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Abstract

In this paper we study the maximum number of limit cycles of the following gen-
eralized Liénard polynomial differential system of the first order

ẋ = y2p−1

ẏ = −x2q−1 − εf (x, y)

where p and q are positive integers, ε is a small parameter and f (x, y) is a poly-
nomial of degree m. We prove that this maximum number depends on p, q and m.
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1. Introduction and statement of the main results

In 1900 Hilbert [9] in the second part of his 16th problem proposed to find a uniform
upper bound for the number of limit cycles of all polynomial differential systems of
a given degree and also to study their distribution or configuration in the plane. The
generalized polynomial Liénard differential equation

ẍ + f (x)ẋ + g(x) = 0 (1)

was introduced in [13]. Here the dote denotes differentiation with respect to the time t ,
and f (x) and g(x) are polynomials in the variable x of degrees n and m respectively.
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For this subclass of polynomial vector fields we have a simplified version of Hilbert’s
problem, see [14] and [22].

Many results on the limit cycles of polynomial differential systems have been obtained
by considering limit cycles which bifurcate from a single generate singular point, that are
so called small amplitude limit cycles, see [17]. We denote by Ĥ (m, n) the maximum
number of small amplitude limit cycles for systems of the form (1). The values of
Ĥ (m, n) give a lower bound for the maximum number H(m, n) (i. e. the Hilbert
number) of limit cycles that the differential equation (1) can have with n and m fixed.
For more information about the Hilbert’s 16th problem see [10] and [11].

Now we shall describe briefly the main results about the limit cycles on Liénard
differential systems. Let [x] denotes the integer part function.

In 1928 Liénard [13] proved if m = 1 and F(x) =
x∫

0

f (s)ds is a continuous odd

function, which has a unique root at x = 0 and is monotone increasing for x ≥ 0, then
equation (1) has a unique limit cycle. In 1973 Rychkov [21] proved that if m = 1 and

F(x) =
x∫

0

f (s)ds is an odd polynomial of degree five, then equation (1) has at most two

limit cycles. In 1977 Lins, de Melo and Pugh [14] proved thatH(1, 1) = 0 and H(1, 2) =
1. In 1998 Coppel [4] proved that H(2, 1) = 1. Dumortier, Li and Rouseau in [7] and [5]
proved that H(3, 1) = 1. In 1997 Dumortier and Chengzhi [6] proved that H(2, 2) = 1.

Blows, Lloyd and Lynch [2, 19 and 20] proved by using inductive argument the following
results : if g is odd then Ĥ (m, n) = [n/2]; if f is even then Ĥ (m, n) = n whatever g is; if

f is odd then Ĥ (m, n+1) =
[
m − 2

2

]
+n and if g(x) = x+ge(x), where ge is even then

Ĥ (2m, 2) = m. Christopher and Lynch [3, 20 and 21] have developped a new algebraic
method for determining the Liapunov quantities of systems (1) and proved the following

results: Ĥ (m, 2) =
[

2m + 1

3

]
; Ĥ (2, n) =

[
2n + 1

3

]
; Ĥ (m, 3) = 2

[
3m + 2

8

]
for

all 1 ≤ m ≤ 50; Ĥ (3, n) = 2

[
3n + 2

8

]
for all 1 ≤ m ≤ 50; Ĥ (4, k) = Ĥ (k, 4)

for k = 6, 7, 8, 9 and Ĥ (5, 6) = Ĥ (6, 5). In 1998 Gasull and Torregrosa [8] obtained
upper bonds for Ĥ (6, 7), Ĥ (7, 6), Ĥ (7, 7) and Ĥ (4, 20). In 2006 Yu and Han in [25]
proved that Ĥ (m, n) = Ĥ (n, m) for n = 4, m = 10, 11, 12, 13; n = 5, m = 6, 7, 8, 9;
n = 6, m = 5, 6. In 2009 Llibre, Mereu and Teixeira [16] by using the averaging theory
studied the maximum number of limit cycles H̃ (m, n) which can bifurcate from periodic
solutions of a linear center perturbed inside the class of all generalized polynomial
Liénard differential equations of degrees m and n as follows

