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1. Introduction

Let (X, d) be a metric space and S : X → X be a mapping. Then S is called Kannan
contraction if there exists α ∈ [0, 1/2) such that

d(Sx, Sy) ≤ α
[
d(x, Sx) + d(y, Sy)

]
, for all x, y ∈ X. (1)

Kannan [10] proved that if X is complete, then every Kannan contraction has a fixed
point.
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The study of existence and uniqueness of fixed points of a mapping and common
fixed points of two or more mappings has become a subject of great interest. Many
authors proved the Kannan contraction principle in various generalized metric spaces
(e.g., see [2, 7, 8, 11]).

Long-Guang and Xian [7] introduced the concept of a cone metric space and proved
some fixed point theorems for contractive type conditions in cone metric spaces. Later on
many authors have (for e.g., [1, 3, 6, 13]) proved some fixed point theorems for different
contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [6] introduced the notion of cone pentagonal metric
space and proved Banach contraction mapping principle in a normal cone pentagonal
metric space setting.

Motivated and inspired by the results of [6, 12], it is our purpose in this paper
to continue the study of common fixed points for four self mappings in non-normal
cone pentagonal metric space setting. Our results extend and improve the results of
[2, 8, 11, 12], and many others.

2. Preliminaries

The following definitions and lemmas are needed in the sequel.

Definition 2.1. [7] Let E be a real Banach space and P subset of E. P is called a cone
if and only if:

(1) P is closed, nonempty, and P �= {0};
(2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P �⇒ ax + by ∈ P ;
(3) x ∈ P and −x ∈ P �⇒ x = 0.

Given a cone P ⊆ E, we defined a partial ordering ≤ with respect to P by x ≤ y if
and only if y − x ∈ P. We shall write x < y to indicate that x ≤ y but x �= y, while
x 	 y will stand for y − x ∈ int (P ), where int (P ) denotes the interior of P.

In this paper, we always suppose that E is a real Banach space and P is a cone in E

with int (P ) �= ∅ and ≤ is a partial ordering with respect to P.

Definition 2.2. [7] Let X be a nonempty set. Suppose the mapping ρ : X × X → E

satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.
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The concept of a cone metric space is more general than that of a metric space,
because each metric space is a cone metric space where E = R and P = [0, ∞) (e.g.,
see [7]).

Definition 2.3. [3] Let X be a nonempty set. Suppose the mapping ρ : X × X → E

satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;
(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
(3) ρ(x, y) ≤ ρ(x, w) + ρ(w, z) + ρ(z, y) for all x, y, z ∈ X and for all distinct

points w, z ∈ X − {x, y} [Rectangular property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular
metric space.

Remark 2.4. Every cone metric space is cone rectangular metric space. The converse
is not necessarily true (e.g., see [3]).

Definition 2.5. [6] Let X be a nonempty set. Suppose the mapping d : X × X → E

satisfies:

(1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) + d(u, y) for all x, y, z, w, u ∈ X and for

all distinct points z, w, u,∈ X − {x, y} [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal
metric space.

Remark 2.6. Every cone rectangular metric space and so cone metric space is cone
pentagonal metric space. The converse is not necessarily true (e.g., see [6]).

Let (X, d) be a cone pentagonal metric space. Let {xn} be a sequence in (X, d) and
x ∈ X. If for every c ∈ E with 0 	 c there exist n0 ∈ N and that for all n > n0,

d(xn, x) 	 c, then {xn} is said to be convergent and {xn} converges to x, and x is the
limit of {xn}. We denote this by lim

n→∞ xn = x or xn → x as n → ∞. If for every c ∈ E,

with 0 	 c there exist n0 ∈ N such that for all n, m > n0, d(xn, xm) 	 c, then {xn}
is called Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d),

then X is called a complete cone pentagonal metric space.
Let T and S be self maps of a nonempty set X. If w = T x = Sx for some x ∈ X,

then x is called a coincidence point of T and S and w is called a point of coincidence
of T and S. Also, T and S are said to be weakly compatible if they commute at their
coincidence points, that is, T x = Sx implies that T Sx = ST x.
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Lemma 2.7. [1] Let T and S be weakly compatible self mappings of nonempty set X.

If T and S have a unique point of coincidence w = T x = Sx, then w is the unique
common fixed point of T and S.

Lemma 2.8. [9] Let (X, d) be a cone metric space with cone P not necessary to be
normal. Then for a, c, u, v, w ∈ E, we have

(1) If a ≤ ha and h ∈ [0, 1), then a = 0.

