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Abstract

Let p be a prime such that p ≡ 2 or 3 (mod 5). Linear block codes over the non-
commutative matrix ring M2(Fp) endowed with the Bachoc weight are derived as
isometric images of linear block codes over the Galois field Fp2 endowed with the
Hamming metric. When seen as rank metric codes, this family of matrix codes
satisfies the Singleton bound and thus are maximum rank distance codes, which are
then lifted to form a special class of subspace codes, the Grassmannian codes, that
meet the anticode bound. These so-called anticode-optimal Grassmannian codes
are associated in some way with complete graphs. Examples of these maximum
rank distance codes and anticode-optimal Grassmannian codes are given. Finally,
examples of subspace codes which are not Grassmannian are given which are ob-
tained from the anticode-optimal Grassmannian codes.
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1. Introduction

This paper deals with certain concepts of “coding theory in projective space” and high-
lights the practical significance of subspace codes, specifically of Grassmannian codes,
in error correction in networks. Let q = pr , p a prime, r a positive integer, and Fq

the Galois field with cardinality q and characteristic p. Consider the n-dimensional full
vector space F

n
q over Fq . The set of all subspaces of F

n
q , denoted by Pq(n), is called

the projective space of order n over Fq . For an integer k, where 0 ≤ k ≤ n, the set of
all k-dimensional subspaces of F

n
q , denoted by Gq(n, k), is called the Grassmannian. A

subspace code is a nonempty subset of Pq(n), while a Grassmannian code is a nonempty
subset of Gq(n, k) which is also called a constant dimension code. Subspace codes have
practical importance in network coding. The seminal paper [1] refers to network coding
as “coding at a node in a network", that is, a node receives information from all input
links, then encodes and sends information to all output links. This paper focuses on how
isometric images of linear block codes over Fp2 can obtain codes that are equivalent to
the Gabidulin codes and spread codes.

Section 2 gives important theoretical preliminaries, while Section 3 shows how to
construct Grassmannian codes endowed with the subspace distance as union of lifts of
certain linear codes M over the non-commutative matrix ring M2(Fp) endowed with
the Bachoc weight together with one additional space. The matrix codes M are iso-
metric images of linear block codes over Fp2 endowed with the Hamming distance.
Examples of obtained codes are equivalent to the Gabidulin codes which are maximum
rank distance codes, or MRD codes, that is, they satisfy the Singleton bound for matrix
codes with respect to the rank metric. The constructed Grassmannian codes are spread
codes that satisfy the anticode bound. Examples of MRD codes and anticode-optimal
Grassmannian codes are given from this construction. In Section 4, it is shown that this
family of anticode-optimal Grassmannian codes can be associated with a peculiar family
of complete graphs. Finally, examples of subspace codes were given from the optimal
Grassmannian codes.

2. Preliminaries

The set of all k × � matrices over Fq , denoted by Mk×�(Fq), is considered as a vector
space over Fq . A nonempty subset of Mk×�(Fq) is called a [k × �] matrix code over Fq .
This [k × �] matrix code is called linear if it is a subspace of Mk×�(Fq).

The rank distance between two k × � matrices over Fq , say A and B, is given by
dR(A, B) = rank(A − B). A [k × �, δ] rank-metric code C is a [k × �] matrix code
whose minimum rank distance is δ. That is, δ = min{dR(A, B)|A, B ∈ C, A �= B}.
Definition 2.1. A [k × �, ρ, δ] rank-metric code is a linear code in Mk×�(Fq) with
dimension ρ and minimum rank distance δ.

We now give a notion of equivalence of rank-metric codes.
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Definition 2.2. A [k1 × �1, ρ1, δ1] rank-metric code is equivalent to a [k2 × �2, ρ2, δ2]
rank-metric code if k1 = k2, �1 = �2, ρ1 = ρ2, and δ1 = δ2.

In other words, two rank-metric codes are equivalent if they have entirely the same
parameters.

Theorem 2.3 is known a version of the Singleton bound for rank-metric codes.

Theorem 2.3. (P. Delsarte, [5]) For a [k × �, ρ, δ] rank-metric code, ρ ≤ min{k(� −
δ + 1), �(k − δ + 1)}.

A code that attains this bound is called a maximum rank distance code or an MRD
code. Examples of MRD codes are the so-called Gabidulin codes.

Let n ≤ m and g = (g0, g1, g2, . . . , gn−1) be linearly independent elements of
GF(qm). Then the code defined by the following generator matrix

G =


g

[0]
0 g

[0]
1 . . . g

[0]
n−1

g
[1]
0 g

[1]
1 . . . g

[1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 . . . g

[k−1]
n−1


where [i] = qi , is called a Gabidulin code, generated by g = (g0, g1, g2, . . . , gn−1),
with dimension k and minimum rank distance n − k + 1.

