abstract

In this paper, we introduce the inverse closed domination in graphs. Some interest-
ing relationships are known between closed domination and inverse closed domi-
nation. In this paper, we also investigate the closed domination in the join of graphs.
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1. Introduction

Domination as a graph theoretic concept was first introduced by C. Berge in 1958 and O.
Ore in 1962. It was O. Ore [8] who introduced the term dominating set and domination
number. In 1977, E.J. Cockayne and S.T. Hedetniemi [2] presented a survey on published
works in domination. Since a publication of the said survey, domination theory has been
studied extensively. In their book, T.W. Haynes, S.T. Hedetniemi and P.J. Slater listed
in [4] over 1200 references in this topic including over 75 variations. The paper of Kulli
and Sigarkanti [7] in 1991 which initiated the study of inverse domination in graphs and
further read in [3, 6, 10]. In this study we introduced a new domination parameter, the
inverse closed domination in graphs and give some important results.

The graph G denotes a graph which is simple and undirected. The symbol V (G)

and E(G) denote the vertex set and edge set of G, respectively. We write uv to denote
the edge joining the vertices u and v. The order of G refers to the cardinality |V (G)| of
V (G), and by the size of G mean |E(G)|. If E(G) = ∅, G is called an empty graph.

1This research is partially funded by Cebu Normal University, Philippines.
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Any graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a non-
empty S ⊆ V (G), 〈S〉 denotes the subgraph H of G for which |E(H)| is the maximum
size of a subgraph of G with vertex set S.

An edge e of G is said to be incident to vertex v whenever e = uv for some u ∈ V (G).
The symbol G − v denotes the resulting subgraph of G after removing v from G and all
edges in G incident to v.If u, v ∈ V (G), the symbol G + uv denotes the graph obtained
from G by adjoining to G the edge uv.

Two distinct vertices u and v of G are neighbors in G if uv ∈ E(G). The closed
neighborhood NG[v] of a vertex v of G is the set consisting of v and every neighbor of
v in G. Any S ⊆ V (G) is a dominating set in G if

⋃

v∈S

NG[v] = V (G). A dominating

set in G is also called a γ -set in G. The minimum cardinality γ (G) of a γ -set in G is
the domination number of G. Any γ -set in G of cardinality γ (G) is referred to as the
minimum γ -set in G.

A dominating set is called a closed dominating set if given a graph G, choose
v1 ∈ V (G) and put S1 = {v1}. if NG[S1] �= V (G), choose v2 ∈ V (G) \ S1 and
put S2 = {v1, v2}. Where possible, k ≥ 3, choose vk ∈ V (G) \ NG[Sk−1] and put
Sk = {v1, v2, . . . , vk}. There exists a positive k such that NG[Sk] = V (G). The small-
est cardinality of a closed dominating set is called the closed domination number of
G, and denoted by γ (G). A close dominating set of cardinality γ (G) is called γ -set
of G. A closed dominating set S is said to be in its canonical form if it is written as
S = {v1, v2, . . . , vk}, where the vertices vj satisfy the properties given above.

Let D be a minimum dominating set in G. The dominating set S ⊆ V (G) \ D is
called an inverse dominating set with respect to D. The minimum cardinality of inverse
dominating set is called an inverse domination number of G and is denoted by γ −1(G).
An inverse dominating set of cardinality γ −1(G) is called γ −1-set of G. Motivated by
the definition of inverse domination in graph, we define a new domination parameter. Let
C be a minimum closed dominating set in G. The closed dominating set S ⊆ V (G) \ C

is called an inverse closed dominating set with respect to C. The minimum cardinality
of an inverse closed dominating set is called an inverse closed domination number of G

and is denoted by γ −1(G). An inverse closed dominating set of cardinality γ −1(G) is
called γ −1-set of G.

2. Results

A classical result in the domination theory which was introduced by Ore in 1962 state
the following theorem:

Theorem 2.1. [8] Let G be a graph with no isolated vertex. If S ⊆ V (G) is a γ -set ,
then V (G) \ S is also a dominating set in G.

