Kannan - Type Fixed Point Theorem for Four Maps in Cone Pentagonal Metric Spaces

Abba Auwalu
Department of Mathematics, Near East University, Nicosia-TRNC, Mersin 10, Turkey.
Evren Hinçal
Department of Mathematics, Near East University, Nicosia-TRNC, Mersin 10, Turkey.

Abstract

In this paper, we prove Kannan - type fixed point theorem for four self mappings in non-normal cone pentagonal metric spaces. Our results extend and improve the recent results announced by many authors.

AMS subject classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
Keywords: Cone pentagonal metric spaces, Common fixed point, Contraction mapping principle, Weakly compatible maps.

1. Introduction

Let (X, d) be a metric space and $S: X \rightarrow X$ be a mapping. Then S is called Kannan contraction if there exists $\alpha \in[0,1 / 2)$ such that

$$
\begin{equation*}
d(S x, S y) \leq \alpha[d(x, S x)+d(y, S y)], \text { for all } x, y \in X \tag{1}
\end{equation*}
$$

Kannan [10] proved that if X is complete, then every Kannan contraction has a fixed point.

The study of existence and uniqueness of fixed points of a mapping and common fixed points of two or more mappings has become a subject of great interest. Many authors proved the Kannan contraction principle in various generalized metric spaces (e.g., see $[2,7,8,11]$).

Long-Guang and Xian [7] introduced the concept of a cone metric space and proved some fixed point theorems for contractive type conditions in cone metric spaces. Later on many authors have (for e.g., $[1,3,6,13]$) proved some fixed point theorems for different contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [6] introduced the notion of cone pentagonal metric space and proved Banach contraction mapping principle in a normal cone pentagonal metric space setting.

Motivated and inspired by the results of [6, 12], it is our purpose in this paper to continue the study of common fixed points for four self mappings in non-normal cone pentagonal metric space setting. Our results extend and improve the results of [2, 8, 11, 12], and many others.

2. Preliminaries

The following definitions and lemmas are needed in the sequel.
Definition 2.1. [7] Let E be a real Banach space and P subset of $E . P$ is called a cone if and only if:
(1) P is closed, nonempty, and $P \neq\{0\}$;
(2) $a, b \in \mathbb{R}, a, b \geq 0$ and $x, y \in P \Longrightarrow a x+b y \in P$;
(3) $x \in P$ and $-x \in P \Longrightarrow x=0$.

Given a cone $P \subseteq E$, we defined a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We shall write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int}(P)$, where $\operatorname{int}(P)$ denotes the interior of P.

In this paper, we always suppose that E is a real Banach space and P is a cone in E with $\operatorname{int}(P) \neq \emptyset$ and \leq is a partial ordering with respect to P.

Definition 2.2. [7] Let X be a nonempty set. Suppose the mapping $\rho: X \times X \rightarrow E$ satisfies:
(1) $0<\rho(x, y)$ for all $x, y \in X$ and $\rho(x, y)=0$ if and only if $x=y$;
(2) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(3) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$ for all $x, y, z \in X$.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because each metric space is a cone metric space where $E=\mathbb{R}$ and $P=[0, \infty$) (e.g., see [7]).

Definition 2.3. [3] Let X be a nonempty set. Suppose the mapping $\rho: X \times X \rightarrow E$ satisfies:
(1) $0<\rho(x, y)$ for all $x, y \in X$ and $\rho(x, y)=0$ if and only if $x=y$;
(2) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$;
(3) $\rho(x, y) \leq \rho(x, w)+\rho(w, z)+\rho(z, y)$ for all $x, y, z \in X$ and for all distinct points $w, z \in X-\{x, y\}$ [Rectangular property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular metric space.

Remark 2.4. Every cone metric space is cone rectangular metric space. The converse is not necessarily true (e.g., see [3]).

Definition 2.5. [6] Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies:
(1) $0<d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for $x, y \in X$;
(3) $d(x, y) \leq d(x, z)+d(z, w)+d(w, u)+d(u, y)$ for all $x, y, z, w, u \in X$ and for all distinct points $z, w, u, \in X-\{x, y\}$ [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal metric space.