Example 2.4. Let ω be a root of the irreducible polynomial x2 + x + 1 ∈ F2[x].
Consider a generator matrix G = (1, ω). We have the following Gabidulin code C =
{(0, 0), (1, ω), (ω, ω2), (ω2, 1)} generated by G. From the given generator matrix, n = 2
and k = 1, hence the maximum rank distance is 2 − 1 + 1 = 2.

Definition 2.5. Let A ∈ Mk×�(Fq). The lift of A, denoted by L(A), is the k × (k + �)

standard matrix (Ik A).

Note that the space generated by the rows of the lifted matrix L(A) is denoted by
〈L(A)〉.

We now give two metrics on the projective space Pq(n). The subspace distance on
Pq(n) is given by

dS(A, B) = dim A + dim B − 2 dim(A ∩ B)

for all A, B ∈ Pq(n). On the other hand, the injection distance on Pq(n) is given by

dI (A, B) = max{dim A, dim B} − dim(A ∩ B)

for all A, B ∈ Pq(n).
In this paper we only apply the subspace distance on the constructed Grassmannian

codes.
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A classic formula for the cardinality of the Grassmannian Gq(n, k) is given by the
q-ary Gaussian coefficient [

n

k

]
q

=
k−1∏
i=0

qn − qi

qk − qi
.

Definition 2.6. A Grassmannian code C in Gq(n, k) is called an (n, M, d, k)q code if
|C| = M and its minimum subspace distance is d, where

d = {min dS(U, V )|U, V ∈ C, U �= V }.
Definition 2.7. Let C be a [k × �] rank-metric code. The set

�(C) = {〈L(A)〉|A ∈ C}
= {〈(Ik A)〉|A ∈ C}

is called the lift of C.

Theorem 2.8. (D. Silva, F. R. Kschischang, and R. Kötter [12]) Let C be a [k×�, ρ, δ]
rank-metric code. The lift of C is a (k + �, qρ, 2δ, k)q Grassmannian code.

Theorem 2.9. (P. Frankl and R. M. Wilson, [9]) Let Aq(n, d, k) be the maximum
number of codewords of a code in Gq(n, k) with subspace distance d = 2δ + 2. Then

Aq(n, 2δ + 2, k) ≤
[

n
k−δ

]
q[

k
k−δ

]
q

.

Spread codes are Grassmannian codes that satisfy the Anticode bound. A subset S
of Gq(n, k) is a k-spread in F

n
q if the following are satisfied:

i. U ∩ V = {(0, 0, . . . , 0)} for distinct U and V in S, and

ii. ∪V ∈SV = F
n
q

Consider F
n
q which is an n-dimensional vector space over Fq . If A is a subspace of

V then the orthogonal subspace of A is given by A⊥ = {v ∈ V |a · v = 0 for all a ∈ A}
where a · v is the inner product between vectors a and v.

Definition 2.10. (R. Kötter and F. R. Kschichang, [11]) If C ⊆ Gq(n, k) then its dual
or complementary code is given by

C⊥ = {C⊥ ∈ Gq(n, n − k)|C ∈ C}.
Theorem 2.11. (R. Kötter and F. R. Kschichang, [11]) If C is an (n, M, d, k)q code
then C⊥ is an (n, M, d, n − k)q code.
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3. Rank-Metric Codes and Grassmannian Codes from
Linear Block Codes

We now define the Bachoc weight wB on M2(Fp).

wB(A) =


0 if A = 0

1 if A ∈ GL(2, p)

p otherwise

In [2], an isometric map φ from F
2
4 onto M2(F2) where

φ((a + bω, c + dω)) =
(

a + d b + c

b + c + d a + b + d

)
was given using the Hamming weight wHam and the Bachoc weight wB for F

2
4 and M2(F2)

respectively, such that wHam(α) = wB(φ(α)) for all α ∈ F
2
4. Note that ω is a root of the

irreducible polynomial x2 + x + 1 ∈ F2[x] and F4 is seen as an extension of F2 by ω.
Table 1 shows the elements of F

2
4 with their corresponding Hamming weights and

the elements of M2(F2) with their corresponding Bachoc and rank weights.
The following lemma is trivial yet very useful.

Lemma 3.1. Let C be a [k × �, ρ, δ] rank-metric code with minimum nonzero rank �.
Then δ = �.

Lemma 3.2. Let q be a power of a prime p. The additive group F
n
q is an Fp-vector

space.

Lemma 3.3. Let φ : (Fp2

)2 −→ M2(Fp) where

φ((a + bω, c + dω)) =
(

a + d b + c

b + c + d a + b + d

)
.

Then φ is an isomorphism of Fp-vector spaces.

