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Abstract

In this paper, we prove Kannan - type fixed point theorem for four self mappings
in non-normal cone pentagonal metric spaces. Our results extend and improve the
recent results announced by many authors.

AMS subject classification: 47H10, 54H25.
Keywords: Cone pentagonal metric spaces, Common fixed point, Contraction map-
ping principle, Weakly compatible maps.

1. Introduction

Let (X, d) be a metric space and S : X — X be a mapping. Then § is called Kannan
contraction if there exists o € [0, 1/2) such that

d(Sx, Sy) < af[d(x, Sx) +d(y, Sy)], forallx,y € X. (1)

Kannan [10] proved that if X is complete, then every Kannan contraction has a fixed
point.
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The study of existence and uniqueness of fixed points of a mapping and common
fixed points of two or more mappings has become a subject of great interest. Many
authors proved the Kannan contraction principle in various generalized metric spaces
(e.g.,see [2,7,8, 11]).

Long-Guang and Xian [7] introduced the concept of a cone metric space and proved
some fixed point theorems for contractive type conditions in cone metric spaces. Later on
many authors have (fore.g., [1, 3, 6, 13]) proved some fixed point theorems for different
contractive types conditions in cone metric spaces.

Recently, Garg and Agarwal [6] introduced the notion of cone pentagonal metric
space and proved Banach contraction mapping principle in a normal cone pentagonal
metric space setting.

Motivated and inspired by the results of [6, 12], it is our purpose in this paper
to continue the study of common fixed points for four self mappings in non-normal
cone pentagonal metric space setting. Our results extend and improve the results of
[2, 8, 11, 12], and many others.

2. Preliminaries

The following definitions and lemmas are needed in the sequel.

Definition 2.1. [7] Let E be a real Banach space and P subset of E. P is called a cone
if and only if:

(1) P is closed, nonempty, and P # {0};
(2) a,beR, a,bp>0andx,y e P—=— ax + by € P;

B)xePand—x € P—x=0.

Given acone P C E, we defined a partial ordering < with respectto P by x < y if
and only if y — x € P. We shall write x < y to indicate that x < y but x # y, while
x < y will stand for y — x € int(P), where int (P) denotes the interior of P.

In this paper, we always suppose that E is a real Banach space and P is a cone in E
with int (P) # ) and < is a partial ordering with respect to P.

Definition 2.2. [7] Let X be a nonempty set. Suppose the mapping p : X x X — E
satisfies:

(1) 0 < p(x,y)forallx,y € X and p(x, y) = 0if and only if x = y;
2) p(x,y) =p(y,x)forall x,y € X;
(3) p(x,y) < p(x,z) +p(z,y) forallx, y,z € X.

Then p is called a cone metric on X, and (X, p) is called a cone metric space.
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The concept of a cone metric space is more general than that of a metric space,
because each metric space is a cone metric space where £ = R and P = [0, 00) (e.g.,
see [7]).

Definition 2.3. [3] Let X be a nonempty set. Suppose the mapping p : X x X — E
satisfies:

(1) 0 < p(x,y)forallx,y € X and p(x, y) = 0 if and only if x = y;

(2) p(x,y) =p(y,x)forallx,y € X;

3) p(x,y) < p(x,w) + p(w, z) + p(z,y) for all x,y,z € X and for all distinct
points w, z € X — {x, y} [Rectangular property].

Then p is called a cone rectangular metric on X, and (X, p) is called a cone rectangular
metric space.

Remark 2.4. Every cone metric space is cone rectangular metric space. The converse
is not necessarily true (e.g., see [3]).

Definition 2.5. [6] Let X be a nonempty set. Suppose the mappingd : X x X — E
satisfies:

(1) 0 <d(x,y)forall x,y € X and d(x, y) = 0 if and only if x = y;
(2) d(x,y)=d(y,x) forx, y € X;

3) dx,y) <d(x,z)+d(z,w) +d(w,u) +d(u, y) forall x, y, z, w,u € X and for
all distinct points z, w, u, € X — {x, y} [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal
metric space.

Remark 2.6. Every cone rectangular metric space and so cone metric space is cone
pentagonal metric space. The converse is not necessarily true (e.g., see [6]).

Let (X, d) be a cone pentagonal metric space. Let {x,} be a sequence in (X, d) and
x € X. If for every ¢ € E with 0 < c there exist nyp € N and that for all n > ny,
d(x,,x) < c, then {x,} is said to be convergent and {x,} converges to x, and x is the

limit of {x,}. We denote this by lim x, = x orx, — x asn — oo. If forevery c € E,
n—oo

with 0 < c there exist ng € N such that for all n, m > ng, d(x,, x,) < c, then {x,}
is called Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X, d),
then X is called a complete cone pentagonal metric space.