Remark 2.6. Every cone rectangular metric space and so cone metric space is cone pentagonal metric space. The converse is not necessarily true (e.g., see [6]).

Let (X, d) be a cone pentagonal metric space. Let $\left\{x_{n}\right\}$ be a sequence in (X, d) and $x \in X$. If for every $c \in E$ with $0 \ll c$ there exist $n_{0} \in \mathbb{N}$ and that for all $n>n_{0}$, $d\left(x_{n}, x\right) \ll c$, then $\left\{x_{n}\right\}$ is said to be convergent and $\left\{x_{n}\right\}$ converges to x, and x is the limit of $\left\{x_{n}\right\}$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$. If for every $c \in E$, with $0 \ll c$ there exist $n_{0} \in \mathbb{N}$ such that for all $n, m>n_{0}, d\left(x_{n}, x_{m}\right) \ll c$, then $\left\{x_{n}\right\}$ is called Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d), then X is called a complete cone pentagonal metric space.

Let T and S be self maps of a nonempty set X. If $w=T x=S x$ for some $x \in X$, then x is called a coincidence point of T and S and w is called a point of coincidence of T and S. Also, T and S are said to be weakly compatible if they commute at their coincidence points, that is, $T x=S x$ implies that $T S x=S T x$.

Lemma 2.7. [1] Let T and S be weakly compatible self mappings of nonempty set X. If T and S have a unique point of coincidence $w=T x=S x$, then w is the unique common fixed point of T and S.

Lemma 2.8. [9] Let (X, d) be a cone metric space with cone P not necessary to be normal. Then for $a, c, u, v, w \in E$, we have
(1) If $a \leq h a$ and $h \in[0,1)$, then $a=0$.
(2) If $0 \leq u \ll c$ for each $0 \ll c$, then $u=0$.
(3) If $u \leq v$ and $v \ll w$, then $u \ll w$.
(4) If $c \in \operatorname{int}(P)$ and $a_{n} \rightarrow 0$, then $\exists n_{0} \in \mathbb{N}: \forall n>n_{0}, a_{n} \ll c$.

Lemma 2.9. Let (X, d) be a complete cone pentagonal metric space. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X and suppose that there is natural number N such that:

1. $x_{n} \neq x_{m}$ for all $n, m>N$;
2. x_{n}, x are distinct points in X for all $n>N$;
3. x_{n}, y are distinct points in X for all $n>N$;
4. $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$ as $n \rightarrow \infty$.

Then $x=y$.

3. Main Results

In this section, we prove Kannan - type theorem for four self mappings in cone pentagonal metric spaces. We give an example to illustrate the result.

Theorem 3.1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings $f, g, U, V: X \rightarrow X$ satisfy the following contractive conditions:
(C1) $d(f x, g y) \leq \lambda(d(f x, U x)+d(g y, V y))$;
(C2) $d(f x, f y) \leq \lambda(d(f x, U x)+d(f y, U y))$;
(C3) $d(g x, g y) \leq \lambda(d(g x, V x)+d(g y, V y))$;
for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $f(X) \subseteq V(X), g(X) \subseteq U(X)$ and one of $f(X), g(X), U(X)$ or $V(X)$ is a complete subspace of X, then the pairs (f, U) and (g, V) have a unique point of coincidence in X. Moreover, if (f, U) and (g, V) are weakly compatible pairs then f, g, U and V have a unique common fixed point in X.

Proof. Let $x_{0} \in X$. Since $f(X) \subseteq V(X)$ and $g(X) \subseteq U(X)$, starting with x_{0}, we define a sequence $\left\{y_{n}\right\}$ in X such that

$$
y_{2 n}=f x_{2 n}=V x_{2 n+1} \text { and } y_{2 n+1}=g x_{2 n+1}=U x_{2 n+2}, \text { for all } n=0,1,2, \ldots
$$