Remark 3.4. From Lemma 3.3, if C is a linear block code of length 2 over Fp2 then
C ∼= φ(C) as Fp-vector spaces.

For the following remark, let αi = (ai + biω, ci + diω) ∈ (Fp2

)2
and

Ai =
(

ai + di bi + ci

bi + ci + di ai + bi + di

)
∈ M2(Fp)

where 1 ≤ i ≤ r for positive integer r .
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α wHam(α) φ(α) wB(φ(α)) wR(φ(α))

(0, 0) 0

(
0 0
0 0

)
0 0

(0, 1) 1

(
0 1
1 0

)
1 2

(1, 0) 1

(
1 0
0 1

)
1 2

(1, 1) 2

(
1 1
1 1

)
2 1

(0, ω) 1

(
1 0
1 1

)
1 2

(ω, 0) 1

(
0 1
1 1

)
1 2

(ω, ω) 2

(
1 1
0 0

)
2 1

(1, ω) 2

(
0 0
1 0

)
2 1

(ω, 1) 2

(
0 0
0 1

)
2 1

(0, 1 + ω) 1

(
1 1
0 1

)
1 2

(1 + ω, 0) 1

(
1 1
1 0

)
1 2

(1, 1 + ω) 2

(
0 1
0 0

)
2 1

(1 + ω, 1) 2

(
1 0
0 0

)
2 1

(ω, 1 + ω) 2

(
1 0
1 0

)
2 1

(1 + ω, ω) 2

(
0 1
0 1

)
2 1

(1 + ω, 1 + ω) 2

(
0 0
1 1

)
2 1

Table 1: Hamming Weights on F
2
4 and Bachoc and Rank Weights on M2(F2).
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Remark 3.5. Let r be a positive integer. Note that φ can be extended naturally in the
following manner. We have
φ : (Fp2

)2r −→ M2×2r (Fp) where

φ(α1, α2, . . . , α2r ) = (
A1 A2 ... Ar

)
.

It is easy to see that
(
Fp2

)2r ∼= M2×2r (Fp) as Fp-vector spaces. If C is a linear block
code of length 2r over Fp2 then C ∼= φ(C) as Fp-vector spaces.

Lemma 3.6. (D. Falcunit, Jr. and V. Sison, [8]) If p ≡ 2 or 3 (mod 5) then the
polynomial f (x) = x2 + x + (p − 1) is irreducible over Fp.

Theorem 3.7. Let C be a linear block code of length 2r over Fp2 and ρ its dimension
as an Fp-vector space. If p ≡ 2 or 3 (mod 5) and for all (α1, α2, . . . , α2r ) ∈ C, αj = 0
for each odd (resp. even) index j , then

i. φ(C) is a [2 × 2r, ρ, 2] rank-metric code,

ii. �(φ(C)) is a (2r + 2, pρ, 4, 2)p code, and;

iii. the pairwise intersection of codewords of �(φ(C)) is trivial.

Proof. Let C be a linear block code of length n over Fp2 . Note that by Remark 3.5, C and
φ(C) are isomorphic as Fp-vector spaces. Hence, the dimension of φ(C) is ρ. Moreover,
let (α1, α2, . . . , α2r ) ∈ C\{(0, 0, . . . , 0)}, αj = 0 for each odd (resp. even) integer j .
To simplify the proof, we consider when r = 1 and hence we have (0, α2) ∈ C\{(0, 0)}.
Note that α2 = c + dω for some c, d ∈ Fp. Then

φ(0, c + dω) =
(

d c

c + d d

)
.

Since c and d are not both zero, we have the following cases:

1. If c = 0 and d �= 0 then the matrix becomes(
d 0
d d

)
with rank 2.

2. If c �= 0 and d = 0 then the matrix becomes(
0 c

c 0

)
with rank 2.
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3. Let c, d �= 0. Suppose rank of the matrix is not 2 then one row is a multiple of the
other, that is, (d, c) = x(c+d, d) for some x ∈ Fp. This implies that d = xc+xd

and c = xd. Further, d = x2d + xd and x2 + x − 1 = 0. Since p ≡ 2 or 3 (mod
5), by Lemma 3.6, f (x) = x2 + x − 1 = x2 + x + (p − 1) is irreducible over Fp.
Thus there is no x ∈ Fp such that (d, c) = x(c + d, d) and hence the rank of the
matrix is 2.

Thus, the minimum rank weight of φ(C) is 2. By Lemma 3.1, the minimum rank distance
of φ(C) is also 2. It follows that φ(C) is a [2 × 2r, ρ, 2] rank-metric code.