(2) If 0 ≤ u 	 c for each 0 	 c, then u = 0.

(3) If u ≤ v and v 	 w, then u 	 w.

(4) If c ∈ int (P ) and an → 0, then ∃n0 ∈ N : ∀n > n0, an 	 c.

Lemma 2.9. Let (X, d) be a complete cone pentagonal metric space. Let {xn} be a
Cauchy sequence in X and suppose that there is natural number N such that:

1. xn �= xm for all n, m > N;
2. xn, x are distinct points in X for all n > N;
3. xn, y are distinct points in X for all n > N;
4. xn → x and xn → y as n → ∞.

Then x = y.

3. Main Results

In this section, we prove Kannan - type theorem for four self mappings in cone pentagonal
metric spaces. We give an example to illustrate the result.

Theorem 3.1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, g, U, V : X → X satisfy the following contractive conditions:

(C1) d(f x, gy) ≤ λ
(
d(f x, Ux) + d(gy, Vy)

);
(C2) d(f x, fy) ≤ λ

(
d(f x, Ux) + d(fy, Uy)

);
(C3) d(gx, gy) ≤ λ

(
d(gx, V x) + d(gy, Vy)

);
for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that f (X) ⊆ V (X), g(X) ⊆ U(X) and
one of f (X), g(X), U(X) or V (X) is a complete subspace of X, then the pairs (f, U)

and (g, V ) have a unique point of coincidence in X. Moreover, if (f, U) and (g, V ) are
weakly compatible pairs then f, g, U and V have a unique common fixed point in X.
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Proof. Let x0 ∈ X. Since f (X) ⊆ V (X) and g(X) ⊆ U(X), starting with x0, we define
a sequence {yn} in X such that

y2n = f x2n = V x2n+1 and y2n+1 = gx2n+1 = Ux2n+2, for all n = 0, 1, 2, . . . .

Suppose that yk = yk+1 for some k ∈ N. If k = 2m, then y2m = y2m+1 for some m ∈ N,

then from (C1), we obtain

d(y2m+2, y2m+1) = d(f x2m+2, gx2m+1)

≤ λ
(
d(f x2m+2, Ux2m+2) + d(gx2m+1, V x2m+1)

)
≤ λ

(
d(y2m+2, y2m+1) + d(y2m+1, y2m)

)
= λd(y2m+2, y2m+1),

which implies that d(y2m+2, y2m+1) = 0. That is, y2m+2 = y2m+1.

In similar way, we can deduce that y2m+2 = y2m+3 = y2m+4 = · · · .

Hence yn = yk, for all n ≥ k. Therefore, {yn} is a Cauchy sequence in (X, d). Now,
assume that yn �= yn+1, for all n ∈ N. Then from (C1), we have

d(y2m, y2m+1) = d(f x2m, gx2m+1)

≤ λ
(
d(f x2m, Ux2m) + d(gx2m+1, V x2m+1)

)
= λ

(
d(y2m, y2m−1) + d(y2m+1, y2m)

)
,

which implies that

d(y2m, y2m+1) ≤ λ

1 − λ
d(y2m−1, y2m) = αd(y2m−1, y2m), (2)

where α = λ

1 − λ
∈ [0, 1). Also

d(y2m+1, y2m+2) = d(f x2m+1, gx2m+2)

≤ λ
(
d(f x2m+2, Ux2m+2) + d(gx2m+1, V x2m+1)

)
= λ

(
d(y2m+2, y2m+1) + d(y2m+1, y2m)

)
,

which implies that

d(y2m+1, y2m+2) ≤ λ

1 − λ
d(y2m, y2m+1) = αd(y2m, y2m+1). (3)

From (2) and (3), it follows that

d(y2m, y2m+1) ≤ αd(y2m−1, y2m)

≤ α2d(y2m−2, y2m−1)

...

≤ α2md(y0, y1), ∀m ≥ 1, (4)
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and

d(y2m+1, y2m+2) ≤ αd(y2m, y2m+1)

≤ α2d(y2m−1, y2m)

...