Let 7T and S be self maps of a nonempty set X. If w = Tx = Sx for some x € X,
then x is called a coincidence point of 7 and S and w is called a point of coincidence
of T and S. Also, T and S are said to be weakly compatible if they commute at their
coincidence points, that is, 7x = Sx implies that 7Sx = ST x.
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Lemma 2.7. [1] Let T and S be weakly compatible self mappings of nonempty set X.
If T and S have a unique point of coincidence w = Tx = Sx, then w is the unique
common fixed point of 7" and S.

Lemma 2.8. [9] Let (X, d) be a cone metric space with cone P not necessary to be
normal. Then for a, ¢, u, v, w € E, we have

(1) Ifa <haand h € [0, 1), thena = 0.
2) If0 <u < cforeach0 <« ¢, then u = 0.
3) fu <vandv < w, then u < w.

4) If c eint(P)and a,, — 0, then3dng € N :Vn > ng, a, < c.

Lemma 2.9. Let (X, d) be a complete cone pentagonal metric space. Let {x,} be a
Cauchy sequence in X and suppose that there is natural number N such that:

1. x, # xp, foralln,m > N;

2. x,, x are distinct points in X foralln > N;
3. x,, y are distinct points in X foralln > N;
4. x, > xand x, — y asn — oo.

Then x = y.

3. Main Results

In this section, we prove Kannan - type theorem for four self mappings in cone pentagonal
metric spaces. We give an example to illustrate the result.

Theorem 3.1. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, g, U,V :X — X satisfy the following contractive conditions:

(C1) d(fx,gy) < AM(d(fx,Ux)+d(gy,Vy));
(C2) d(fx, fy) < A(d(fx,Ux)+d(fy,Uy)):

(C3) d(gx, gy) < A(d(gx,Vx)+d(gy, Vy)):

for all x, y € X, where A € [0, 1/2). Suppose that f(X) € V(X), g(X) € U(X) and
one of f(X), g(X), U(X) or V(X) is a complete subspace of X, then the pairs (f, U)
and (g, V) have a unique point of coincidence in X. Moreover, if (f, U) and (g, V) are
weakly compatible pairs then f, g, U and V have a unique common fixed point in X.
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Proof. Let xo € X. Since f(X) € V(X) and g(X) C U (X), starting with x¢o, we define
a sequence {y,} in X such that

YVon = f)C2n = VX2n+1 and Von+1 = £Xon+1 = U)C2n+2, for all n = 0, 1, 2, e

Suppose that yy = yx+1 for some k € N.If k = 2m, then y,,, = y2,41 for somem € N,
then from (C1), we obtain
d(Yom+2, yam+1) = d(fx2m+2, §X2m+1)
< Md(fx2ms2, Uxams2) + d(@Xoma1, VXoms1))
< A(d(am+2, yom+1) + d(Y2mt1, Yom))
= Ad (Yom+2, Y2am+1),

which implies that d (y2;,+2, Yam+1) = 0. Thatis, y2m+2 = Yam+1-
In similar way, we can deduce that y2,,42 = Yom+3 = Yom+da = - - .
Hence y, = yi, forall n > k. Therefore, {y,} is a Cauchy sequence in (X, d). Now,
assume that y, # y,+1, forall n € N. Then from (C1), we have
d(Yoms Yom+1) = d(f Xom, §X2m+1)
= )L(d(fom, Uxom) + d(gxom+1, Vx2m+1))
= Mdam, yom—1) + d(2ms1, Y2m)),
which implies that

A
d(Yom, Yom+1) < md()@m—la V2m) = ad(Yom—1, Yam), (2)

where o =

A
. € [0, 1). Also

d(Yom+1s Yom+2) = d(f Xom+1, §X2m+2)
< Md(fxomy2, Uxoami2) + d(gxoms1, VXomy1))
= Md (Vam+2, Yama1) + d(Yoms1, yom))

which implies that

A
d(Yom+1, Yam+2) < md(yZm, Vom+1) = ad(Yom, Yom+1)- 3)

From (2) and (3), it follows that

d(oms Yoam+1) < ad(Yoam—1, Y2m)

< a?d(Yam—2+ Yam—1)

< a®d(yo, y1), Ym > 1, (4)
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and

d(Yom+1, Yam+2) < ad(Yom, Y2m+1)
< o&?d(Yoam—1, Yam)