It easy to see that (ii) follows directly from Theorem 2.8.
If �(φ(C)) is a (2r+2, pρ, 4, 2)2 code, the minimum subspace distance of �(φ(C))

is 4. Let A, B ∈ �(φ(C)). Note that dim A = dim B = 2 and we have 4 ≤ dS(A, B) =
dim A+dim B−2 dim(A∩B). Thus, 4 ≤ 2+2−2 dim(A∩B) and hence dim(A∩B) ≤
0. Therefore, dim(A ∩ B) = 0. This means that the pairwise intersection of codewords
of �(φ(C)) is trivial. �

Note that the Grassmannian codes constructed in Theorem 3.7ii are spread codes.
Due to Theorem 3.7, if the codewords of a linear block code of length n over Fp2 are
composed of zeros in the odd positions or in the even positions, such zeros in the odd
or even positions can be removed. In this manner, we can simplify how to obtain matrix
codes from the isometric map φ. This is the essence of the following remark.

Remark 3.8. Let r be a positive integer and consider

S = {(0, c1 + d1ω, 0, c2 + d2ω, 0, . . . , 0, cr + drω)|ci, di ∈ Fp},

a subspace of
(
Fp2

)2r
as an Fp-vector space. By Theorem 3.7 iv, we can look at φ :

S −→ M2×2r (Fp) where

φ((0, c1 + d1ω, 0, c2 + d2ω, . . . , 0, cr + drω)) =(
d1 c1 d2 c2 ... dr cr

c1 + d1 d1 c2 + d2 d2 ... cr + dr dr

)
as φO : (Fp2

)r −→ M2×2r (Fp) where

φO((c1 + d1ω, c2 + d2ω, . . . , cr + drω))

=
(

d1 c1 d2 c2 · · · dr cr

c1 + d1 d1 c2 + d2 d2 · · · cr + dr dr

)
.

Note thatφ(S) = φO

((
Fp2

)r)
and hence the rank of each nonzero element ofφO

((
Fp2

)r)
is 2. Since the odd positions of S are all zeros, we can collapse its elements in such a
way that we delete these odd positions and hence we can look at the elements of S as
elements of

(
Fp2

)r
.
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Correspondingly, consider

S = {(a1 + b1ω, 0, a2 + b2ω, 0, . . . , ar + brω, 0)|ai, bi ∈ Fp},
which is also a subspace of

(
Fp2

)2r
as an Fp-vector space. By Theorem 3.7 iv, we can

look at φ : S −→ M2×2r (Fp) where

φ((a1 + b1ω, 0, a2 + b2ω, 0, . . . , ar + brω, 0))

=
(

a1 b1 a2 b2 · · · ar br

b1 a1 + b1 b2 a2 + b2 · · · br ar + br

)
as φE : (Fp2

)r −→ M2×2r (Fp) where

φE((a1 + b1ω, a2 + b2ω, . . . , ar + brω))

=
(

a1 b1 a2 b2 · · · ar br

b1 a1 + b1 b2 a2 + b2 · · · br ar + br

)
.

Similarly, φ(S) = φE(
(
Fp2

)r
) and the rank of each nonzero element of φE(

(
Fp2

)r
) is

2. Since the even positions of S are all zeros, we can collapse its elements in such a
way that we delete these even positions and hence we can look at the elements of S as
elements of

(
Fp2

)r
.

Theorem 3.9. For prime p where p ≡ 2 or 3 (mod 5) and for any positive integer r , the
rank-metric code φO

((
Fp2

)r)
satisfies the Singleton bound.

Proof. Let p be prime such that p ≡ 2 or 3 (mod 5), r be a positive integer, and ρ be
the dimension of

(
Fp2

)r
as an Fp-vector space. From Remark 3.8 and Theorem 3.7,

φO(
(
Fp2

)r
) is a [2 × 2r, ρ, 2] rank-metric code. Note that∣∣φO

((
Fp2

)r)∣∣ = pρ

and ∣∣(Fp2

)r ∣∣ = p2r

but ∣∣(Fp2

)r ∣∣ = ∣∣φO

((
Fp2

)r)∣∣ .
Hence it follows that ρ = 2r . Now, a [k × �, ρ, δ] rank-metric code satisfies the
Singleton bound if ρ = min{k(� − δ + 1), �(k − δ + 1)}. Substituting the values in the
inequality given in the Singleton bound, 2r ≤ min{2(2r − 2 + 1), 2r(2 − 2 + 1)}. We
have 2r = min{4r − 2, 2r} since 4r − 2 ≥ 2r for r ≥ 1. Thus, for prime p where p ≡ 2
or 3 (mod 5) and for any positive integer r , φO

((
Fp2

)r)
satisfies the Singleton bound

for rank-metric codes and hence a maximum rank distance code. �

MAGMA program was created to obtain the maximum rank distance codeφO

((
Fp2

)r)
for p = 2 and for any positive integer r . Just input a positive integer for the value of r ,
and φO

