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Abstract

For a connected graph G = (V,E) of order at least two, a total restrained mono-
phonic set S of a graph G is a restrained monophonic set S such that the subgraph
induced by S has no isolated vertices. The minimum cardinality of a total re-
strained monophonic set of G is the total restrained monophonic number of G and
is denoted by mtr(G). A total restrained monophonic set of cardinality mtr(G) is
called a mtr-set of G. We determine bounds for it and characterize graphs which



realize these bounds. It is shown that if p,d and k are positive integers such that
2 ≤ d ≤ p−2, 3 ≤ k ≤ p and p−d − k+2 ≥ 0, there exists a connected graph G
of order p, monophonic diameter d and mtr(G) = k.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q, respectively. For basic
graph theoretic terminology we refer to Harary [1, 2]. The neighborhood of a vertex v
is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an
extreme vertex if the subgraph induced by its neighbors is complete. A vertex v of a
connected graph G is called a support vertex of G if it is adjacent to an endvertex of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path
P is called a monophonic path if it is a chordless path. A set S of vertices of G is a
monophonic set of G if each vertex v of G lies on an x− y monophonic path for some
x and y in S. The minimum cardinality of a monophonic set of G is the monophonic
number of G and is denoted by m(G) [6]. A restrained monophonic set S of a graph
G is a monophonic set such that either S = V or the subgraph induced by V − S has
no isolated vertices. The minimum cardinality of a restrained monophonic set of G
is the restrained monophonic number of G and is denoted by mr(G). The restrained
monophonic number of a graph wast introduced and studied in [7]. A set S of vertices
of G is a restrained edge geodetic set of G if S is an edge geodetic set, and if either
S =V or the subgraph G[V −S] induced by V −S has no isolated vertices. The minimum
cardinality of a restrained edge geodetic set of G is the restrained edge geodetic number,
denoted by egr(G). The restrained edge geodetic number of a graph was introduced and
studied in [3].

A connected restrained monophonic set of G is a restrained monophonic set S such
that the subgraph G[S] induced by S is connected. The minimum cardinality of a con-
nected restrained monophonic set of G is the connected restrained monophonic number
of G and is denoted by mcr(G). The connected restrained monophonic number of a
graph was introduced and studied in [8].

For any two vertices u and v in a connected graph G, the monophonic distance
dm(u,v) from u to v is defined as the length of a longest u−v monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v,u) : u ∈V (G)}.
The monophonic radius, radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)} and the
monophonic diameter, diamm(G) of G is diamm(G)= max {em(v) : v∈V (G)}. A vertex
u in G is monophonic eccentric vertex of a vertex v in G if em(u) = dm(u,v). The
monophonic distance was introduced and studied in [4, 5].
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The following theorems will be used in the sequel.

Theorem 1.1. [7] Each extreme vertex of a connected graph G belongs to every re-
strained monophonic set of G.

Theorem 1.2. [7] Let G be a connected graph with cutvertices and let S be a restrained
monophonic set of G. If v is a cutvertex of G, then every component of G− v contains
an element of S.

Theorem 1.3. [8] Every cutvertex of a connected graph G belongs to every connected
restrained monophonic set of G.

Theorem 1.4. [8] Let G be a connected graph of order p ≥ 2. Then G = K2 if and only
if mcr(G) = 2.

Theorem 1.5. [8] For the complete graph Kp(p ≥ 2), mcr(Kp) = p.

Theorem 1.6. [8] For the complete bipartite graph

G = Km,n(2 ≤ m ≤ n),mcr(G) =

{
n+2 if 2 = m ≤ n

4 if 3 ≤ m ≤ n
.