< o™ d(yo, y1), Ym > 1. (5)
Hence, from (4) and (5), we deduce that

d(Yn, yn+1) < o"d(yo, y1), Yn > 1. (6)

From (C2), (C3), (6) and the fact that 0 < A < «a < 1, we obtain

d(Yoms Yom+2) = d(f Xom, fXom+2)
< Md(fxom, Uxam) + d(f Xoms2, Uxamy2))
= Md(yam, yom—1) + dam+2, Yam+1))
<A@ d(yo, y1) + " d(yo, y1))
< o®"d(yo, y1) + " 2d (yo, y1)
= (1 4+ a®)a*"d(yo, y1)
< (1 +wa™d(yo, y1), Ym = 1, (7

and

d(Yom+1> Y2m+3) = d(§Xom+1> §X2m+3)
< Md(gxomt1, Vxomi1) + d(@xXomi3, VXomi3))
< AMdamt1, yam) + d(Vom43, yom+2))
< Ma®™d(yo, y1) + & 2d(yo, y1))
< a®d(yo, y1) + " d (30, y1)
= (1 + o)™ *d(yo, y1)
< (1 +a)a®d(yo, y1), Vm = 1. ®)

Hence, from (7) and (8), we have
d(Yn, yn+2) < (1 +a)ad(yo, y1), Yn > 1. ©)

For the sequence {y,}, we consider d(y,, yn+p) in two cases as follows:
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If pisoddsay p = 2k + 1, where k > 1, then by pentagonal property and (6), we have

d(Yns Ynt+2k+1) < dOns Ynt1) + dYnt1s Yn+2) + d(Ynt2, Yn43) + d(Vnt3, Ynt2k+1)
< d(n, yn+1) +dnt1, Ynt2) +d(Ynt2, Yn43) + -+
+ d(Yn+2k—15 Yn+2k) + d(Vnt2ks Yn+2k+1)
< a"d(yo, y1) + " d(yo, y1) + " 2d (v, y1) + - -
+ o d (yo, y1) + " d (yo, 1)

n
=

] d(yo, y1), Yn > 1.
—

If p is even say p = 2k, where k > 1, then by pentagonal property, (6) and (9), we have

d(Yns Ynt+2k) < d(Yn, Yn+2) +d(Yn+25 Yn+3) + d(Yn43, Yn+a) + d(Yn+4, Ynt2k)
< d(Yn, yn+2) +d(Yn+2, Yn+3) + d(Yn+3; Ynt+a) + -
+ d(Yn+2k—25 Yn+2k—1) + dYnt+2k—1 Yn+2k)
(1 + &) d(yo, y1) + " 2d (yo, y1) + " P d(yo, y1) + - -+
+ a2 2d (yo, y1) + " d (y0, y1)

n

IA

IA

d(yo, y1), Yn > 1.
l -«

Therefore, combining the above two cases, we get

al’l

1 —

d(Yn, Yntp) < ad(yo, y1), Vn, p € N. (10)

n
Since @ € [0, 1), we get, as n — o0,

dngy € N such that

— 0. Hence, for every ¢ € E with ¢ > 0,
-«

d(yn, yntp) <K ¢, forall n > ny.

Therefore, {y,} is a Cauchy sequence in (X, d). Suppose U (X) is a complete subspace
of X, there exists a points p, g € U(X) suchthat lim yy,4+1 = lim U,42 =¢q = Up.
n—oo n—oo

Now, we show that Up = fp.Givenc > 0, we choose anatural numbers M, M>, M3

c(1'= 1) e(1— 1)
such that d(y2,42,q) K ————, Vn > My, d(yau—1, you) K ——, V¥n > M,
(I—=2)

4
and d (yon, yon+1) < ¢ VR Vn > Ms. Since y, # y, for n # m, by pentagonal
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property and (C2), we have

d(fp,q) <d(fp,ym) +d(yan, Yon+1) + d(yan+1, yan+2) +d(Y2n+2, q)
=d(fp, fx2m) +dom, yut1) +d 2041, Yont2) +d(V2ns2, )
< A(d(fp,Up) +d(fxan, Uxzn)) + d(¥2n, Y2nt1)

+d(2n+1, yan+2) +d(Von+2, q)
=Ad(fp,q) +Ad(an, yan—1) +d(Y2n, Yan+1)
+ d(V2n+1, Yan+2) +d(2n+2, 4),

which implies that,

1
d(fp,q) < m()\d(yZn—l, yan) + d(Yons Yan+1)

+ d(Y2nt1, Yans2) + d(V2nt2, )

<S4S+ Sy foralln> K
2T1t: 4_c, oralln > K,

where K| := max{M;, M,, M3}. Since c is arbitrary, we have d(fp, q) < i, VYm € N.
m

Since SN 0 as m — oo, we conclude £ d(fp,q) — —d(fp,q) as m — oo.