Suppose that $y_{k}=y_{k+1}$ for some $k \in \mathbb{N}$. If $k=2 m$, then $y_{2 m}=y_{2 m+1}$ for some $m \in \mathbb{N}$, then from (C1), we obtain

$$
\begin{aligned}
d\left(y_{2 m+2}, y_{2 m+1}\right) & =d\left(f x_{2 m+2}, g x_{2 m+1}\right) \\
& \leq \lambda\left(d\left(f x_{2 m+2}, U x_{2 m+2}\right)+d\left(g x_{2 m+1}, V x_{2 m+1}\right)\right) \\
& \leq \lambda\left(d\left(y_{2 m+2}, y_{2 m+1}\right)+d\left(y_{2 m+1}, y_{2 m}\right)\right) \\
& =\lambda d\left(y_{2 m+2}, y_{2 m+1}\right),
\end{aligned}
$$

which implies that $d\left(y_{2 m+2}, y_{2 m+1}\right)=0$. That is, $y_{2 m+2}=y_{2 m+1}$.
In similar way, we can deduce that $y_{2 m+2}=y_{2 m+3}=y_{2 m+4}=\cdots$.
Hence $y_{n}=y_{k}$, for all $n \geq k$. Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence in (X, d). Now, assume that $y_{n} \neq y_{n+1}$, for all $n \in \mathbb{N}$. Then from (C1), we have

$$
\begin{aligned}
d\left(y_{2 m}, y_{2 m+1}\right) & =d\left(f x_{2 m}, g x_{2 m+1}\right) \\
& \leq \lambda\left(d\left(f x_{2 m}, U x_{2 m}\right)+d\left(g x_{2 m+1}, V x_{2 m+1}\right)\right) \\
& =\lambda\left(d\left(y_{2 m}, y_{2 m-1}\right)+d\left(y_{2 m+1}, y_{2 m}\right)\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
d\left(y_{2 m}, y_{2 m+1}\right) \leq \frac{\lambda}{1-\lambda} d\left(y_{2 m-1}, y_{2 m}\right)=\alpha d\left(y_{2 m-1}, y_{2 m}\right), \tag{2}
\end{equation*}
$$

where $\alpha=\frac{\lambda}{1-\lambda} \in[0,1)$. Also

$$
\begin{aligned}
d\left(y_{2 m+1}, y_{2 m+2}\right) & =d\left(f x_{2 m+1}, g x_{2 m+2}\right) \\
& \leq \lambda\left(d\left(f x_{2 m+2}, U x_{2 m+2}\right)+d\left(g x_{2 m+1}, V x_{2 m+1}\right)\right) \\
& =\lambda\left(d\left(y_{2 m+2}, y_{2 m+1}\right)+d\left(y_{2 m+1}, y_{2 m}\right)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
d\left(y_{2 m+1}, y_{2 m+2}\right) \leq \frac{\lambda}{1-\lambda} d\left(y_{2 m}, y_{2 m+1}\right)=\alpha d\left(y_{2 m}, y_{2 m+1}\right) \tag{3}
\end{equation*}
$$

From (2) and (3), it follows that

$$
\begin{align*}
d\left(y_{2 m}, y_{2 m+1}\right) & \leq \alpha d\left(y_{2 m-1}, y_{2 m}\right) \\
& \leq \alpha^{2} d\left(y_{2 m-2}, y_{2 m-1}\right) \\
& \vdots \tag{4}\\
& \leq \alpha^{2 m} d\left(y_{0}, y_{1}\right), \quad \forall m \geq 1,
\end{align*}
$$

and

$$
\begin{align*}
d\left(y_{2 m+1}, y_{2 m+2}\right) & \leq \alpha d\left(y_{2 m}, y_{2 m+1}\right) \\
& \leq \alpha^{2} d\left(y_{2 m-1}, y_{2 m}\right) \\
& \vdots \tag{5}\\
& \leq \alpha^{2 m+1} d\left(y_{0}, y_{1}\right), \quad \forall m \geq 1
\end{align*}
$$

Hence, from (4) and (5), we deduce that

$$
\begin{equation*}
d\left(y_{n}, y_{n+1}\right) \leq \alpha^{n} d\left(y_{0}, y_{1}\right), \quad \forall n \geq 1 . \tag{6}
\end{equation*}
$$

