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Abstract

The unsteady slip flow of a micropolar fluid between two infinite parallel plates is
considered. The linear slip boundary conditions for both velocity and microrotation
are applied on the two boundaries. One of the two plates is set in motion with time
dependent velocity while the other is held fixed. Non-dimensional variables are
introduced. The analytical solution of the problem is obtained using state space
technique. The velocity and microrotation in the physical domain are obtained by
inverting their Laplace transforms numerically. The effects of the micropolarity,
velocity slip and microrotation slip parameters on the velocity and microrotation
are discussed through graphs.
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1. Introduction

In 1966, Eringen introduced the theory of micropolar fluids to describe the motion of
fluids with microstructure taking into consideration the local motion of the particles
inside the volume element of the fluid. In his model of micropolar fluids, he developed
the equations of motion together with appropriate constitutive equations. The theory of
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micropolar fluids has been receiving a great importance because of its applications in
industry, such as extrusion of polymer fluids, solidification of liquids crystals, animal
blood, unusual lubricants and engineering applications. The micropolar fluid is assumed
to be described by two independent vectors; the classical velocity and the micro-rotation
vector [1].

The no-slip boundary condition has been used extensively in fluid dynamics. It
assumes that the tangential velocity of the fluid particles at a point on the boundary
has the same value of the velocity of the boundary at the point of contact. A general
boundary condition that permits the possibility of fluid slip along the boundary has been
first introduced by Navier. This condition states that the tangential velocity of the fluid
relative to the solid at a point on its surface is proportional to the tangential stress at
that point. The constant of proportionality is termed slip coefficient and is assumed to
depend only on the nature of the fluid and solid boundary. Several authors have used
the slip boundary conditions in both viscous and micropolar fluids [2-6]. Moreover, the
spin boundary condition which is responsible for rational motion of microelements has
been applied.

The unsteady unidirectional Poiseuille flow of a micropolar fluid between two parallel
plates with no-slip and no-spin boundary conditions was investigated by Faltas et al[7].
Ashmawy [8] discussed the effect of slip condition to the problem of Couette flow of an
incompressible micropolar fluid. Devakar and Iyengar [9] applied the technique of state
space approach to the flow of an incompressible micropolar fluid between parallel plates
assuming no-slip and no-spin conditions. The same authors used the same method to
discuss the motion of a micropolar fluid between two plates, one fixed and the other is
moving, assuming no-slip and no-spin boundary conditions [10]. The unsteady motion
of a micropolar fluid between two fixed plates due to the presence of time dependent
pressure gradient has been investigated in [4].

In this work, we consider the micropolar fluid flow through a two infinite parallel
plates, when the upper plate at y = h is held fixed but the other plate at y = 0 is moving
with some velocity. The effects of velocity slip and microrotation slip parameters on the
flow field are studied. State space technique is utilized to obtain the analytical expression
for the velocity and microrotation. A standard numerical inversion methods implemented
to invert the Laplace transform of the velocity and microrotation. The numerical results
discussed through graphs. If the slip parameters are assumed to tend to infinity, the
solution of the problem with no-slip and no-spin conditions is recovered.

Formulation of the problem

The motion of an incompressible isothermal micropolar fluid is governed by the follow-
ing differential equations;

Conservation of mass

∇ · �q = 0 (1)
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Balance of Momentum

ρ
∂ �q
∂t

= −∇p + κ∇ × �ν − (µ + κ)∇ × ∇ × �q (2)

Balance of Moment of Momentum

ρj
∂�ν
∂t

= −2κ�ν + κ∇ × �q − γ0∇ × ∇ × �ν + (α0 + β0 + γ0)∇(∇ · �ν) (3)

The stress and couple stress tensors are evaluated, respectively, by

tij = (λqr,r − p)δij + µqi,j + (µ + κ)qj,i − κεijkνk (4)

mij = α0νr,rδij + β0νi,j + γ0νj,i (5)

where, the scalar quantities ρ and j are, respectively, the fluid density and gyration pa-
rameters and are assumed to be constants. Also, δij and εijk are denoting, respectively,
Kronecker delta function and the alternating tensor. The two vectors �q and �ν are respre-
senting, respectively, the velocity and microrotation of the fluid flow. The fluid pressure
at any point is denoted by p. The material constants (µ, κ) represent the viscosity co-
efficients and (α0, β0, γ0) represent the gyro-viscosity coefficients. We now consider an
incompressible micropolar fluid between two infinite horizontal parallel plates separated
by a distance h. The lower plate starts to move suddenly by a time dependent velocity of
magnitude Uf (t), where U is a constant with dimensions of velocity, along x-direction
while the upper plate is held fixed. The pressure gradient of the flow is assumed to be
zero.