(
(F4)

r
)

will be obtained.
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α φ(α) wR(φ(α))

(0, 0)

(
0 0
0 0

)
0

(0, 1)

(
0 1
1 0

)
2

(0, ω)

(
1 0
1 1

)
2

(0, 1 + ω)

(
1 1
2 1

)
2

(0, 2)

(
0 2
2 0

)
2

(0, 2ω)

(
2 0
2 2

)
2

(0, 1 + 2ω)

(
2 1
0 2

)
2

(0, 2 + 2ω)

(
2 2
1 2

)
2

(0, 2 + ω)

(
1 2
0 1

)
2

Table 2: Elements of T = {(0, c + dω)|c, d ∈ F3} and their Images under φ with their
Rank Weights.

Similarly, we can prove that φE

((
Fp2

)r)
also satisfies the Singleton bound for any

positive integer r .

Example 3.10. Consider F4 = {0, 1, ω, 1 + ω}. We have

φO(F4) =
{(

0 0
0 0

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)}
.

Note that by Theorem 3.7 and Remark 3.8, φO(F4) is a [2 × 2, 2, 2] rank-metric code.
By Theorem 3.9, φO(F4) is a maximum rank distance code.

Example 3.11. Again, consider F4 = {0, 1, ω, 1 + ω}. We have

φE(F4) =
{(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
.

Note that by Theorem 3.7 and Remark 3.8, φE(F4) is a [2 × 2, 2, 2] rank-metric code,
and a maximum rank distance code.

The rank-metric codes in Example 3.10 and Example 3.11 are equivalent to the
Gabidulin code in Example 2.4 as F2-vector spaces.
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Now, let T = {(0, c + dω)|c, d ∈ F3}. Table 2 shows the elements of T and their
corresponding images in M2(F3) under φ with their rank weights. From the given table,
each nonzero element of φ(T ) has rank 2.

Example 3.12. Refer to Table 2, φ(T ) = φO(F9) is a [2 × 2, 2, 2] rank-metric code.
By Theorem 3.9, φO(F9) is a maximum rank distance code.

Note that the first prime that does not satisfy Theorem 3.9 is p = 5. We have 5 ≡ 0
(mod 5). Now, 2 + ω ∈ F52 = F25 and

φO(2 + ω) =
(

1 2
3 1

)
whose rank is 1. Therefore, φO(F25) cannot be a rank-metric code with minimum
distance 2.

Definition 3.13. Let r and m be positive integers. We define the Hm-matrix as

Hm = (
Im 0m×mr

)
and the Ĥm-matrix as

Ĥm = (
0m×mr Im

)
.

Remark 3.14. [Anticode Bound]

Ap(2r + 2, 4, 2) ≤ p2r+2 − 1

p2 − 1

Remark 3.15. For any natural number r , we have

1 + p2 + p4 + p6 + ... + p2r = p2r+2 − 1

p2 − 1
.

Theorem 3.16. Let p be prime where p ≡ 2 or 3 (mod 5), r be a positive integer,

and consider a class of Fp-vector spaces
{(

Fp2

)i |i = 1, 2, . . . , r
}

. Let Di be the set of

vectors that contain �
(
φO

(
Fp2

)i)
such that the vectors are appended with zeros in the

left so that they have common length 2r + 2. Then

Gp(r, 2) = 〈
Ĥ2
〉⋃(

r⋃
i=1

Di

)

is a

(
2r + 2,

p2r+2 − 1

p2 − 1
, 4, 2

)
p

code.
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Proof. For 1 ≤ i ≤ r , let Di be the set of vectors that contain �(φO(Fi
4)) such that the

vectors are appended with zeros in the left so that they have common length 2r +2. Note
that ∣∣∣� (

φO

((
Fp2

)i))∣∣∣ =
∣∣∣φO

((
Fp2

)i)∣∣∣ =
∣∣∣(Fp2

)i∣∣∣ = p2i .

Now, ∣∣∣∣∣
r⋃

i=1

Di

∣∣∣∣∣ = p2 + p4 + p6 + · · · + p2r .

Let Gp(r, 2) = 〈
Ĥ2
〉⋃(

r⋃
i=1

Di

)
so that by Remark 3.15,

|C| = 1 + p2 + p4 + p6 + · · · + p2r = p2r+2 − 1

p2 − 1
.

Note that the only intersection of the Di’s is just the zero space. Moreover, the only
intersection of

〈
Ĥ2
〉

with the Di’s is also trivial. Thus, the obtained code is a(
2r + 2,

p2r+2 − 1

p2 − 1
, 4, 2

)
p

code. �

Remark 3.17. The code obtained Gp(r, 2) in Theorem 3.16 attains the Anticode bound
given in Remark 3.14.