From (C2), (C3), (6) and the fact that $0 \leq \lambda \leq \alpha<1$, we obtain

$$
\begin{align*}
d\left(y_{2 m}, y_{2 m+2}\right) & =d\left(f x_{2 m}, f x_{2 m+2}\right) \\
& \leq \lambda\left(d\left(f x_{2 m}, U x_{2 m}\right)+d\left(f x_{2 m+2}, U x_{2 m+2}\right)\right) \\
& =\lambda\left(d\left(y_{2 m}, y_{2 m-1}\right)+d\left(y_{2 m+2}, y_{2 m+1}\right)\right) \\
& \leq \lambda\left(\alpha^{2 m-1} d\left(y_{0}, y_{1}\right)+\alpha^{2 m+1} d\left(y_{0}, y_{1}\right)\right) \\
& \leq \alpha^{2 m} d\left(y_{0}, y_{1}\right)+\alpha^{2 m+2} d\left(y_{0}, y_{1}\right) \\
& =\left(1+\alpha^{2}\right) \alpha^{2 m} d\left(y_{0}, y_{1}\right) \\
& \leq(1+\alpha) \alpha^{2 m} d\left(y_{0}, y_{1}\right), \forall m \geq 1, \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
d\left(y_{2 m+1}, y_{2 m+3}\right) & =d\left(g x_{2 m+1}, g x_{2 m+3}\right) \\
& \leq \lambda\left(d\left(g x_{2 m+1}, V x_{2 m+1}\right)+d\left(g x_{2 m+3}, V x_{2 m+3}\right)\right) \\
& \leq \lambda\left(d\left(y_{2 m+1}, y_{2 m}\right)+d\left(y_{2 m+3}, y_{2 m+2}\right)\right) \\
& \leq \lambda\left(\alpha^{2 m} d\left(y_{0}, y_{1}\right)+\alpha^{2 m+2} d\left(y_{0}, y_{1}\right)\right) \\
& \leq \alpha^{2 m+1} d\left(y_{0}, y_{1}\right)+\alpha^{2 m+3} d\left(y_{0}, y_{1}\right) \\
& =\left(1+\alpha^{2}\right) \alpha^{2 m+1} d\left(y_{0}, y_{1}\right) \\
& \leq(1+\alpha) \alpha^{2 m} d\left(y_{0}, y_{1}\right), \forall m \geq 1 . \tag{8}
\end{align*}
$$

Hence, from (7) and (8), we have

$$
\begin{equation*}
d\left(y_{n}, y_{n+2}\right) \leq(1+\alpha) \alpha^{n} d\left(y_{0}, y_{1}\right), \quad \forall n \geq 1 . \tag{9}
\end{equation*}
$$

For the sequence $\left\{y_{n}\right\}$, we consider $d\left(y_{n}, y_{n+p}\right)$ in two cases as follows:

If p is odd say $p=2 k+1$, where $k \geq 1$, then by pentagonal property and (6), we have

$$
\begin{aligned}
d\left(y_{n}, y_{n+2 k+1}\right) \leq & d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+d\left(y_{n+2}, y_{n+3}\right)+d\left(y_{n+3}, y_{n+2 k+1}\right) \\
\leq & d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+d\left(y_{n+2}, y_{n+3}\right)+\cdots \\
& \quad+d\left(y_{n+2 k-1}, y_{n+2 k}\right)+d\left(y_{n+2 k}, y_{n+2 k+1}\right) \\
\leq & \alpha^{n} d\left(y_{0}, y_{1}\right)+\alpha^{n+1} d\left(y_{0}, y_{1}\right)+\alpha^{n+2} d\left(y_{0}, y_{1}\right)+\cdots \\
& \quad+\alpha^{n+2 k-1} d\left(y_{0}, y_{1}\right)+\alpha^{n+2 k} d\left(y_{0}, y_{1}\right) \\
\leq & \frac{\alpha^{n}}{1-\alpha} d\left(y_{0}, y_{1}\right), \forall n \geq 1 .
\end{aligned}
$$