This motivate a new domination parameter, the inverse closed domination in graphs.
Theorem 2.1 guarantees the existence of γ −1-set in some graph G. Since the inverse
closed dominating set of any graphGof ordern cannot beV (G), it follows thatγ −1(G) �=
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n and hence γ −1(G) < n.
Since γ −1(G) does not always exists in a connected nontrivial graph G, we denote by

G−1
c be a family of all graphs with inverse closed dominating set. Thus, for the purpose

of this study, it is assumed that all connected nontrivial graphs considered belong to the
family G−1

c . From the definitions, the following result is immediate.

Remark 2.2. Let G be a connected graph of order n ≥ 2. Then

(i) 1 ≤ γ −1(G) < n;

(ii) γ (G) ≤ γ −1(G) ≤ γ −1(G).

Consider, for example, the graph G in Figure 1. We have the set {a,b,c} is the
minimum dominating set, thus γ (G) = 3. The set {a,b, j,k} is the minimum closed
dominating set, thus γ (G) = 4. The set {c,d,e,f,g,h,i} is the minimum inverse closed
dominating set, thus γ −1(G) = 7 and the set {d,e,f,g,h,i,j,k} is the minimum inverse
dominating set, thus γ −1(G) = 8.

Figure 1: Graph G where γ (G) ≤ γ −1(G) ≤ γ −1(G).

Since γ (G) is the order of the minimum closed dominating set of G, it follows that
γ (G) ≤ γ −1(G). The following remark holds.

Remark 2.3. Let G be a connected nontrivial graph of order n ≥ 2. Then γ (G) ≤
γ −1(G).

Theorem 2.4. Let G be a connected nontrivial graph of order n ≥ 2. Then γ −1(G) = 1
if and only if either G = K2 or G = K2 + G∗, for some graph G∗.

Proof. If G = K2 or G = K2 + G∗ for some graph G∗, then γ −1(G) = 1. Suppose
that γ −1(G) = 1, then γ (G) = 1 by Remark 2.3, thus, G contains two distinct vertices
u and v such that {u} and {v} are closed dominating sets in G. �

Theorem 2.5. Let G be a connected nontrivial graph of order n ≥ 2. Then γ −1(G) =
n − 1 if and only if G = K1,n−1.

Proof. Suppose that γ −1(G) = n − 1, and let S ⊆ V (G) be a γ −1-set in G. Let
v ∈ V (G) ⊆ S. Then NG[v] = V (G), that is, vx ∈ E(G) for all x ∈ V (G) \ {v}.
Now we claim that xy /∈ E(G) for all x, y ∈ V (G) \ {v}. Suppose that there exists
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x, y ∈ V (G) \ {v} such that xy ∈ E(G). In particular,

v, y ∈ NG[x] ⊆ NG[S \ {y}].
Thus, S \ {y} is a γ −1-set in G. This is a contradiction. Therefore, G = K1,n−1.

For the converse, suppose that G = K1,n−1, then {v} is a γ -set in G. Let S =
V (G) \ {v}. Then S is a γ −1-set , and γ −1(G) = n − 1. �

3. Join of graphs

The Join of two graphs G and H is the graph G+H with vertex-set V (G+H) = V (G)
•∪

V (H) and edge-set E(G + H) = E(G)
•∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Clearly, γ −1(G + K1) = γ (G). We consider G + H with nontrivial graphs G and
H . For any u ∈ V (G) and v ∈ V (H), the set {u, v} is a closed dominating set in G+H .
Thus, γ (G + H) ≤ 2.

Lemma 3.1. For nontrivial graphs G and H , γ −1(G + H) ≤ 2.