The components of velocity and microroation are taking the forms �q = (u(y, t), 0, 0)

and �ν = (0, 0, c(y, t)), respectively.

The equation of continuity (1) is satisfied automatically while the two equations(2) and
(3), describing the physical situation in the absence of body forces and body couples,
reduce to

ρ
∂u

∂t
= κ

∂c

∂y
+ (µ + κ)

∂2u

∂y2
(6)

ρj
∂c

∂t
= −2κc − κ

∂u

∂y
+ γ0

∂2c

∂y2
(7)

Initially, the fluid flow was at rest. Therefore

u(y, 0) = 0, c(y, 0) = 0 (8)

The imposed slip boundary conditions for both velocity and microrotation are

β1(u(0, t) − Uf (t)) = τyx(0, t), (9)

β2u(h, t) = −τyx(h, t), (10)
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ξ1c(0, t) = myz(0, t), (11)

ξ2c(h, t) = −myz(h, t) (12)

where β1 and β2 are the slip parameters of the lower and upper plates. These parameters
are varying from zero to infinity and are assumed to depend only on the nature of the
fluid and the boundaries. Also, the microrotation slip parameters ξ1 and ξ2 are varying
from zero to infinity. Using equation (4) and (5), the non-vanishing stress and couple
stress tensors takes the following forms

τyx = (µ + κ)
∂u

∂y
+ κc(y, t), myz = γ0

∂c

∂y
(13)

The following non-dimensional variables are introduced

ŷ = y

h
, û = u

U
, t̂ = U

h
t, ĉ = h

U
c,

t̂yx = h

Uµ
tyx, m̂yz = h2

β0U
myz

The governing equations can be written in the form

R
∂û

∂t̂
= m

∂ĉ

∂ŷ
+ ∂2û

∂ŷ2
(14)

R

n2

∂ĉ

∂t̂
= −2nĉ − n

∂û

∂ŷ
+ ∂2ĉ

∂ŷ
(15)

where

R = ρUh

(µ + κ)
, n2 = 2 + K

2(1 + K)
, m = K

1 + K
, n = kh2

γ0
, K = κ

µ

After dropping hats, the governing equations and the initial and boundary conditions in
non-dimensional form are

R
∂u

∂t
= m

∂c

∂y
+ ∂2u

∂y2
(16)

R

n2

∂c

∂t
= −2nc − n

∂u

∂y
+ ∂2c

∂y2
(17)

u(y, 0) = 0 and c(y, 0) = 0 for all y

α1(u(0, t) − f (t)) = τyx(0, t) (18)

−α2(u(1, t)) = τyx(1, t) (19)

η1c(0, t) = myz(0, t) (20)

−η2c(1, t) = myz(1, t) (21)
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Also, the expressions of the non-dimensional stress and couple stress components are

τyx(y, t) = (1 + K)
∂u(y, t)

∂y
+ Kc(y, t) (22)

myz(y, t) = γ0

β0

∂c(y, t)

∂y
. (23)

where

α1 = hβ1

µ
α2 = hβ2

µ
η1 = hξ1

γ0
η2 = hξ2

γ0

Solution of the problem
We now introduce the Laplace transform defined by

F̄ (y, s) =
∫ ∞

0
e−stF (y, t)dt (24)

After applying Laplace transform to the equations (16)–(22), we obtain

∂2ū

∂y2
+ m

∂c̄

∂y
− Rsū = 0 (25)

∂2c̄

∂y2
− n

∂ū

∂y
− ac̄ = 0 (26)

where

a = (2n + Rs

n2
) (27)

The boundary conditions are taking the forms

α1(ū(0, s) − f̄ (s)) = (1 + K)ū′(0, s) + Kc̄(0, s) (28)