If p is even say $p=2 k$, where $k \geq 1$, then by pentagonal property, (6) and (9), we have

$$
\begin{aligned}
d\left(y_{n}, y_{n+2 k}\right) \leq & d\left(y_{n}, y_{n+2}\right)+d\left(y_{n+2}, y_{n+3}\right)+d\left(y_{n+3}, y_{n+4}\right)+d\left(y_{n+4}, y_{n+2 k}\right) \\
\leq & d\left(y_{n}, y_{n+2}\right)+d\left(y_{n+2}, y_{n+3}\right)+d\left(y_{n+3}, y_{n+4}\right)+\cdots \\
& \quad+d\left(y_{n+2 k-2}, y_{n+2 k-1}\right)+d\left(y_{n+2 k-1}, y_{n+2 k}\right) \\
\leq & (1+\alpha) \alpha^{n} d\left(y_{0}, y_{1}\right)+\alpha^{n+2} d\left(y_{0}, y_{1}\right)+\alpha^{n+3} d\left(y_{0}, y_{1}\right)+\cdots \\
& \quad+\alpha^{n+2 k-2} d\left(y_{0}, y_{1}\right)+\alpha^{n+2 k-1} d\left(y_{0}, y_{1}\right) \\
\leq & \frac{\alpha^{n}}{1-\alpha} d\left(y_{0}, y_{1}\right), \forall n \geq 1 .
\end{aligned}
$$

Therefore, combining the above two cases, we get

$$
\begin{equation*}
d\left(y_{n}, y_{n+p}\right) \leq \frac{\alpha^{n}}{1-\alpha} d\left(y_{0}, y_{1}\right), \forall n, p \in \mathbb{N} . \tag{10}
\end{equation*}
$$

Since $\alpha \in[0,1)$, we get, as $n \rightarrow \infty, \frac{\alpha^{n}}{1-\alpha} \rightarrow 0$. Hence, for every $c \in E$ with $c \gg 0$, $\exists n_{0} \in \mathbb{N}$ such that

$$
d\left(y_{n}, y_{n+p}\right) \ll c, \text { for all } n \geq n_{0} .
$$

Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence in (X, d). Suppose $U(X)$ is a complete subspace of X, there exists a points $p, q \in U(X)$ such that $\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} U_{2 n+2}=q=U p$.

Now, we show that $U p=f p$. Given $c \gg 0$, we choose a natural numbers M_{1}, M_{2}, M_{3} such that $d\left(y_{2 n+2}, q\right) \ll \frac{c(1-\lambda)}{4}, \quad \forall n \geq M_{1}, d\left(y_{2 n-1}, y_{2 n}\right) \ll \frac{c(1-\lambda)}{4 \lambda}, \quad \forall n \geq M_{2}$ and $d\left(y_{2 n}, y_{2 n+1}\right) \ll \frac{c(1-\lambda)}{4}, \quad \forall n \geq M_{3}$. Since $y_{n} \neq y_{m}$ for $n \neq m$, by pentagonal
property and (C2), we have

$$
\begin{aligned}
d(f p, q) \leq & d\left(f p, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
= & d\left(f p, f x_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
\leq & \lambda\left(d(f p, U p)+d\left(f x_{2 n}, U x_{2 n}\right)\right)+d\left(y_{2 n}, y_{2 n+1}\right) \\
& +d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
= & \lambda d(f p, q)+\lambda d\left(y_{2 n}, y_{2 n-1}\right)+d\left(y_{2 n}, y_{2 n+1}\right) \\
& +d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right),
\end{aligned}
$$

which implies that,

$$
\begin{aligned}
d(f p, q) \leq & \frac{1}{1-\lambda}\left(\lambda d\left(y_{2 n-1}, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right)\right) \\
< & \frac{c}{4}+\frac{c}{4}+\frac{c}{4}+\frac{c}{4}=c, \text { for all } n \geq K_{1}
\end{aligned}
$$

where $K_{1}:=\max \left\{M_{1}, M_{2}, M_{3}\right\}$. Since c is arbitrary, we have $d(f p, q) \ll \frac{c}{m}, \forall m \in \mathbb{N}$. Since $\frac{c}{m} \rightarrow 0$ as $m \rightarrow \infty$, we conclude $\frac{c}{m}-d(f p, q) \rightarrow-d(f p, q)$ as $m \rightarrow \infty$. Since P is closed, $-d(f p, q) \in P$. Hence $d(f p, q) \in P \cap-P$. By definition of cone we get that $d(f p, q)=0$, and so $U p=f p=q$. Hence, q is a point of coincidence of f and U.