Similarly, we can also obtain a

(
2r + 2,

p2r+2 − 1

p2 − 1
, 4, 2

)
p

code using the mapping

φE .

Example 3.18. Let p = 2 and r = 1. We have F4 = {0, 1, ω, 1 + ω}. Now the lifted

matrices of φO(F4) are

(
1 0 0 0
0 1 0 0

)
,

(
1 0 0 1
0 1 1 0

)
,

(
1 0 1 0
0 1 1 1

)
, and(

1 0 1 1
0 1 0 1

)
. Then the elements of G2(1, 2) are

C1 = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (0, 0, 0, 0)},
C2 = {(1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 1, 1), (0, 0, 0, 0)},
C3 = {(1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1), (0, 0, 0, 0)},
C4 = {(1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0), (0, 0, 0, 0)}, and;
C5 = {(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 0, 0, 0)}.

Note that G2(1, 2) is a (4, 5, 4, 2)2 code. Now, when p = 2 and r = 1, the Anticode

bound becomes
22+2 − 1

3
= 5. Thus, G2(1, 2) attains this bound.
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Example 3.19. Again, consider F4 = {0, 1, ω, 1 + ω}. Now the lifted matrices of

φE(F4) are

(
1 0 0 0
0 1 0 0

)
,

(
1 0 1 0
0 1 0 1

)
,

(
1 0 0 1
0 1 1 1

)
, and(

1 0 1 1
0 1 1 0

)
. Then the elements of the Grassmannian code C generated by the lifted

matrices, with C5 = 〈
Ĥ2
〉

are given by

C1 = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (0, 0, 0, 0)},
C2 = {(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1), (0, 0, 0, 0)},
C3 = {(1, 0, 0, 1), (0, 1, 1, 1), (1, 1, 1, 0), (0, 0, 0, 0)},
C4 = {(1, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 1), (0, 0, 0, 0)}, and;
C5 = {(0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 0, 0, 0)}.

Note that C is also a (4, 5, 4, 2)2 code that attains the Anticode bound.

Corollary 3.20. The dual of Gp(r, 2) is a

(
2r + 2,

p2r+2 − 1

p2 − 1
, 4, 2r

)
p

code.

Proof. This directly follows from Theorem 2.11. �

MAGMA programs were created to obtain the anticode-optimal code Gp(r, 2) and
its dual in Theorem 3.16 and Corollary 3.27, respectively for p = 2 and for any positive
integer r . For p = 2, just input a positive integer for the value of r and G2(r, 2) will be
obtained.

Lemma 3.21. Let φ : F
2
9 −→ M2(F3) where

φ((a + bω, c + dω)) =
(

a + d b + c

b + c + d a + b + d

)
.

Then φ is an isomorphism of F3-vector spaces.

Remark 3.22. In a similar manner in Remark 3.8, for any positive integer r ,

T = {(0, c1 + d1ω, 0, c2 + d2ω, . . . , 0, cr + drω)|ci, di ∈ F3},
a subspace of F

2r
9 as an F3-vector space. We now have φ : T −→ M2×2r (F3) where

φ((0, c1 + d1ω, 0, c2 + d2ω, . . . , 0, cr + drω))

=
(

d1 c1 d2 c2 ... dr cr

c1 + d1 d1 c2 + d2 d2 ... cr + dr dr

)
and φO : F

r
9 −→ M2×2r (F3) where

φO((c1 + d1ω, c2 + d2ω, . . . , cr + drω))
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=
(

d1 c1 d2 c2 · · · dr cr

c1 + d1 d1 c2 + d2 d2 · · · cr + dr dr

)
.

Note that φ(T ) = φO(Fr
9) and hence φO(Fr

9) is a subspace of M2×2r (F3) as an F3-vector
space. Moreover, we can verify using Table 2 that the minimum rank of T is 2.

Theorem 3.23. For any positive integer r , the rank-metric code φO(Fr
9) satisfies the

Singleton bound.

Example 3.24. Refer to Table 2, φ(T ) = φO(F9) is a [2 × 2, 2, 2] rank metric code.
By Theorem 3.23, φO(F9) is a maximum rank distance code.

Remark 3.25. [Anticode Bound]

A3(2r + 2, 4, 2) ≤ 9r+1 − 1

8

Remark 3.26. For any natural number r , we have

1 + 9 + 92 + 93 + · · · + 9r−1 + 9r = 9r+1 − 1

8
.

Theorem 3.27. Let r be a positive integer and consider a class of F3-vector spaces{
F

i
9|i = 1, 2, . . . , r

}
. Let Di be the set of vectors that contain �(φO(Fi

9)) such that the
vectors are appended with zeros in the left so that they have common length 2r +2. Then

G3(r, 2) = 〈
Ĥ2
〉⋃(

r⋃
i=1

Di

)

is a

(
2r + 2,

9r+1 − 1

8
, 4, 2

)
3

code.