ẋ = y

ẏ = −x −
∑
k≥1

εk(f k
n (x)y + gk

m(x))
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where for every k the polynomials f k
n (x) and gk

m(x) have degrees n and m respectively,

and ε is a small parameter and prove the following results: H̃1(m, n) =
[n

2

]
(using

the first order averaging theory), H̃2(m, n) = max

{[
n + 1

2

]
+

[m

2

]
,
[n

2

]}
(using the

second order averaging theory), H̃3(m, n) =
[
n + m − 1

2

]
(using the third order aver-

aging theory). In 2014, Llibree and Makhlouf [15] proved that the generalized Liénard
polynomial differential system

ẋ = y2p−1 (2)

ẏ = −x2q−1 − εf (x)y2n−1,

where p, q and n are positive integers, ε is a small parameter and f (x) is a polynomial

of degree m can have
[m

2

]
limit cycles. System (2) with p = q = n = 1 was studied by

Lins et al. [14] in 1977, and for p = n = 1 and q arbitrary has been studied by Urbina
et al. [23] in 1993.

In this paper we want to study the maximum number of limit cycles of the following
class of generalized Liénard polynomial differential system

ẋ = y2p−1 (3)

ẏ = −x2q−1 − εf (x, y)

where p, q are positive integers, ε is a small parameter, f (x, y) is a polynomial of degree
m

f (x, y) =
m∑

i+j=0

aijx
iyj .

Note that system (3) is more general than system (2).
System (3) with ε = 0 is an Hamiltonian system with Hamiltonian

H(x, y) = 1

2q
x2q + 1

2p
y2p.

This system has a global center at the origin of coordinates, i.e., the periodic orbits
surrounding the origin filled the whole plane R

2, and we want to study how many
periodic orbits persist after perturbing the periodic orbits of this center as in the system
(3) for ε = 0 sufficiently small.

Let [x] denotes the integer part function of x ∈ R. Our main result is the following
one.

Theorem 1.1. Let

l =
{

m if m is odd
m − 1 if m is even.
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For ε �= 0 sufficiently small, the maximum number of limit cycles of the polynomial

differential system (3) is bounded by H̃ (p, q, l) =
[
l. max(p, q) − q

2

]
.

Corollary 1.2. Let p = q = 1 and f (x, y) is a polynomial of degree m = 5

f (x, y) =
5∑

i+j=0

aijx
iyj

= a00 + a10x + a01y + a21x
2y + +a12xy2

+a03y
3 + a40x

4 + a23x
2y3 + a41x

4y + a05y
5.

where

a00 = 2, a10 = −0.25, a01 = 1.9, a12 = 1.2, a21 = −2.5,

a03 = −1.2, a23 = 0.8, a40 = 3.2, a41 = 0.6, a05 = 0.2.

For ε �= 0 sufficiently small, system (3) has two limit cycles bifurcating from periodic
solutions of the unperturbed system (for ε = 0). The bound is reached.

Corollary 1.3. Consider system (3) with p = 1, q = 2, m = 6

f (x, y) =
6∑

i+j=0

aijx
iyj

= a01y + a21x
2y + a03y

3 + a23x
2y3 + a41x

4y

+a05y
5 + a33x

3y3 + a60x
6 + a06y

6.

where

a01 = 9.7, a21 = −73.7, a23 = −44.26, a03 = 28.3,

a33 = 2, a41 = 14.1, a05 = 2.07, a60 = 0.1, a06 = 4.

For ε �= 0 sufficiently small, system (3) has four limit cycles bifurcating from the periodic
solutions of the unperturbed system. The bound is reached.

Theorems 1.1, Corollaries 1.2 and 1.3 are proved in section 2 by using the first order
averaging theory. See the appendix for a summary of the results on averaging theory used
here. Note that the maximum number of limit cycles obtained by using the averaging
theory of the first order in [15] only depends on m the degree of f (x). But our results
obtained for the polynomial differential system (3) depend on p, q and the degree m.
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2. Proof of Theorem 1.1

In [12], Liapunov introduced the (p, q)-trigonometric functions, z(θ) = Cs(θ), w(θ) =
Sn(θ) as the solution of the following initial value problem

ż = −w2p−1

ẇ = z2q−1

z(0) = p
− 1

q , w(0) = 0.

It is easy to check that the functions Cs(θ) and Sn(θ) satisfy the equality

pCs2q(θ) + qSn2p(θ) = 1.

For p = q = 1 the (p, q)-trigonometric functions are the classical ones

Cs(θ) = cos θ and Sn(θ) = sin θ.