Since $q=f p \in f(X)$ and $f(X) \subseteq V(X)$, there exists $r \in X$ such that $q=V r$. Now, we show that $V r=g r$. Given $c \gg 0$, we choose a natural numbers M_{4}, M_{5}, M_{6} such that $d\left(y_{2 n+2}, q\right) \ll \frac{c(1-\lambda)}{4}, \quad \forall n \geq M_{4}, d\left(y_{2 n-1}, y_{2 n}\right) \ll \frac{c(1-\lambda)}{4 \lambda}, \quad \forall n \geq M_{5}$ and $d\left(y_{2 n}, y_{2 n+1}\right) \ll \frac{c(1-\lambda)}{4}, \quad \forall n \geq M_{6}$. Since $y_{n} \neq y_{m}$ for $n \neq m$, by pentagonal property and (C1), we have that

$$
\begin{aligned}
d(g r, q) \leq & d\left(g r, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
= & d\left(g r, f x_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
\leq & \lambda\left(d\left(f x_{2 n}, U x_{2 n}\right)+d(g r, V r)\right)+d\left(y_{2 n}, y_{2 n+1}\right) \\
& +d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right) \\
= & \lambda d\left(y_{2 n}, y_{2 n-1}\right)+\lambda d(g r, q)+d\left(y_{2 n}, y_{2 n+1}\right) \\
& +d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right),
\end{aligned}
$$

which implies that,

$$
\begin{aligned}
d(g r, q) & \leq \frac{1}{1-\lambda}\left(\lambda d\left(y_{2 n-1}, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)+d\left(y_{2 n+2}, q\right)\right) \\
& \ll \frac{c}{4}+\frac{c}{4}+\frac{c}{4}+\frac{c}{4}=c, \text { for all } n \geq K_{2}
\end{aligned}
$$

where $K_{2}:=\max \left\{M_{4}, M_{5}, M_{6}\right\}$. Since c is arbitrary, we have $d(g r, q) \ll \frac{c}{m}, \forall m \in \mathbb{N}$. Since $\frac{c}{m} \rightarrow 0$ as $m \rightarrow \infty$, we conclude $\frac{c}{m}-d(g r, q) \rightarrow-d(g r, q)$ as $m \rightarrow \infty$. Since P is closed, $-d(g r, q) \in P$. Hence $d(g r, q) \in P \cap-P$. By definition of cone we get that $d(g r, q)=0$, and so $V r=g r=q$. Hence, q is a point of coincidence of g and V.

Thus, the pairs (f, U) and (g, V) have common point of coincidence q in X. Now, suppose the pairs (f, U) and (g, V) are weakly compatible mappings. Then

$$
f q=f U p=U f p=U q=q_{1}, \text { for some } q_{1} \in X,
$$

and

$$
g q=g V r=V g r=V q=q_{2}, \text { for some } q_{2} \in X
$$

Hence, from (C1), we have

$$
\begin{aligned}
d\left(q_{1}, q_{2}\right) & =d(f q, g q) \\
& \leq \lambda(d(f q, U q)+d(g q, V q)) \\
& =\lambda\left(d\left(q_{1}, q_{1}\right)+d\left(q_{2}, q_{2}\right)\right)=0 .
\end{aligned}
$$

That is, $q_{1}=q_{2}$. Therefore,

$$
f q=g q=U q=V q
$$

Also,

$$
\begin{aligned}
d(q, g q) & =d(f p, g q) \\
& \leq \lambda(d(f p, U q)+d(g q, V q)) \\
& =\lambda(d(q, g q)+d(g q, g q)) \\
& \leq \lambda d(q, g q),
\end{aligned}
$$

which implies that

$$
d(q, g q)=0 .
$$

Hence, $g q=q$, or $f q=g q=U q=V q=q$. Thus, q is the common fixed point of f, g, U, and V. Next, we show that q is unique. For suppose q^{\prime} be another common fixed point of f, g, U, and V. That is,

$$
f q^{\prime}=g q^{\prime}=U q^{\prime}=V q^{\prime}=q^{\prime},
$$

for some $q^{\prime} \in X$. Then from (C1), we have

$$
\begin{aligned}
d\left(q, q^{\prime}\right) & =d\left(f q, g q^{\prime}\right) \\
& \leq \lambda\left(d(f q, U q)+d\left(g q^{\prime}, V q^{\prime}\right)\right) \\
& =\lambda\left(d(f q, f q)+d\left(g q^{\prime}, g q^{\prime}\right)\right)=0 .
\end{aligned}
$$