Theorem 1.7. [8] If G = K1 +
⋃

m jKj, where j ≥ 2,∑m j ≥ 2, then mcr(G) = p.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Total restrained monophonic number

Definition 2.1. A total restrained monophonic set S of a graph G is a restrained mono-
phonic set such that the subgraph G[S] induced by S has no isolated vertices. The
minimum cardinality of a total restrained monophonic set of G is the total restrained
monophonic number of G and is denoted by mtr(G). A total restrained monophonic set
of cardinality mtr(G) is called a mtr-set of G.
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Figure 2.1: G

Example 2.2. For the graph G in Figure 2.1, every vertex of G is either a cutver-
tex or an extreme vertex. By Theorems 1.1 and 1.3, we have mcr(G) = 7. Let S =
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{v1,v3,v6,v7,v2} be the set of all extreme vertices and support vertex of G. It is eas-
ily verified that the set S−{v2} is a minimum restrained monophonic set of G and so
mr(G) = 4. The subgraph induced by S−{v2} has the isolated vertices v1,v3 so that
S−{v2} is not a total restrained monophonic set of G. It is clear that S is a minimum
total restrained monophonic set of G and so mtr(G) = 5. Thus the restrained mono-
phonic number, total restrained monophonic number and connected restrained mono-
phonic number of a graph are all different.

It is easily observed that every connected restrained monophonic set of G is a total
restrained monophonic set of G. The next theorem follows from Theorems 1.1 and 1.3.

Theorem 2.3. Each extreme vertex and each support vertex of a connected graph G
belongs to every total restrained monophonic set of G. If the set S of all extreme ver-
tices and support vertices form a total restrained monophonic set, then it is the unique
minimum total restrained monophonic set of G.

Corollary 2.4. For the complete graph Kp(p ≥ 2), mtr(Kp) = p.

Theorem 2.5. Let G be a connected graph with cutvertices and let S be a total restrained
monophonic set of G. If v is a cutvertex of G, then every component of G− v contains
an element of S.

Proof. Since every total restrained monophonic set of G is a restrained monophonic set
of G, the result follows from Theorem 1.2. �

Theorem 2.6. For a connected graph G of order p, 2 ≤ mr(G) ≤ mtr(G) ≤ mcr(G) ≤
p,mr(G) = mcr(G) = mtr(G) �= p−1.

Proof. Any restrained monophonic set of G needs at least two vertices and so mr(G)≥
2. Since every total restrained monophonic set of G is also a restrained monophonic
set of G, it follows that mr(G)≤ mtr(G). Also, since every connected restrained mono-
phonic set of G is a total restrained monophonic set of G we have mtr(G) ≤ dmcr(G).
Since V (G) is a connected restrained monophonic set of G, it is clear that mtr(G) ≤ p.
Hence 2 ≤ mr(G) ≤ mtr(G) ≤ mcr(G) ≤ p. From the definitions of restrained, con-
nected restrained and total restrained monophonic number, we have mr(G) = mcr(G) =
mtr(G) �= p−1. �

Corollary 2.7. Let G be a connected graph. If mtr(G) = 2, then mr(G) = 2.

For any non-trivial path of order at least 4, the restrained monophonic number is 2
and the total restrained monophonic number is 4. This shows that the converse of the
Corollary 2.7 need not be true.
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Figure 2.2: G

Remark 2.8. The bounds in Theorem 2.6 are sharp. For the complete graph G = Kp,
then mr(G) = mtr(G) = p and mcr(Kp) = p. Also, all the inequalities in Theorem 2.6
are strict. For the graph G given in Figure 2.2, S1 = {v1,v2,v6} is the unique minimum
restrained monophonic set of G so that mr(G) = 3. The subgraph induced by S1 is
not connected and it has an isolated vertex v6. It is clear that S2 = S1 ∪{v5} and S3 =
S1∪{v7} are the two minimum total restrained monophonic sets of G and so mtr(G) = 4.
The subgraph induced by Si, i = 2,3 are not connected. Clearly S3∪{v3} is a minimum
connected restrained monophonic set of G, it follows that mcr(G) = 5. Thus, we have
2 < mr(G)< mtr(G)< mcr(G)< p.

Theorem 2.9. For any non-trivial tree T , the set of all endvertices and support vertices
of T is the unique minimum total restrained monophonic set of G.

Proof. Since the set of all endvertices and support vertices of T forms a total restrained
monophonic set, the result follows from Theorem 2.3. �

Theorem 2.10. For any connected graph G, mtr(G) = 2 if and only if G = K2.

Proof. If G = K2, then mtr(G) = 2. Conversely, let mtr(G) = 2. Let S = {u,v} be a
minimum total restrained monophonic set of G. Then uv is an edge. It is clear that a
vertex different from u and v cannot lie on a u− v monophonic path and so G = K2. �

Theorem 2.11. For any connected graph G, mtr(G) = 3 if and only if mcr(G) = 3.