Theorem 3.28. Let τ : F8 −→ M3(F2) where

τ(a + bω + cω2) =
 b + c a c

a + b + c b a

c a + c a + b + c

.

Then τ is a monomorphism of F2-vector spaces.

Table 3 shows the elements of F8 and their corresponding matrix under τ . Note that
each nonzero element of τ(F8) has rank 3.

Remark 3.29. It can be easily seen from Theorem 3.28 and Table 3 that F8
∼= τ(F8) as

F2-vector spaces. Moreover, the minimum rank of τ(F8) is 3.
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α τ(α) wR(τ(α))

0

0 0 0
0 0 0
0 0 0

 0

1

0 1 0
1 0 1
0 1 1

 3

ω

1 0 0
1 1 0
0 0 1

 3

ω2

1 0 1
1 0 0
1 1 1

 3

1 + ω

1 1 0
0 1 1
0 1 0

 3

1 + ω2

1 1 1
0 0 1
1 0 0

 3

ω + ω2

0 0 1
0 1 0
1 1 0

 3

1 + ω + ω2

0 1 1
1 1 1
1 0 1

 3

Table 3: Elements of F8 and their Images under τ with their Rank Weights.

For the following remark, let αi = ai + biω + ciω
2 ∈ F8 and

Ai =
 bi + ci ai ci

ai + bi + ci bi ai

ci ai + ci ai + bi + ci

 ∈ M3(F2)

where 1 ≤ i ≤ r for positive integer r .

Remark 3.30. The monomorphism τ given in Theorem 3.28 can be extended naturally
to τ : F

r
8 −→ M3×3r (F2) where

τ(α1, α2, . . . , αr) = (
A1 A2 · · · Ar

)
It is easy to see that the rank of each nonzero element of τ(Fr

8) is 3.

Theorem 3.31. For any positive integer r , the rank-metric code τ(Fr
8) satisfies the Sin-

gleton bound.
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Example 3.32. Refer to Table 3 for the elements of τ(F8). Note that τ(F8) is a [3 ×
3, 3, 3] rank metric code. By Theorem 3.31, τ(F8) is a maximum rank distance code.

Remark 3.33. [Anticode Bound]

A2(3r + 3, 6, 3) ≤ 8r+1 − 1

7

Remark 3.34. For any natural number r , we have

1 + 8 + 82 + 83 + · · · + 8r−1 + 8r = 8r+1 − 1

7
.

Theorem 3.35. Let r be a positive integer and consider a class of F2-vector spaces{
F

i
8|i = 1, 2, . . . , r

}
. Let Di be the set of vectors that contain �(τ(Fi

8)) such that the
vectors are appended with zeros in the left so that they have common length 3r +3. Then

G2(r, 3) = 〈
Ĥ3
〉⋃(

r⋃
i=1

Di

)

is a

(
3r + 3,

8r+1 − 1

7
, 6, 3

)
2

code.

Example 3.36. Let r = 1 and consider F8. The elements of τ(F8) can be seen on
Table 3. Note that G2(1, 3) = 〈

Ĥ3
〉⋃

D1 is a (6, 9, 6, 3)2 code and hence satisfies the
anticode bound.

4. Graphs of Anticode-Optimal Grassmannian Codes Gp(r, 2)

In this section, Grassmannian codes Gp(r, 2) are associated with complete graphs. The
number of vertices are determined by the number of subspaces of the code while an edge
is formed when two subspaces intersect at the zero space. Example of such graph is also
given.

A graph G is a pair (V , E) where V is a finite set whose members are called vertices,
and E is a subset of the set V ×V of unordered pairs of vertices. The members of E are
called edges [3]. If {v, w} is an edge of G, the vertices v and w are said to be adjacent.
An edge with identical ends is called a loop and an edge with distinct ends is called a
link. A graph is simple if it has no loops and no two of its links join the same pair of
vertices. In a simple graph, the degree of a vertex v ∈ G is the number of edges of G

incident with v [4].
A simple graph in which each pair of distinct vertices is joined by an edge is called

a complete graph. A complete graph with N vertices is denoted by KN . The complete

graph of N vertices has
N(N − 1)

2
edges. The degree of any vertex in KN is N − 1.

Note that for distinct A, B ∈ Gp(r, 2) in Theorem 3.16, we have A ∩ B = {0}.
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Definition 4.1. Let the subspaces of Gp(r, 2) be the vertices of the graph 
p(r, 2). Two
vertices A and B are adjacent if and only if dim(A ∩ B) = 0.

It follows that the edge set of 
p(r, 2) is the set of all unordered distinct pair of
vertices.