≤ α2m+1d(y0, y1), ∀m ≥ 1. (5)

Hence, from (4) and (5), we deduce that

d(yn, yn+1) ≤ αnd(y0, y1), ∀n ≥ 1. (6)

From (C2), (C3), (6) and the fact that 0 ≤ λ ≤ α < 1, we obtain

d(y2m, y2m+2) = d(f x2m, f x2m+2)

≤ λ
(
d(f x2m, Ux2m) + d(f x2m+2, Ux2m+2)

)
= λ

(
d(y2m, y2m−1) + d(y2m+2, y2m+1)

)
≤ λ

(
α2m−1d(y0, y1) + α2m+1d(y0, y1)

)
≤ α2md(y0, y1) + α2m+2d(y0, y1)

= (1 + α2)α2md(y0, y1)

≤ (1 + α)α2md(y0, y1), ∀m ≥ 1, (7)

and

d(y2m+1, y2m+3) = d(gx2m+1, gx2m+3)

≤ λ
(
d(gx2m+1, V x2m+1) + d(gx2m+3, V x2m+3)

)
≤ λ

(
d(y2m+1, y2m) + d(y2m+3, y2m+2)

)
≤ λ

(
α2md(y0, y1) + α2m+2d(y0, y1)

)
≤ α2m+1d(y0, y1) + α2m+3d(y0, y1)

= (1 + α2)α2m+1d(y0, y1)

≤ (1 + α)α2md(y0, y1), ∀m ≥ 1. (8)

Hence, from (7) and (8), we have

d(yn, yn+2) ≤ (1 + α)αnd(y0, y1), ∀n ≥ 1. (9)

For the sequence {yn}, we consider d(yn, yn+p) in two cases as follows:
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If p is odd say p = 2k + 1, where k ≥ 1, then by pentagonal property and (6), we have

d(yn, yn+2k+1) ≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+2k+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + · · ·
+ d(yn+2k−1, yn+2k) + d(yn+2k, yn+2k+1)

≤ αnd(y0, y1) + αn+1d(y0, y1) + αn+2d(y0, y1) + · · ·
+ αn+2k−1d(y0, y1) + αn+2kd(y0, y1)

≤ αn

1 − α
d(y0, y1), ∀n ≥ 1.

If p is even say p = 2k, where k ≥ 1, then by pentagonal property, (6) and (9), we have

d(yn, yn+2k) ≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+2k)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + · · ·
+ d(yn+2k−2, yn+2k−1) + d(yn+2k−1, yn+2k)

≤ (1 + α)αnd(y0, y1) + αn+2d(y0, y1) + αn+3d(y0, y1) + · · ·
+ αn+2k−2d(y0, y1) + αn+2k−1d(y0, y1)

≤ αn

1 − α
d(y0, y1), ∀n ≥ 1.

Therefore, combining the above two cases, we get

d(yn, yn+p) ≤ αn

1 − α
d(y0, y1), ∀n, p ∈ N. (10)

Since α ∈ [0, 1), we get, as n → ∞,
αn

1 − α
→ 0. Hence, for every c ∈ E with c � 0,

∃n0 ∈ N such that

d(yn, yn+p) 	 c, for all n ≥ n0.

Therefore, {yn} is a Cauchy sequence in (X, d). Suppose U(X) is a complete subspace
of X, there exists a points p, q ∈ U(X) such that lim

n→∞ y2n+1 = lim
n→∞ U2n+2 = q = Up.

Now, we show thatUp = fp.Given c � 0,we choose a natural numbersM1, M2, M3

such that d(y2n+2, q) 	 c(1 − λ)

4
, ∀n ≥ M1, d(y2n−1, y2n) 	 c(1 − λ)

4λ
, ∀n ≥ M2

and d(y2n, y2n+1) 	 c(1 − λ)

4
, ∀n ≥ M3. Since yn �= ym for n �= m, by pentagonal
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property and (C2), we have

d(fp, q) ≤ d(fp, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

= d(fp, f x2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λ
(
d(fp, Up) + d(f x2n, Ux2n)

) + d(y2n, y2n+1)

+ d(y2n+1, y2n+2) + d(y2n+2, q)

= λd(fp, q) + λd(y2n, y2n−1) + d(y2n, y2n+1)

+ d(y2n+1, y2n+2) + d(y2n+2, q),

which implies that,

d(fp, q) ≤ 1

1 − λ

(
λd(y2n−1, y2n) + d(y2n, y2n+1)

+ d(y2n+1, y2n+2) + d(y2n+2, q)
)

	 c

4
+ c

4
+ c

4
+ c

4
= c, for all n ≥ K1,

where K1 := max{M1, M2, M3}. Since c is arbitrary, we have d(fp, q) 	 c

m
, ∀m ∈ N.