It is known that Cs(θ) and Sn(θ) are T -periodic functions with

T = 2p
− 1

2q q
− 1

2p

�
(

1
2p

)
�

(
1

2q

)

�
(

1
2p

+ 1
2q

) ,

where � is the Gamma function. We consider the (p, q)-polar coordinates (r, θ) defined
by

x = rpCs(θ) and y = rqSn(θ).

System (3) in the coordinates (r, θ) can be written as

ṙ = −εr1−qSn2p−1(θ)f (rpCs(θ), rqSn(θ)) (4)

θ̇ = −r2pq−p−q − εpr−qCs(θ)f (rpCs(θ), rqSn(θ)).

Taking the angular variable θ as the independent variable, system (4) becomes

dr

dθ
= εr−2pq+p+1Sn2p−1(θ)f (rpCs(θ), rqSn(θ)) + O(ε2)

= εF1(θ, R) + O(ε2).

We apply Theorem 4.1 (see appendix) with

x = y =r, t = θ, F1(t,x) = F1(θ, r).

F1(θ, r) = r−2pq+p+1Sn2p−1(θ)

m∑
i+j=0

aij r
pi+qjCsi(θ)Snj (θ). (5)
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Then according to (5) we obtain

F(r) = r−2pq+p+1
m∑

i+j=0

aij r
pi+qj

T∫
0

Csi(θ)Snj+2p−1(θ)dθ

then

F(r) = r−2pq+p+1
m∑

i+j=0

aij r
pi+qj Ii,j+2p−1

where

Ii,j =
T∫
0

Csi(θ)Snj (θ)dθ.

It is known that

Ii,j = 0 if i or j is odd

Ii,j > 0 if i and j are even.

We put

l =
{

m if m is odd
m − 1 if m is even,

then

F(r) = r−2pq+p+1
l∑

i + j = 0
i : even

j : odd

ãij r
pi+qj

= r−2pq+p+2
l∑

i + j = 1
i : even

j : odd

ãij r
pi+qj−1

with

ãij = aij Ii,j+2p−1.
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Then

F(r) = r−2pq+p+2
l∑

i + j = 1
i : even

j : odd

ãij r
pi+qj−1

= r−2pq+p+2(ã01r
q−1 +

l∑
i + j = 3
i : even

j : odd

ãij r
pi+qj−1)

= r−2pq+p+q+1(ã01 +
l∑

i + j = 3
i : even

j : odd

ãij r
pi+q(j−1))

= r−2pq+p+q+1
l∑

i + j = 1
i : even

j : odd

ãij r
pi+q(j−1).

In order to answer our problem, we should know how many positive solutions which can
have the following algebraic equation

F(r) =
l∑

i + j = 1
i : even

j : odd

ãij r
pi+q(j−1) = 0. (6)

The degree of F(r) is the maximum of pi + q(j − 1) with i + j ≤ l, i is even and
j is odd. We have

pi + qj − q ≤ max(p, q).i + max(p, q).j − q

≤ max(p, q)(i + j) − q

≤ l. max(p, q) − q.

Then, the degree of F(r) is bounded by l. max(p, q) − q. Since r = 0 is not a solution
which can provide limit cycles we omit it. The variable r appears in the equation (6)
through r2 because pi + q(j − 1) is even. So if r∗ with r∗ �= 0 is a solution of (6) then
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−r∗ is a solution too. We omit this last solution because r must be positive. If we take
in account that we only are interested in solutions of the form r∗ > 0, then the number

of solutions of the equation (6) is bounded by

[
l . max(p, q) − q

2

]
where l is given by

l =
{

m if m is odd
m − 1 if m is even.

Equivalently system (3) can have at most H̃ (p, q, l ) limit cycles. This completes the
proof of Theorem 1.2. �

3. Proof of corollaries

3.1. Proof of corollary 1.2

Consider the polynomial differential system (3) with p = q = 1 and m = 5. Applying

Theorem 1.1, we proove that system (3) can have at most

[
5 ∗ 1 − 1

2

]
= 2 limit cycles.

We have
F(r) = ã01 + (ã21 + ã03)r

2 + (ã23 + ã41 + ã05)r
4

where

ãij = aij Ii,j+1

= aij

T∫
0

Csi(θ)Snj+1(θ)dθ.

For p = q = 1 the (1, 1)-trigonometric functions are the classical ones

Cs(θ) = cos(θ) and Sn(θ) = sin(θ) with T = 2π.