Proof. By the preceding remark, γ (G + H) ≤ 2. First, we consider the case where
γ (G + H) = 1, and suppose that S = {v} is a closed dominating set in G + H . Assume
v ∈ V (G). Take u ∈ V (G) \ {v} and w ∈ V (H). Then D = {u, w} ⊆ V (G + H) \ S

and D is a closed dominating set in G + H . Thus γ −1(G + H) ≤ |D| = 2. Next, we
assume that γ (G + H) = 2. Pick any u ∈ V (G) and v ∈ V (H). Then S = {u, v} is a
γ -set set in G + H . Thus, for any x ∈ V (G) \ S and y ∈ V (H) \ S, the set D = {x, y}
is a γ −1-set in G + H . Since G and H are nontrivial graphs, such D exists. Thus
γ −1(G + H) = |D| = 2. �

Proposition 3.2. Let G and H be nontrivial graphs. If γ −1(G+H) = 1, then γ (G) = 1
or γ (H) = 1 The converse, however, is not necessarily true.

Proof. The assumption implies that γ (G+H) = 1. Therefore, γ (G) = 1 or γ (H) = 1.
To prove the second statement, consider the graph K1,5 +P7. Note that γ (K1,5 ) = 1
but γ −1(K1,5 +P7) = 2. �

Theorem 3.3. Let G and H be nontrivial graphs. Then γ −1(G + H) = 1 if and only if
one of the following is true:

(i) γ (G) = 1 and γ (H) = 1;
(ii) γ (G) = 1 and G has at least two minimum γ -sets;

(iii) γ (H) = 1 and H has at least two minimum γ -sets.

Proof. Suppose that (i) holds and {v} ⊆ V (G) and {w} ⊆ V (H) are closed dominating
sets in G and H , respectively. Then {v} and {w} are minimum closed dominating sets in
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G + H . The conclusion follows from the fact that since {v} ⊆ V (G + H) \ {w}, {v} is a
γ −1-set in G. Now, suppose that (ii) holds and let {u} and {v} be closed dominating sets
in G. Then {u} and {v} are closed dominating sets in G+H . Since {u} ⊆ V (G+H)\{v},
γ −1(G + H) = 1. Similarly, if (iii) holds, then γ −1(G + H) = 1.

Conversely, suppose that γ −1(G + H) = 1. By Proposition 3.2, γ (G) = 1 or
γ (H) = 1. If γ (G) = 1 = γ (H), then we are done. Suppose that γ (H) �= 1.
Then γ (G) = 1. Now, let {v} be a minimum γ −1-set in G + H . Then, in particular,
V (H) ⊆ NG+H [v]. Since γ (H) ≥ 2, v /∈ V (H). Thus v ∈ V (G). Necessarily, {v} is a
γ -set in G. Therefore, G has at least two γ -sets and (ii) holds. Similarly, if γ (G) �= 1,
then (iii) holds. �

Corollary 3.4. Let G be any graph with no isolated vertex. Then γ −1(G + H) = 1.

if and only if G = Kp, p ≥ 2, or G = H + K for some nontrivial graphs H and K

satisfying one of the following:

(i) γ (H) = 1 and γ (K) = 1

(ii) γ (H) = 1 and H has at least two minimum γ -sets;

(iii) γ (K) = 1 and K has at least two minimum γ -sets.

Proof. First, note that γ −1(Kp) = 1 for all p ≥ 2. Suppose that G is a noncomplete
graph. Suppose, further, that γ −1(Kp) = 1. Then there exist two distinct vertices u and
v of G such that {u} and {v} are γ -sets in G. Moreover, uv ∈ E(G). Put H = 〈{u, v}〉
and K = 〈G − {u, v}〉. Then G = H + K . Furthermore, {u} and {v} are two distinct
γ -sets in H . Consequently, (ii) holds.

The converse follows immediately from Theorem 3.3. �

Proposition 3.5. Let G and H be nontrivial graphs. Then γ −1(G+H) = 2 if and only
if any of the following is true:

(i) γ (G) ≥ 2 and γ (H) ≥ 2.

(ii) γ (G) = 1 and γ (H) ≥ 2 but G �= K1 + (K1 +
⋃

j

Gj ) for any graphs Gj .