−α2ū(1, s) = (1 + K)ū′(1, s) + Kc̄(1, s) (29)

η1c̄(0, s) = c̄′(0, s) (30)

−η2c̄(1, s) = c̄′(1, s) (31)

The notations ū′ = ∂ū

∂y
and c̄′ = ∂c̄

∂y
are used for simplicity. Now, we apply the state

space approach, so that the governing equations can be witten in the matrix form

∂

∂y




ū

c̄

ū′
c̄′


 =




0 0 1 0
0 0 0 1

Rs 0 0 −m

0 a n 0







ū

c̄

ū′
c̄′


 (32)

where
∂

∂y
V̄ (y, s) = A(s)V̄ (y, s); (33)
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and

A(s) =




0 0 1 0
0 0 0 1

Rs 0 0 −m

0 a n 0


 , V̄ (y, s) =




ū(y, s)

c̄(y, s)

ū′(y, s)

c̄′(y, s)




The formal solution of the matrix differential equation (33) is taking the form

V̄ (y, s) = exp[A(s)y]V̄ (0, s) (34)

To determine the matrix exp[A(s)y], the following characteristic equation of the matrix
A(s) is then used

k4 − (Rs + a − mn)k2 + Rsa = 0 (35)

where ±k1, ±k2 are the roots of the characteristic equation and they are taking the forms

k1 =
√

(Rs + a − mn) + √
(Rs + a − mn)2 − 4Rsa

2
(36)

k2 =
√

(Rs + a − mn) − √
(Rs + a − mn)2 − 4Rsa

2
(37)

The Maclaurin series expansion of exp[A(s)y] is given by

exp[A(s)y] =
∞∑

r=0

[A(s)y]r
r! (38)

Utilizing the Cayley-Hamilton theorem, we can write the infinite series(38) as

exp[A(s)y] = L(y, s) = a0I + a1A + a2A
2 + a3A

3, (39)

where I is the unit matrix of order 4 and a0, a1,a2,a3 are parameters depending on y and s.
Then, the characteristic roots ±k1 and ±k2 satisfy equation (39) and hence we obtain the
following system of linear equations after replacing the matrix A with its characteristic
roots

exp[k1y] = a0 + a1k1 + a2k
2
1 + a3k

3
1 (40)

exp[−k1y] = a0 − a1k1 + a2k
2
1 − a3k

3
1 (41)

exp[k2y] = a0 + a1k2 + a2k
2
2 + a3k

3
2 (42)

exp[−k2y] = a0 − a1k2 + a2k
2
2 − a3k

3
2 (43)

After solving this system, we determine a0, a1, a2 and a3 as

a0 = 1

F

[
k2

1 cosh(k2y) − k2
2 cosh(k1y)

]
(44)
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a1 = 1

F

[
k2

1

k2
sinh(k2y) − k2

2

k1
sinh(k1y)

]
(45)

a2 = 1

F
[cosh(k1y) − cosh(k2y)] (46)

a3 = 1

F

[
1

k1
sinh(k1y) − 1

k2
sinh(k2y)

]
(47)

where
F = k2

1 − k2
2 (48)

The elements (Lij ; i, j = 1, 2, 3, 4) of the matrix L(y, s) are obtained, after inserting
A, A2, A3 into equation(39), in the forms

L11 = 1

F

{
(k2

1 − Rs) cosh(k2y) − (k2
2 − Rs) cosh(k1y)

}
,

L12 = ma

F

{
1

k2
sinh(k2y) − 1

k1
sinh(k1y)

}
,

L13 = 1

F

{(
a − k2

2

k2

)
sinh(k2y) −

(
a − k2

1

k1

)
sinh(k1y)

}
,

L14 = m

F
{cosh(k2y) − cosh(k1y)} ,

L21 = nRs

F

{
1

k1
sinh(k1y) − 1

k2
sinh(k2y)

}
,

L22 = 1

F

{
(k2

1 − a) cosh(k2y) − (k2
2 − a) cosh(k1y)

}
,

L23 = −n

m
L14,

L24 = 1

F

{(
Rs − k2

2

k2

)
sinh(k2y) −

(
Rs − k2

1

k1

)
sinh(k1y))