Proof. Suppose mcr(G) = 3. Let S = {x,y,z} is a minimum connected restrained mono-
phonic set of G. Therefore, S is a total restrained monophonic set of G. It follows
from Theorem 2.10 that S is a minimum total restrained monophonic set of G and so
mtr(G) = 3. Conversely, let mtr(G) = 3. By Theorem 1.4 and the argument similar to
the first part, we have mcr(G) = 3. �

Theorem 2.12. For the cycle G =C3 or G =Cn(n ≥ 5) or G = K2 +H (p ≥ 5), where
H is a 2-connected graph of order p−2, then mtr(G) = 3.

Proof. First, suppose that G = C3, it is a complete graph, by Corollary 2.4, we have
mtr(G) = 3. For any cycle Cn(n ≥ 5), it is easily verified that any three consecutive
vertices of Cn is a minimum total restrained monophonic set of Cn and so mtr(Cn) = 3.
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Next, suppose that G = K2 +H, where H is a connected graph of order p− 2. Let
V (K2) = {u1,u2}. Then for any vertex v of H, the set S = {v,u1,u2} is a minimum total
restrained monophonic set of G and so mtr(G) = 3. �

Problem 2.13. Characterize graphs G for which mtr(G) = 3.

The next two observations follow from Theorems 1.6 and 1.7.

Observation 2.14. For the complete bipartite graph

G = Km,n(2 ≤ m ≤ n),mtr(G) =

{
n+2 if 2 = m ≤ n

4 if 3 ≤ m ≤ n
.

Observation 2.15. If G = K1 +
⋃

m jKj, where j ≥ 1,∑m j ≥ 2, then mtr(G) = p.

Problem 2.16. Characterize the class of graphs G of order p for which mtr(G) = p.

3. Some realization results on the total restrained
monophonic number

Theorem 3.1. If p,d and k are positive integers such that 2 ≤ d ≤ p− 2, 3 ≤ k ≤ p
and p− d − k+ 2 ≥ 0, then there exists a connected graph G of order p, monophonic
diameter d and mtr(G) = k.

Proof. We prove this theorem by considering two cases.
Case 1. Let d = 2. First, let k = 3. Let P3 : v1,v2,v3 be the path of order 3. Now,
add p− 3 new vertices w1,w2, ...,wp−3 to P3. Let G be the graph obtained from P3
by joining each wi(1 ≤ i ≤ p− 3) to v1 and v3, and joining each w j(1 ≤ j ≤ p− 4)
to wk( j + 1 ≤ k ≤ p− 3). The graph G is shown in Figure 3.1. Then G has order p
and monophonic diameter d = 2. Clearly S = {v1,v2,v3} is a minimum total restrained
monophonic set of G so that mtr(G) = k = 3.

���
v3v2v1

�

�

�

w1

w2

wp−3

�

�

�

Figure 3.1: G
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Now, let 4 ≤ k ≤ p. Let Kp−2 be the complete graph of order p−2 with the vertex set
{w1,w2, . . . ,wp−k,v1,v2, . . . ,vk−2}. Now, add two new vertices x and y to Kp−2 and let
G be the graph obtained from Kp−2 by joining x and y with each vertex wi(1≤ i≤ p−k),
and joining the vertices x and y. The graph G is shown in Figure 3.2. Then G has order p
and monophonic diameter d = 2. Let S = {v1,v2, . . . ,vk−2,x,y} be the set of all extreme
vertices of G. By Theorem 2.3, every total restrained monophonic set of G contains S.
It is easily verified that S is a minimum total restrained monophonic set of G and so
mtr(G) = k.
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Figure 3.2: G

Case 2. d ≥ 3. First, let k = 3. Let Cd+2 : v1,v2, . . . ,vd+2,v1 be the cycle of order d+2.
Add p− d − 2 new vertices w1,w2, . . . ,wp−d−2 to C and join each vertex wi(1 ≤ i ≤
p−d −2) to both v1 and v3, thereby producing the graph G of Figure 3.3. Then G has
order p and monophonic diameter d. It is clear that S = {v3, v4, v5} is a minimum total
restrained monophonic set of G and so mtr(G) = 3 = k.
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Figure 3.3: G