Proof. Suppose that γ −1(G + H) = 2. Then either γ (G + H) = 1 or γ (G + H) = 2.
It is clear that if γ (G + H) = 2, then γ (G) ≥ 2 and γ (H) ≥ 2. Suppose that
γ −1(G + H) = 1. Then γ (G) = 1 or γ (H) = 1. Assume that γ (G) = 1 . Then
G = {v} +

⋃

j

Gj for some components Gj of G. Thus,

γ −1(G + H) = γ (H +
⋃

j

Gj ) = 2.
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Necessarily, γ (H) ≥ 2 and γ (
⋃

j

Gj ) ≥ 2. This means that, in particular, G �=

K1 + (K1 +
⋃

j

Gj ).

To prove the converse, we first consider the case where γ (G) ≥ 2 and γ (H) ≥ 2.
Then γ (G + H) = 2. Since γ (G + H) ≤ γ −1(G + H), then γ −1(G + H) ≥ 2. Now
pick u ∈ V (G) and v ∈ V (H), and let x ∈ V (G) \ {u} and y ∈ V (H) \ {v}. Then
S = {u, v} is a minimum dominating set in G + H so that D = {x, y} is a γ −1-set in
G + H . Thus γ −1(G + H) ≤ 2. Accordingly, γ −1(G + H) = 2.

Next, we proceed with the case where γ (G) = 1 and γ (H) ≥ 2 but G �= K1 +
[K1 +

⋃

j

Gj ]. Let S = {u} ⊆ V (G) be a closed dominating set in G. Then S is a closed

dominating set in G + H . We consider

(G + H) − u = (G − u) + H.

The condition for G implies that G−u �= K1+
⋃

j

Gj for any components Gj of G. Thus,

γ (G−u) ≥ 2. If γ (G−u) ≥ 2 and γ (H) ≥ 2, then γ −1(G+H) = γ ((G−u)+H) = 2.
�

References

[1] G. Chartrand and P. Zhang. A First Course in Graph Theory, Dover Publication,
Inc., New York, 2012.

[2] E.J. Cockayne, and S.T. Hedetniemi, Towards a theory of domination in graphs,
Networks, (1977) 247–261.

[3] G.S. Domke, J.E. Dunbar and L.R. Markus, The inverse domination number of a
graph, Ars Combin., 72(2004): 149–160.

[4] T.W. Haynes, S.T. Hedetnimi and P.J. Slater, Fundamentals of Domination in
Graphs, Marcel Dekker inc., New York, NY, 1998.

[5] T.W. Haynes, S.T. Hedetnimi and P.J. Slater, Domination in Graphs: Advanced
Topics, Marcel Dekker, Inc. New York (1998).

[6] E.M. Kiunisala and F.P. Jamil, Inverse domination Numbers and disjoint domination
numbers of graphs under some binary operations, Applied Mathematical Sciences,
Vol. 8, 2014, no. 107, 5303–5315.

[7] V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, Nat. Acad. Sci. Let-
ters, 14(1991) 473–475.

[8] O. Ore. Theory of Graphs.American Mathematical Society, Provedence, R.I., 1962.



Inverse Closed Domination in Graphs                                                                       1851

[9] T.L. Tacbobo, and F.P. Jamil. Closed Domination in Graphs, International Mathe-
matical Forum, Vol.7, 2012, no. 51, 2509–2518.

[10] T. Tamizh Chelvan, T. Asir and G.S. Grace Prema, Inverse domination in graphs,
Lambert Academic Publishing, 2013.



 


	a4 blank.pdf
	07_22081-ATAM__pp 35-42.pdf
	08_23061-ATAM__pp 43-48.pdf
	09_22959-ATAM_pp49-59 new1.pdf
	10_23200- ATAM__pp 61-67.pdf
	11_23674- ATAM__pp 69-70.pdf
	12_22216 ATAM new1__pp 71-76 new1.pdf
	13_23242-ATAM__pp 77-85 reset1.pdf
	b.pdf
	Page 1


	14_24146_-_ATAM__pp_87-95__author self recorrection new2.pdf