}
,

L31 = RsL13, L32 = aL14, L33 = L11 + nL14,

L34 = m

F
{k2 sinh(k2y) − k1 sinh(k1y)} , L41 = −nRs

m
L14,

L42 = aL24, L43 = − n

m
L34, L44 = L22 + nL14

with these expressions, the solution (34) is obtained in the form

V̄ (y, s) = L(y, s)V̄ (0, s), (49)

To determine the unknowns we proceed as follows. Using equation (49) and applying
the boundary conditions satisfied at y = 0, we get

ū(0, s) = (1 + K)ū′(0, s) + Kc̄′(0, s)

α1
+ f̄ (s) (50)
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c̄(0, s) = c̄′(0, s)

η1
(51)

Substituting the two equations (50) and (51) into the equation (49), we obtain the fol-
lowing expressions in the two unknowns ū′(0, s) and c̄′(0, s)

ū(y, s) = L11


(1 + K)ū′(0, s) + Kc̄′(0,s)

η1

α1
+ f̄ (s)




+ L12
c̄′(0, s)

η1
+ L13ū′(0, s) + L14c̄′(0, s) (52)

c̄(y, s) = L21


(1 + K)ū′(0, s) + Kc̄′(0,s)

η1

α1
+ f̄ (s)




+ L22
c̄′(0, s)

η1
+ L23ū′(0, s) + L24c̄′(0, s) (53)

ū′(y, s) = L31


(1 + K)ū′(0, s) + Kc̄′(0,s)

η1

α1
+ f̄ (s)




+ L32
c̄′(0, s)

η1
+ L33ū′(0, s) + L34c̄′(0, s) (54)

c̄′(y, s) = L41


(1 + K)ū′(0, s) + Kc̄′(0,s)

η1

α1
+ f̄ (s)




+ L42
c̄′(0, s)

η1
+ L43ū′(0, s) + L44c̄′(0, s) (55)

Applying the boundary conditions (19) and (21) at y = 1 to the equations (52)–(55), we
get after some calculations and rearrangements

c̄′(0, s) = α1η1f̄ (s)(α2(η2(L
1
11L

1
23 − L1

13L
1
21) + L1

11L
1
43 − L1

13L
1
41)

+ η2(K + 1)(L1
23L

1
31 − L1

21L
1
33)

+ K(L1
21L

1
43 − L1

23L
1
41 + L1

31L
1
43 − L1

33L
1
41)

+ L1
31L

1
43 − L1

33L
1
41)/�
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ū′(0, s) = (−α1f̄ (s)(α2(η1(η2(L
1
11L

1
24 − L1

14L
1
21) + L1

11L
1
44 − L1

14L
1
41)

+ η2(L
1
11L

1
22 − L1

12L
1
21) + L1

11L
1
42 − L1

12L
1
41)

− η1(η2(K + 1)(L1
21L

1
34 − L1

24L
1
31) − K(L1

21L
1
44 − L1

24L
1
41

+ L1
31L

1
44 − L1

34L
1
41) − L1

31L
1
44 + L1

34L
1
41) + η2(K + 1)(L1

22L
1
31 − L1

21L
1
32)

+ K(L1
21L

1
42 − L1

22L
1
41 + L1

31L
1
42 − L1

32L
1
41) + L1

31L
1
42 − L1

32L
1
41))/�

where

� = (α1(α2(η1(η2(L
1
13L

1
24 − L1

14L
1
23) + L1

13L
1
44 − L1

14L
1
43)

+ η2(L
1
13L

1
22 − L1

12L
1
23) − L1

12L
1
43 + L1

13L
1
42)

− η1(η2(K + 1)(L1
23L

1
34 − L1

24L
1
33) − K(L1

23L
1
44 − L1

24L
1
43

+ L1
33L

1
44 − L1

34L
1
43) − L1

33L
1
44

+ L1
34L

1
43) + η2(K + 1)(L1

22L
1
33 − L1

23L
1
32) − K(L1

22L
1
43 − L1

23L
1
42

+ L1
32L

1
43 − L1

33L
1
42) − L1

32L
1
43 + L1

33L
1
42) + α2(η1(K + 1)(η2(L

1
11L

1
24 − L1

14L
1
21)