Since gis closed, —d(fp,q) € P. Hence rc)ll(fp, q) € P N —P. By definition of cone
we get that d(fp,q) =0, and so Up = fp = ¢q. Hence, ¢ is a point of coincidence of
fand U.

Since ¢ = fp € f(X) and f(X) € V(X), there exists r € X such thatg = Vr.
Now, we show that Vr = gr. Given ¢ > 0, we choose a natural numbers My, M5, Mg

c(l—2) c(l—=2)
such that d(y2,+2, ) K — Vn > My, d(y2n—1, y2n) < o Vn > Ms

1—A
and d(yan, yon+1) < C(4—) Vn > Ms. Since y, # y, for n # m, by pentagonal

property and (C1), we have that
d(gr,q) < d(gr, y2n) +d(yan, Yont1) + d(Yont1, yant2) +d(Yan+2, )
=d(gr, fx2n) +d(on, Yan+1) + dV2n+15 Yont2) + d(Yan+2, q)
< M(d(fx2n, Uxan) +d(gr, Vi) + d(yn, yans1)
+ d(Yon+1, yan+2) +d(Yan+2, q)
= A (y2n, Yyon—1) + Ad(gr, q) + d(Yan, Y2n+1)
+ d(yan+1, Yan+2) + d(Yon+2, @),

which implies that,

1
d(gr,q) < m(kd(yzn—h yan) + d(Yon, Yons1) + dant1, Yong2) +d(Vang2, @)

<<C-|—C-|—c+c— foralln > K
- 4+-4+-+-=c, fora
4 4 4 4 ¢ n=~R2
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where K, := max{My, M5, Mg}. Since c is arbitrary, we have d(gr, g) < i, Vm € N.
m

c c
Since — — 0 as m — oo, we conclude — — d(gr,q) — —d(gr, q) asm — oo. Since
m

P is cl’gsed, —d(gr,q) € P.Hence d(gr,q) € PN —P. By definition of cone we get
that d(gr,q) = 0, and so Vr = gr = q. Hence, ¢ is a point of coincidence of g and V.

Thus, the pairs (f, U) and (g, V) have common point of coincidence g in X. Now,
suppose the pairs (f, U) and (g, V) are weakly compatible mappings. Then

fqg=fUp=Ufp=Uqg = q;, for some q| € X,

and
gq =8Vr=Vgr =Vqg = q, for some ¢q» € X.

Hence, from (C1), we have

d(q1.q2) =d(fq,89)
<x(d(fq.Uq) +d(gq,Vq))
= Ad(q1, q1) +d(q2, q2)) = 0.

That is, g1 = g». Therefore,

fa=8q9=Uq="Vq.
Also,

d(q,8q9) =d(fp,gq)
< 1d(fp.Uq)+d(gq, Vq))
= A(d(q. g9) +d(gq. g9))
< Ad(q, &9),

which implies that
d(q.gq) =0.

Hence, gg = g, or fq = gg = Uq = Vg = q. Thus, g is the common fixed point

of f,g,U, and V. Next, we show that ¢ is unique. For suppose ¢’ be another common

fixed point of f, g, U, and V. That is,
fa'=gd'=Uq'=Vq' =4,

for some ¢’ € X. Then from (C1), we have

d(q.q")=d(fq, 89"
<xd(fq.Uq) +d(gq’, Vq))
=Ad(fq. fq)+d(gq’, gq") = 0.
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Hence ¢ = ¢'. Therefore, the mappings f, g, U and V have a unique common fixed
point in X. Similarly, if f(X), g(X) or V(X) is a complete subspace of X, then we can
easily prove that f, g, U and V have unique common fixed point in X. This completes
the proof of the theorem. |

Remark 3.2. If P is a normal cone, and (X, d) a cone rectangular metric space in the
above Theorem 3.1, then we get the Theorem 2.1 in [12].

The following example illustrates the result of Theorem 3.1.