Since
c

m
→ 0 as m → ∞, we conclude

c

m
− d(fp, q) → −d(fp, q) as m → ∞.

Since P is closed, −d(fp, q) ∈ P. Hence d(fp, q) ∈ P ∩ −P. By definition of cone
we get that d(fp, q) = 0, and so Up = fp = q. Hence, q is a point of coincidence of
f and U.

Since q = fp ∈ f (X) and f (X) ⊆ V (X), there exists r ∈ X such that q = V r.

Now, we show that V r = gr. Given c � 0, we choose a natural numbers M4, M5, M6

such that d(y2n+2, q) 	 c(1 − λ)

4
, ∀n ≥ M4, d(y2n−1, y2n) 	 c(1 − λ)

4λ
, ∀n ≥ M5

and d(y2n, y2n+1) 	 c(1 − λ)

4
, ∀n ≥ M6. Since yn �= ym for n �= m, by pentagonal

property and (C1), we have that

d(gr, q) ≤ d(gr, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

= d(gr, f x2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

≤ λ
(
d(f x2n, Ux2n) + d(gr, V r)

) + d(y2n, y2n+1)

+ d(y2n+1, y2n+2) + d(y2n+2, q)

= λd(y2n, y2n−1) + λd(gr, q) + d(y2n, y2n+1)

+ d(y2n+1, y2n+2) + d(y2n+2, q),

which implies that,

d(gr, q) ≤ 1

1 − λ

(
λd(y2n−1, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n+2) + d(y2n+2, q)

)

	 c

4
+ c

4
+ c

4
+ c

4
= c, for all n ≥ K2,
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where K2 := max{M4, M5, M6}. Since c is arbitrary, we have d(gr, q) 	 c

m
, ∀m ∈ N.

Since
c

m
→ 0 as m → ∞, we conclude

c

m
− d(gr, q) → −d(gr, q) as m → ∞. Since

P is closed, −d(gr, q) ∈ P. Hence d(gr, q) ∈ P ∩ −P. By definition of cone we get
that d(gr, q) = 0, and so V r = gr = q. Hence, q is a point of coincidence of g and V.

Thus, the pairs (f, U) and (g, V ) have common point of coincidence q in X. Now,
suppose the pairs (f, U) and (g, V ) are weakly compatible mappings. Then

f q = f Up = Ufp = Uq = q1, for some q1 ∈ X,

and
gq = gV r = Vgr = V q = q2, for some q2 ∈ X.

Hence, from (C1), we have

d(q1, q2) = d(f q, gq)

≤ λ
(
d(f q,Uq) + d(gq, V q)

)
= λ

(
d(q1, q1) + d(q2, q2)

) = 0.

That is, q1 = q2. Therefore,

f q = gq = Uq = V q.

Also,

d(q, gq) = d(fp, gq)

≤ λ
(
d(fp,Uq) + d(gq, V q)

)
= λ

(
d(q, gq) + d(gq, gq)

)
≤ λd(q, gq),

which implies that
d(q, gq) = 0.

Hence, gq = q, or f q = gq = Uq = V q = q. Thus, q is the common fixed point
of f, g, U, and V. Next, we show that q is unique. For suppose q ′ be another common
fixed point of f, g, U, and V. That is,

f q ′ = gq ′ = Uq ′ = V q ′ = q ′,

for some q ′ ∈ X. Then from (C1), we have

d(q, q ′) = d(f q, gq ′)
≤ λ

(
d(f q,Uq) + d(gq ′, V q ′)

)
= λ

(
d(f q, f q) + d(gq ′, gq ′)

) = 0.
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Hence q = q ′. Therefore, the mappings f, g, U and V have a unique common fixed
point in X. Similarly, if f (X), g(X) or V (X) is a complete subspace of X, then we can
easily prove that f, g, U and V have unique common fixed point in X. This completes
the proof of the theorem. �

Remark 3.2. If P is a normal cone, and (X, d) a cone rectangular metric space in the
above Theorem 3.1, then we get the Theorem 2.1 in [12].

The following example illustrates the result of Theorem 3.1.

Example 3.3. Let X = {1, 2, 3, 4, 5}, E = R
2 and P = {(x, y) : x, y ≥ 0} is a cone in

E. Define d : X × X → E as follows:

d(x, x) = 0, ∀x ∈ X;
d(1, 2) = d(2, 1) = (4, 16);

d(1, 3) = d(3, 1) = d(3, 4) = d(4, 3) = d(2, 3) = d(3, 2) = d(2, 4)

= d(4, 2) = d(1, 4) = d(4, 1) = (1, 4);
d(1, 5) = d(5, 1) = d(2, 5) = d(5, 2) = d(3, 5) = d(5, 3) = d(4, 5)

= d(5, 4) = (5, 20).