+ L1
11L

1
44 − L1

14L
1
41) + η2(K(L1

11(L
1
22 − L1

23) − L1
21(L

1
12 − L1

13))

+ L1
11L

1
22 − L1

12L
1
21) + K(L1

11(L
1
42 − L1

43 − L1
41(L

1
12 − L1

13)L
1
11L

1
42 − L1

12L
1
41)

− η1(K + 1)(η2(K + 1)(L1
21L

1
34 − L1

24L
1
31) − K(L1

21L
1
44 − L1

24L
1
41

+ L1
31L

1
44 − L1

34L
1
41) − L1

31L
1
44 + L1

34L
1
41)

− η2(K + 1)(K(L1
21(L

1
32 − L1

33) − L1
31(L

1
22 − L1

23))

+ L1
21L

1
32 − L1

22L
1
31) + K2(L1

21(L
1
42 − L1

43) − L1
22L

1
41

+ L1
23L

1
41 + L1

31(L
1
42 − L1

43) − L1
41(L

1
32 − L1

33))

+ K(L1
21L

1
42 − L1

22L
1
41 + L1

31(2L1
42 − L1

43) − L1
41(2L1

32 − L1
33))

+ L1
31L

1
42 − L1

32L
1
41)

where L1
ij ’s are denoting the values of L(y, s)at y = 1. Then, by inserting the expressions

for ū′(0, s), c̄′(0, s) into equations (52-55), we obtain the velocity and microrotation in
the Laplace domain.

The numerical inversion of Laplace transform
To obtain the components of the velocity and microrotation, namely u(y, t) and c(y, t),
in the physical domain, we use a numerical inversion technique developed by Honig and
Hirdes [11] to invert Laplace transform.

Utilizing this numerical technique, the inverse Laplace transform of the function ḡ(s)

is approximated by the formula

g(t) = exp(bt)

T

[
1

2
ḡ(b) + Re

(
N∑

k=1

ḡ

(
b + ikπ

T

)
exp(

ikπt

T

)]
, 0 < t < 2T
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N is sufficiently large integer chosen such that,

exp(bt)Re

[
ḡ(b + iNπ

T
) exp(

iNπt

T
)

]
< ε,

where ε is a small positive number that corresponds to the degree of accuracy required.
The parameter b is a positive free parameter that must be greater than real parts of all
singularities of ḡ(s).

Numerical results and discussions
In this section, we implement the above mentioned technique to the obtained results by
assuming that the moving plate is suddenly moved with constant velocity; i.e. f (t) =
H(t), where H(t) is the Heaviside step function. Also, the slip and spin of the upper
and lower plates are assumed to be equal, this means that we take α1 = α2 = α and
η1 = η2 = η. The following figures show the behaviors of the velocity and microrotation
versus the distance for different values of the time, slip and spin parameters, respectively.
It can be observed that the velocity slip coefficient has a considerable influence on both
velocity and microrotation functions while the spin coefficient affects the microrotation
only. Also, the steady state solution can be deduced from this case when the time is
assigned a large value.

Figure 1: variation of velocity versus distance for partial slip with α = η = 10 and
K = 1.

Conclusion

The unsteady flow of a micropolar fluid between two infinite parallel plates with veloc-
ity slip and microrotation slip boundary conditions is investigated. The techniques of
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Figure 2: variation of microrotation versus distance at K = 1 and α = η = 10.

Figure 3: Variation of velocity versus distance at at t = 0.05, K = 1 and η = 10.

Laplace transform together with the state space approach are utilized to obtain the ana-
lytical solution in the Laplace domain. The inversion of Laplace transforms are carried
out numerically. The results indicate that the micropolarity parameter has an increasing
effect on both velocity and microrotation. In addition, it is concluded that the veloc-
ity slip parameters increase considerably the values of both velocity and microrotation.
Also, the microrotation slip coefficient has considerable contribution to the microrotation
function only.
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Figure 4: Variation of microrotation versus distance at at t = 0.05, K = 1 and η1 = 10.

Figure 5: Variation of velocity versus distance at t = 0.05, K = 1 and α1 = 10.
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Figure 6: Variation of microrotation versus distance at t = 0.05, K = 1 and α1 = 10.
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