Theorem 4.2. The graph 
p(r, 2) is a complete graph with
p2r+2 − 1

p2 − 1
vertices.

Proof. Note that |Gp(r, 2)| = p2r+2 − 1

p2 − 1
so 
p(r, 2) has

p2r+2 − 1

p2 − 1
vertices. Since the

intersection of any two subspaces in Gp(r, 2) is trivial, its dimension is zero. Thus, each
pair of vertices is joined by an edge. By definition, 
p(r, 2) is a complete graph with
p2r+2 − 1

p2 − 1
vertices. �

Remark 4.3. We can easily compute the number of edges of 
p(r, 2) and the degree of
each vertex.

Example 4.4. When p = 2 and r = 2, we have a (4, 21, 4, 2)2 code. The associated
graph 
2(2, 2) of the (4, 21, 4, 2)2 code is a complete graph with 21 vertices. The number
of edges is 210 and the degree of each vertex is 20.

5. Subspace Codes from Grassmannian Codes

The following example is a subspace code obtained from the Grassmannian codes con-
structed in the earlier part of this paper.

Example 5.1. Consider the subspace code C which consists of the row spaces generated
by the following matrices:(

1 0 0 0 0 0
0 1 0 0 0 0

) (
1 0 1 0 0 0
0 1 0 1 0 0

)
(

1 0 0 1 0 0
0 1 1 1 0 0

) (
1 0 1 1 0 0
0 1 1 0 0 0

)
(

1 0 0 0 1 0
0 1 0 0 0 1

) (
1 0 0 0 0 1
0 1 0 0 1 1

)
(

1 0 0 0 1 1
0 1 0 0 1 0

) (
1 0 1 0 0 1
0 1 0 1 1 1

)
(

1 0 1 0 1 1
0 1 0 1 1 0

) (
1 0 0 1 1 1
0 1 1 1 1 0

)
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(
1 0 0 1 1 0
0 1 1 1 0 1

) (
1 0 1 1 0 1
0 1 1 0 1 0

)
(

1 0 1 1 0 1
0 1 1 0 1 1

) (
1 0 1 0 1 0
0 1 0 1 0 1

)
(

1 0 0 1 0 1
0 1 1 1 1 1

) (
1 0 1 1 1 1
0 1 1 0 1 0

)
(

0 0 1 0 0 0
0 0 0 1 0 0

) (
0 0 1 0 1 0
0 0 0 1 0 1

)
(

0 0 1 0 0 1
0 0 0 1 1 1

) (
0 0 1 0 1 1
0 0 0 1 1 0

)
1 0 0 0 1 0

0 1 0 1 0 1
0 0 1 0 1 1

 1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 0 1


1 0 0 1 0 1

0 1 0 1 0 0
0 0 1 1 1 1

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 0 1 0


1 0 0 1 1 1

0 1 0 0 0 1
0 0 1 1 0 0

 1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 1 0


1 0 0 0 1 1

0 1 0 1 1 1
0 0 1 1 0 1

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


We can verify by inspection that C is a (6, 28, 3)2 subspace code. MAGMA was also
used to check that the minimum subspace distance of C is indeed 3.

Note that the set of 2-dimensional subspaces C2 in C are the elements of
2⋃

i=1

Di where

Di is the set of vectors that contain �(φE(Fi
2)) such that the vectors are appended with

zeros in the left so that they have common length 6 as given in Theorem 3.16. Moreover,
the set of 3-dimensional subspaces C3 in C are the elements of

〈
Ĥ3
〉⋃

E1\ 〈H3〉 where
E1 is the set of vectors that contain �(τ(F8)) such that the vectors are appended by zeros
in the left so that they are of length 6 as given in Theorem 3.35. Both C2 and C3 are close
to optimal Grassmannian codes.

Remark 5.2. The following are (6, 28, 3)2 subspace codes.
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1.

(
2⋃

i=1

Di

)⋃(〈
Ĥ3
〉⋃

E1\ 〈H3〉
)

consisting of 20 2-dimensional subspaces and 8

3-dimensional subspaces (Example 5.1)

2.

(〈
Ĥ2
〉⋃(

2⋃
i=1

Di

)
\ 〈H2〉

)⋃
E1 consisting of 20 2-dimensional subspaces and

8 3-dimensional subspaces

3.

(〈
Ĥ2
〉⋃(

2⋃
i=1

Di

))⋃
(E1\ 〈H2〉) consisting of 21 2-dimensional subspaces and

7 3-dimensional subspaces

4.

((
2⋃

i=1

Di

)
\ 〈H2〉

)⋃(〈
Ĥ3
〉⋃

E1

)
consisting of 19 2-dimensional subspaces

and 9 3-dimensional subspaces.
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