Then (X, d) is a complete cone pentagonal metric space, but (X, d) is not a complete
cone rectangular metric space because it lacks the rectangular property:

(4, 16) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 2)

= (1, 4) + (1, 4) + (1, 4)

= (3, 12), as (4, 16) − (3, 12) = (1, 4) ∈ P.

Define a mapping f, g, U, V : X → X as follows:

f (x) = 4, ∀x ∈ X.

g(x) =
{

4, if x �= 5;
2, if x = 5.

U(x) =




3, if x = 1;
1, if x = 2;
2, if x = 3;
4, if x = 4;
5, if x = 5.

V (x) = x, ∀x ∈ X.

Clearly f (X) ⊆ V (X), g(X) ⊆ U(X), and the pairs (f, U) and (g, V ) are weakly
compatible mappings. The conditions of Theorem 3.1 holds for all x, y ∈ X, where

λ = 1

5
, and 4 is the unique common fixed point of the mappings f, g, U and V.
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Now as corollaries, we recover, extend and generalize the recent results of [2, 11, 8],
and many others in the literature, to a more general cone pentagonal metric space.

Corollary 3.4. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, g, U : X → X satisfies the contractive conditions:

(C1) d(f x, gy) ≤ λ
(
d(f x, Ux) + d(gy, Uy)

);
(C2) d(f x, fy) ≤ λ

(
d(f x, Ux) + d(fy, Uy)

);
(C3) d(gx, gy) ≤ λ

(
d(gx, Ux) + d(gy, Uy)

);
for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that f (X)∪g(X) ⊆ U(X), and if U(X),

or f (X) ∪ g(X) is a complete subspace of X, then the pairs (f, U) and (g, U) have a
unique point of coincidence in X. Moreover, if (f, U) and (g, U) are weakly compatible
pairs then f, g and U have a unique common fixed point in X.

Proof. Putting V = U in Theorem 3.1. This completes the proof. �

Corollary 3.5. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, U : X → X satisfies the contractive conditions:

d(f x, fy) ≤ λ
(
d(f x, Ux) + d(fy, Uy)

)
, (11)

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that f (X) ⊆ U(X), and if U(X), or f (X)

is a complete subspace of X, then the pair (f, U) have a unique point of coincidence
in X. Moreover, if f and U is weakly compatible pairs then f and U have a unique
common fixed point in X.

Proof. Putting g = f and V = U in Theorem 3.1. This completes the proof. �

Corollary 3.6. (see [2]) Let (X, d) be a complete cone pentagonal metric space and P

be a normal cone with normal constant k. Suppose the mapping f : X → X satisfies
the contractive condition:

d(f x, fy) ≤ λ
(
d(x, f x) + d(y, fy)

)
, (12)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. f has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence {f nx} converges to the fixed point.

Proof. Putting g = f, V = U = I, and P is a normal cone in Theorem 3.1. This
completes the proof. �
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Corollary 3.7. (see [11]) Let (X, d) be a cone rectangular metric space and P be a
normal cone with normal constant k. Suppose the mappings f, g : X → X satisfies the
contractive condition:

d(f x, fy) ≤ λ
(
d(gx, f x) + d(gy, fy)

)
,

for all x, y ∈ X, where λ ∈ [0, 1/2). Suppose that f (X) ⊆ g(X), and f (X) or g(X) is
a complete subspace of X, then the mappings f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible then f and g have a unique common
fixed point in X.

Proof. This follows from the Remark 2.6, putting g = f, V = U, and P is a normal
cone in Theorem 3.1. �

Corollary 3.8. (see [8]) Let (X, d) be a complete cone rectangular metric space and P

be a normal cone with normal constant k. Suppose the mapping f : X → X satisfies
the contractive condition:

d(f x, fy) ≤ λ
[
d(x, f x) + d(y, fy)

]
, (13)

for all x, y ∈ X, where λ ∈ [0, 1/2). Then

1. f has a unique fixed point in X.

2. For any x ∈ X, the iterative sequence {f nx} converges to the fixed point.

Proof. This follows from the Remark 2.6, putting g = f, V = U = I, and P is a normal
cone in Theorem 3.1. �
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