Computing the integrals, we get

I0,2 = π, I2,2 = 1

4
π, I0,4 = 3

4
π, I2,4 = I4,2 = 1

8
π, I0,6 = 5

8
π

and

ã01 = 5.969026043, ã21 = −1.963495409, ã03 = −2.827433388,

ã23 = 0.3141592654, ã41 = 0.2356194490, ã05 = 0.3926990818.

Then, according to Theorem 1.1, the algebraic equation F(r) = 0 has two positive zeros

r1 = 1.478399984 and r2 = 1.702253454
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1839which satisfy

dF(r)

dr
| r=r1 = −1.98414430 �= 0

dF(r)

dr
| r=r2 = 2.28457558 �= 0.

Equivalently, system (3) can have at most two limit cycles (see Figure 1). This completes
the proof of Corollary 1.2. �

Figure 1: Two limit cycles for ε = 0.001.

3.2. Proof of corollary 1.3

Now, we have to apply Theorem 1.1 with p = 1, q = 2, m = 6. Then system (3) can

have at most

[
(6 − 1) ∗ 2 − 2

2

]
= 4 limit cycles. We have

F(r) = ã01 + ã21r
2 + (ã03 + ã41)r

4 + ã23r
6 + ã05r

8

where
ãij = aij Ii,j+1.

In this case and according to Liapunov [12], Cs(θ) and Sn(θ) are the elliptic functions

Cs(θ) = cn(θ) and Sn(θ) = sn(θ)dn(θ) of modulus
1√
2

with the period

T = 2(p)
− 1

2q (q)
− 1

2p

�
(

1
2p

)
�

(
1

2q

)

�
(

1
2p

+ 1
2q

) = 7.416298712.
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Computing the following integrals using an algebraic manipulation as Maple or Mathe-
matica

Ii,j+1 =
T∫
0

cni(θ)(sn(θ)dn(θ))j+1dθ.

we find

I0,2 = 2.472099570, I2,2 = .6777704678, I0,4 = 1.059471244,

I2,4 = 0.2259234893, I4,2 = 0.3531570814, I0,6 = 0.4815778383.

Then

ã01 = 23.97936583, ã21 = −49.95168348, ã03 = 29.98303621,

ã23 = −9.999373636, ã41 = 4.979514848, ã05 = 0.9968661253.

The equation F(r) = 0 has four positive real roots given by

r1 = 0.9989866774, r2 = 1.438456003

r4 = 1.67128889, r4 = 2.042173432.

The derivatives of F(r) for these roots are

dF(r)

dr

∣∣∣∣
r=r1

= −12.15098498

dF(r)

dr

∣∣∣∣
r=r2

= 4.6739814

dF(r)

dr

∣∣∣∣
r=r3

= −5.9652117

dF(r)

dr

∣∣∣∣
r=r4

= 37.382648.

Since they are different from zero, we conclude that the differential system (3) has four
limit cycles (see Figure 2). This completes the proof of Corollary 1.3. �

4. Appendix: Averaging theory of first order

We consider the initial value problems

ẋ = εF1(t,x) + ε2F2(t,x,ε), x(0) = x0, (7)

and
ẏ = εF(y), y(0) = x0, (8)



Limit Cycles of a Class of Generalized Liénard Polynomial Equations                       1841

Figure 2: Four limit cycles for ε = 0.0001.

with x, y and x0 in some open � of R
n, t ∈ [0, ∞), ε ∈ (0, ε0]. We assume that F1 and

F2 are periodic of period T in the variable t , and we set

F(y) = 1

T

T∫
0

F1(t,y)dt.

Theorem 4.1. Assume that F1, DxF1, DxxF1 and F2 are continuous and bounded by a
constant independent of ε in [0, ∞) × � × (0, ε0], and that y(t) ∈ � for t ∈ [0, 1/ε].
Then the following statements holds:

1. For t ∈ [0, 1/ε] we have x(t) − y(t) = O(ε) as ε → 0.

2. If p �= 0 is a singular point of (8), then there exists a solution φ(t, ε) of period T

for system (7) which is closed to p and such that φ(t, ε) − p = O(ε) as ε → 0.

3. the stability of the periodic solution φ(t, ε) is given by the stability of the singular
point.

We have used the notation DxF for all the first derivatives of F , and DxxF for all
the second derivatives of g. For a proof of Theorem 2 see [24].
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