Example 3.3. Let X ={1,2,3,4,5}, E = R*and P = {(x,y):x,y>0}isaconein
E.Defined : X x X — E as follows:
dx,x)=0,Vx € X;
d(1,2)=d2,1) = (4, 16);
d(1,3) =d3,1)=d3,4)=d4,3) =d(2,3) =d(3,2) =d(2,4)
=d(4.2) =d(1,4) =d@,1) = (1,4);
d(1,5)=d5,1)=d2,5 =d(5,2)=d3,5) =d(5,3) =d4,5)
=d(5,4) = (5, 20).
Then (X, d) is a complete cone pentagonal metric space, but (X, d) is not a complete
cone rectangular metric space because it lacks the rectangular property:
4,16) =d(1,2) > d(1,3)+d3,4)+d4,2)
=14+ 10,4+, 4
=(3,12), as (4,16) — (3,12) = (1,4) € P.

Define a mapping f, g, U, V : X — X as follows:

f(x) =4, Vx € X.

4, if x #£5;
X =1, ify—s.
3, ifx=1;
1, ifx=2:
Ux)=1 2, ifx=3;
4, if x =4
5, ifx=5.

Vx)=1x, Vx € X.

Clearly f(X) € V(X), g(X) € U(X), and the pairs (f, U) and (g, V) are weakly
compatible mappings. The conditions of Theorem 3.1 holds for all x, y € X, where

A= 5 and 4 is the unique common fixed point of the mappings f, g, U and V.
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Now as corollaries, we recover, extend and generalize the recent results of [2, 11, 8],
and many others in the literature, to a more general cone pentagonal metric space.

Corollary 3.4. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, g, U : X — X satisfies the contractive conditions:

(C1) d(fx,gy) < A(d(fx,Ux)+d(gy,Uy)):
(C2) d(fx, fy) <A(d(fx,Ux)+d(fy,Uy));

(C3) d(gx,gy) < M(d(gx,Ux) +d(gy, Uy));

forall x, y € X, where A € [0, 1/2). Suppose that f(X)Ug(X) € U(X), andif U(X),
or f(X) U g(X) is a complete subspace of X, then the pairs (f, U) and (g, U) have a
unique point of coincidence in X. Moreover, if (f, U) and (g, U) are weakly compatible
pairs then f, g and U have a unique common fixed point in X.

Proof. Putting V = U in Theorem 3.1. This completes the proof. |

Corollary 3.5. Let (X, d) be a cone pentagonal metric space. Suppose the mappings
f, U : X — X satisfies the contractive conditions:

d(fx, fy) = Md(fx,Ux) +d(fy, Uy)), (11)

forall x, y € X, where A € [0, 1/2). Suppose that f(X) € U(X), andif U (X), or f(X)
is a complete subspace of X, then the pair (f, U) have a unique point of coincidence
in X. Moreover, if f and U is weakly compatible pairs then f and U have a unique
common fixed point in X.

Proof. Putting g = f and V = U in Theorem 3.1. This completes the proof. |

Corollary 3.6. (see [2]) Let (X, d) be a complete cone pentagonal metric space and P
be a normal cone with normal constant k. Suppose the mapping f : X — X satisfies
the contractive condition:

d(fx, fy) < Md(x, fx)+d(y. fy)), (12)
for all x, y € X, where A € [0, 1/2). Then
1. f has a unique fixed point in X.

2. For any x € X, the iterative sequence { /" x} converges to the fixed point.

Proof. Putting g = f, V = U = I, and P is a normal cone in Theorem 3.1. This
completes the proof. [
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Corollary 3.7. (see [11]) Let (X, d) be a cone rectangular metric space and P be a
normal cone with normal constant k. Suppose the mappings f, g : X — X satisfies the
contractive condition:

d(fx, fy) <A(d(gx, fx)+d(gy, [y)),

for all x, y € X, where A € [0, 1/2). Suppose that f(X) C g(X), and f(X) or g(X) is
a complete subspace of X, then the mappings f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible then f and g have a unique common
fixed point in X.

Proof. This follows from the Remark 2.6, putting ¢ = f, V = U, and P is a normal
cone in Theorem 3.1. |

Corollary 3.8. (see [8]) Let (X, d) be a complete cone rectangular metric space and P
be a normal cone with normal constant k. Suppose the mapping f : X — X satisfies
the contractive condition:

d(fx, fy) < Ald(x, fx) +d(y, fy)], (13)
for all x, y € X, where A € [0, 1/2). Then
1. f has a unique fixed point in X.

2. For any x € X, the iterative sequence { f"x} converges to the fixed point.

Proof. This follows from the Remark 2.6, putting g = f, V = U = I, and P is anormal
cone in Theorem 3.1. |
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