Now, let k ≥ 4. Let Pd+1 : v0,v1, . . . ,vd be a path of length d. Add p−d−1 new vertices
w1,w2, . . . ,wp−d−k+2,u1,u2, . . . ,uk−3 to Pd+1 and join w1,w2, . . . ,wp−d−k+2 to both v0
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and v2 and also join u1,u2, . . . ,uk−3 to vd; and join each w j(1 ≤ j ≤ p− d + k+ 1) to
wk( j+1 ≤ k ≤ p−d + k+2), thereby producing the graph G of Figure 3.4.
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Figure 3.4: G

Then G has order p and monophonic diameter d. Let S = {u1,u2, . . . ,uk−3,vd} be the
set of all endvertices and support vertex of G. By Theorem 2.3, every total restrained
monophonic set of G contains S. It is clear that S is not a total restrained monophonic
set of G. Also, for any x /∈ S, S∪{x} is not a total restrained monophonic set of G. It is
easily seen that S∪{v0,v1} is a minimum total restrained monophonic set of G and so
mtr(G) = k. �

Theorem 3.2. If a,b are two positive integers such that 3 ≤ a ≤ b, then there exists a
connected graph G of order p with mtr(G) = a and mcr(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1. a = b. Let G be the complete graph of order b. Then by Corollary 2.4 and
Theorem 1.5, we have mtr(G) = mcr(G) = b.
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Figure 3.5: G

Case 2. 3≤ a< b. Let Pb−a : u1,u2, . . . ,ub−a be a path of order b−a. Let H be the graph
obtained from Pb−a by adding a new vertices v1,v2, . . . ,va−2,u,v to Pb−a and joining the
vertices u, v to ub−a; and joining the vertices v1,v2, . . . ,
va−2 to the vertices u, v; and joining the vertices v j(1 ≤ j ≤ a− 3) to vk( j + 1 ≤ k ≤
a−2). The graph G is obtained from H and the complete graph K2 with the vertex set
V (K2)= {x,y}, by joining the vertices x, y to u1; and joining the vertices u and v, thereby
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producing the graph G and is shown in Figure 3.5. Let S = {v1,v2, . . . ,va−2,x,y} be the
set of all extreme vertices of G. By Theorem 2.3, every total restrained monophonic set
of G contains S. It is clear that, S is a minimum total restrained monophonic set of G
and so mtr(G) = a.

Let S1 = S∪{u1,u2, . . . ,ub−a} be the set of all extreme vertices and cutvertices of
G. By Theorems 1.1 and 1.3, every connected restrained monophonic set of G contains
S1. It is easily verified that S1 is a minimum connected restrained monophonic set of G
and so mcr(G) = b. �

Theorem 3.3. For positive integers a,b such that 3 ≤ a ≤ b with b ≤ 2a, there exists a
connected graph G such that mr(G) = a and mtr(G) = b.

Proof. Case 1. For a = b, the complete graph Ka has the desired properties.
Case 2. a < b. Let b = a+ k where 1 ≤ k ≤ a. Let Ci : xi,yi,zi,ui,vi,xi (1 ≤ i ≤ k)
be “k”copies of C5. Let H be the graph obtained from Ci by identifying the vertices
xi (1≤ i≤ k), say x be the identified vertices and joining the vertices yi and ui (1≤ i≤ k).
Let G be the graph obtained from H and the complete graph Ka−k with the vertex set
V (Ka−k) = {w1,w2, · · · ,wa−k} by joining each vertex w j(1 ≤ j ≤ a− k) to the vertex x
of H. The graph G is shown in Figure 2.8. Let S = {w1,w2, · · · ,wa−k,z1,z2, . . . ,zk} be
the set of all extreme vertices of G. By Theorem 1.1, every restrained monophonic set
of G contains S. It is easily seen that S is a minimum restrained monophonic set of G
and so mr(G) = a.
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Figure: 3.6 G

By Theorem 2.3, every total restrained monophonic set of G contains S. We observe
that every minimum total restrained monophonic set of G contains exactly one vertex
from {yi,ui} for every i(1 ≤ i ≤ k). Thus mtr(G)≥ b. Since S1 = S∪{u1,u2, . . . ,uk} is
a total restrained monophonic set of G, it follows that mtr(G) = a+ k = b. �
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