Hence $q=q^{\prime}$. Therefore, the mappings f, g, U and V have a unique common fixed point in X. Similarly, if $f(X), g(X)$ or $V(X)$ is a complete subspace of X, then we can easily prove that f, g, U and V have unique common fixed point in X. This completes the proof of the theorem.

Remark 3.2. If P is a normal cone, and (X, d) a cone rectangular metric space in the above Theorem 3.1, then we get the Theorem 2.1 in [12].

The following example illustrates the result of Theorem 3.1.
Example 3.3. Let $X=\{1,2,3,4,5\}, E=\mathbb{R}^{2}$ and $P=\{(x, y): x, y \geq 0\}$ is a cone in E. Define $d: X \times X \rightarrow E$ as follows:

$$
\begin{aligned}
d(x, x) & =0, \forall x \in X ; \\
d(1,2) & =d(2,1)=(4,16) ; \\
d(1,3)=d(3,1)=d(3,4)=d(4,3) & =d(2,3)=d(3,2)=d(2,4) \\
& =d(4,2)=d(1,4)=d(4,1)=(1,4) ; \\
d(1,5)=d(5,1)=d(2,5) & =d(5,2)=d(3,5)=d(5,3)=d(4,5) \\
& =d(5,4)=(5,20)
\end{aligned}
$$

Then (X, d) is a complete cone pentagonal metric space, but (X, d) is not a complete cone rectangular metric space because it lacks the rectangular property:

$$
\begin{aligned}
(4,16) & =d(1,2)>d(1,3)+d(3,4)+d(4,2) \\
& =(1,4)+(1,4)+(1,4) \\
& =(3,12), \text { as }(4,16)-(3,12)=(1,4) \in P
\end{aligned}
$$

Define a mapping $f, g, U, V: X \rightarrow X$ as follows:

$$
\begin{gathered}
f(x)=4, \quad \forall x \in X \\
g(x)= \begin{cases}4, & \text { if } x \neq 5 \\
2, & \text { if } x=5\end{cases} \\
U(x)=\left\{\begin{array}{ll}
3, & \text { if } x=1
\end{array}, \begin{array}{ll}
1, & \text { if } x=2 \\
2, & \text { if } x=3 \\
4, & \text { if } x=4 \\
5, & \text { if } x=5
\end{array}\right. \\
V(x)=x, \\
\forall x \in X
\end{gathered}
$$

Clearly $f(X) \subseteq V(X), g(X) \subseteq U(X)$, and the pairs (f, U) and (g, V) are weakly compatible mappings. The conditions of Theorem 3.1 holds for all $x, y \in X$, where $\lambda=\frac{1}{5}$, and 4 is the unique common fixed point of the mappings f, g, U and V.

Now as corollaries, we recover, extend and generalize the recent results of $[2,11,8]$, and many others in the literature, to a more general cone pentagonal metric space.

Corollary 3.4. Let (X, d) be a cone pentagonal metric space. Suppose the mappings $f, g, U: X \rightarrow X$ satisfies the contractive conditions:
(C1) $d(f x, g y) \leq \lambda(d(f x, U x)+d(g y, U y))$;
(C2) $d(f x, f y) \leq \lambda(d(f x, U x)+d(f y, U y))$;
(C3) $d(g x, g y) \leq \lambda(d(g x, U x)+d(g y, U y))$;
for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $f(X) \cup g(X) \subseteq U(X)$, and if $U(X)$, or $f(X) \cup g(X)$ is a complete subspace of X, then the pairs (f, U) and (g, U) have a unique point of coincidence in X. Moreover, if (f, U) and (g, U) are weakly compatible pairs then f, g and U have a unique common fixed point in X.

Proof. Putting $V=U$ in Theorem 3.1. This completes the proof.
Corollary 3.5. Let (X, d) be a cone pentagonal metric space. Suppose the mappings $f, U: X \rightarrow X$ satisfies the contractive conditions:

$$
\begin{equation*}
d(f x, f y) \leq \lambda(d(f x, U x)+d(f y, U y)) \tag{11}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $f(X) \subseteq U(X)$, and if $U(X)$, or $f(X)$ is a complete subspace of X, then the pair (f, U) have a unique point of coincidence in X. Moreover, if f and U is weakly compatible pairs then f and U have a unique common fixed point in X.

Proof. Putting $g=f$ and $V=U$ in Theorem 3.1. This completes the proof.
Corollary 3.6. (see [2]) Let (X, d) be a complete cone pentagonal metric space and P be a normal cone with normal constant k. Suppose the mapping $f: X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(f x, f y) \leq \lambda(d(x, f x)+d(y, f y)) \tag{12}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Then

1. f has a unique fixed point in X.
2. For any $x \in X$, the iterative sequence $\left\{f^{n} x\right\}$ converges to the fixed point.

Proof. Putting $g=f, V=U=I$, and P is a normal cone in Theorem 3.1. This completes the proof.

Corollary 3.7. (see [11]) Let (X, d) be a cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mappings $f, g: X \rightarrow X$ satisfies the contractive condition:

$$
d(f x, f y) \leq \lambda(d(g x, f x)+d(g y, f y)),
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Suppose that $f(X) \subseteq g(X)$, and $f(X)$ or $g(X)$ is a complete subspace of X, then the mappings f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible then f and g have a unique common fixed point in X.

Proof. This follows from the Remark 2.6, putting $g=f, V=U$, and P is a normal cone in Theorem 3.1.

Corollary 3.8. (see [8]) Let (X, d) be a complete cone rectangular metric space and P be a normal cone with normal constant k. Suppose the mapping $f: X \rightarrow X$ satisfies the contractive condition:

$$
\begin{equation*}
d(f x, f y) \leq \lambda[d(x, f x)+d(y, f y)], \tag{13}
\end{equation*}
$$

for all $x, y \in X$, where $\lambda \in[0,1 / 2)$. Then

1. f has a unique fixed point in X.
2. For any $x \in X$, the iterative sequence $\left\{f^{n} x\right\}$ converges to the fixed point.

Proof. This follows from the Remark 2.6, putting $g=f, V=U=I$, and P is a normal cone in Theorem 3.1.

Acknowledgments

This research project was supported by the Center of Excellence, Near East University, Nicosia-TRNC, Mersin 10, Turkey.

References

[1] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, J. Math. Anal. and Appl., 341 (2008), 416-420.
[2] A. Auwalu, Kannan's fixed point theorem in a cone pentagonal metric space, J. Math. Comp. Sci. Vol. 6 (3), 2016, Article ID 2562, 12 pages
[3] A. Azam, M. Arshad, and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3 (2009), no. 2, 236-241.
[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133-181.
[5] M. Fŕechet, Sur quelques points du calcul fonctionnel, Rendiconti Circolo Mat. Palermo, 22 (1906), 1-74.
[6] M. Garg and S. Agarwal, Banach Contraction Principle on Cone Pentagonal Metric Space, J. Adv. Stud. Topol., 3 (2012), no. 1, 12-18.
[7] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. and Appl., 332 (2007), no. 2, 1468-1476.
[8] M. Jleli, B. Samet. The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., 2 (2009), 161-167.
[9] G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory and Applications, 2009. http://dx.doi.org/10.1155/2009/643840
[10] R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76 (1969), 405408.
[11] M. P. Reddy, M. Rangamma. A Common fixed point theorem for Two Self Maps in a Cone rectangular metric space, Bull. Math. Stat. Res., 3 (2015), 47-53.
[12] M. P. Reddy, M. Rangamma. A Common fixed point theorem for Four Self Maps in a Cone rectangular metric space under Kannan type Contractions, Intl J. Pure and Appl. Math. 103 No. 2 (2015), 281-293
[13] S. Rezapour and R. Hamlbarani, Some notes on paper cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. and Appl., 347 (2008), no. 2,719-724.

