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Abstract

For a connected graph G = (V,E) of order at least two, a fotal restrained mono-
phonic set S of a graph G is a restrained monophonic set S such that the subgraph
induced by S has no isolated vertices. The minimum cardinality of a total re-
strained monophonic set of G is the total restrained monophonic number of G and
is denoted by m;,(G). A total restrained monophonic set of cardinality m;,(G) is
called a my,-set of G. We determine bounds for it and characterize graphs which
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realize these bounds. It is shown that if p,d and k are positive integers such that
2<d<p-2,3<k<pand p—d—k+2 >0, there exists a connected graph G
of order p, monophonic diameter d and m;,(G) = k.

AMS subject classification: 05C12.
Keywords: Restrained monophonic set, restrained monophonic number, total re-
strained monophonic set, total restrained monophonic number.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and ¢, respectively. For basic
graph theoretic terminology we refer to Harary [1, 2]. The neighborhood of a vertex v
is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an
extreme vertex if the subgraph induced by its neighbors is complete. A vertex v of a
connected graph G is called a support vertex of G if it is adjacent to an endvertex of G.

A chord of a path P is an edge joining two non-adjacent vertices of P. A path
P is called a monophonic path if it is a chordless path. A set S of vertices of G is a
monophonic set of G if each vertex v of G lies on an x —y monophonic path for some
x and y in S. The minimum cardinality of a monophonic set of G is the monophonic
number of G and is denoted by m(G) [6]. A restrained monophonic set S of a graph
G is a monophonic set such that either S =V or the subgraph induced by V — S has
no isolated vertices. The minimum cardinality of a restrained monophonic set of G
is the restrained monophonic number of G and is denoted by m,(G). The restrained
monophonic number of a graph wast introduced and studied in [7]. A set S of vertices
of G is a restrained edge geodetic set of G if S is an edge geodetic set, and if either
S =V or the subgraph G[V — S| induced by V — § has no isolated vertices. The minimum
cardinality of a restrained edge geodetic set of G is the restrained edge geodetic number,
denoted by eg,(G). The restrained edge geodetic number of a graph was introduced and
studied in [3].

A connected restrained monophonic set of G is a restrained monophonic set S such
that the subgraph G|S] induced by S is connected. The minimum cardinality of a con-
nected restrained monophonic set of G is the connected restrained monophonic number
of G and is denoted by m,(G). The connected restrained monophonic number of a
graph was introduced and studied in [8].

For any two vertices u# and v in a connected graph G, the monophonic distance
dn(u,v) from u to v is defined as the length of a longest « — v monophonic path in G. The
monophonic eccentricity e, (v) of a vertex vin G is e,,(v) = max {d,,(v,u) :u € V(G)}.
The monophonic radius, rad,,(G) of G is rad,(G) = min {e,(v) : v € V(G)} and the
monophonic diameter, diam,,(G) of G is diam,,(G) = max {e,(v) : v€ V(G)}. A vertex
u in G is monophonic eccentric vertex of a vertex v in G if e, (u) = dy(u,v). The
monophonic distance was introduced and studied in [4, 5].



The Total Restrained Monophonic Number of a Graph 1701

The following theorems will be used in the sequel.

Theorem 1.1. [7] Each extreme vertex of a connected graph G belongs to every re-
strained monophonic set of G.

Theorem 1.2. [7] Let G be a connected graph with cutvertices and let S be a restrained
monophonic set of G. If v is a cutvertex of G, then every component of G — v contains
an element of S.

Theorem 1.3. [8] Every cutvertex of a connected graph G belongs to every connected
restrained monophonic set of G.

Theorem 1.4. [8] Let G be a connected graph of order p > 2. Then G = K if and only
if mer(G) = 2.

Theorem 1.5. [8] For the complete graph K, (p>2), mcr(Kp) = p.

Theorem 1.6. [8] For the complete bipartite graph

n+2 if2=m<n

mn(2 <m < n),me(G) {4 if 3<m<n

Theorem 1.7. [8] If G = K| +|_Jm;K;, where j >2,> m; > 2, then m.(G) = p.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Total restrained monophonic number

Definition 2.1. A total restrained monophonic set S of a graph G is a restrained mono-
phonic set such that the subgraph G[S] induced by S has no isolated vertices. The
minimum cardinality of a total restrained monophonic set of G is the total restrained
monophonic number of G and is denoted by m,,(G). A total restrained monophonic set
of cardinality m;,(G) is called a my,-set of G.

V1 V2 V6

V4

Figure 2.1: G

Example 2.2. For the graph G in Figure 2.1, every vertex of G is either a cutver-
tex or an extreme vertex. By Theorems 1.1 and 1.3, we have m.(G) =7. Let S =
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{v1,v3,v6,v7,v2} be the set of all extreme vertices and support vertex of G. It is eas-
ily verified that the set S — {v2} is a minimum restrained monophonic set of G and so
m,(G) = 4. The subgraph induced by S — {v,} has the isolated vertices v, v3 so that
S —{vy} is not a total restrained monophonic set of G. It is clear that S is a minimum
total restrained monophonic set of G and so m;(G) = 5. Thus the restrained mono-
phonic number, total restrained monophonic number and connected restrained mono-
phonic number of a graph are all different.

It is easily observed that every connected restrained monophonic set of G is a total
restrained monophonic set of G. The next theorem follows from Theorems 1.1 and 1.3.

Theorem 2.3. Each extreme vertex and each support vertex of a connected graph G
belongs to every total restrained monophonic set of G. If the set S of all extreme ver-
tices and support vertices form a total restrained monophonic set, then it is the unique
minimum total restrained monophonic set of G.

Corollary 2.4. For the complete graph K,(p > 2), m;(K,) = p.

Theorem 2.5. Let G be a connected graph with cutvertices and let S be a total restrained
monophonic set of G. If v is a cutvertex of G, then every component of G — v contains
an element of S.

Proof. Since every total restrained monophonic set of G is a restrained monophonic set
of G, the result follows from Theorem 1.2. [ |

Theorem 2.6. For a connected graph G of order p, 2 < m,(G) < m;(G) < me(G) <
p;my(G) = mer(G) = my(G) # p— 1.

Proof. Any restrained monophonic set of G needs at least two vertices and so m,(G) >
2. Since every total restrained monophonic set of G is also a restrained monophonic
set of G, it follows that m,(G) < m;(G). Also, since every connected restrained mono-
phonic set of G is a total restrained monophonic set of G we have m;,(G) < dm.-(G).
Since V(G) is a connected restrained monophonic set of G, it is clear that m,(G) < p.
Hence 2 < m,(G) < m;(G) < me(G) < p. From the definitions of restrained, con-
nected restrained and total restrained monophonic number, we have m,(G) = m¢(G) =

mtr(G> #p— 1. u
Corollary 2.7. Let G be a connected graph. If m;(G) = 2, then m,(G) = 2.

For any non-trivial path of order at least 4, the restrained monophonic number is 2
and the total restrained monophonic number is 4. This shows that the converse of the
Corollary 2.7 need not be true.
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Figure 2.2: G

Remark 2.8. The bounds in Theorem 2.6 are sharp. For the complete graph G = K,
then m,(G) = m;(G) = p and m.,(K,) = p. Also, all the inequalities in Theorem 2.6
are strict. For the graph G given in Figure 2.2, S| = {v,v2,vs} is the unique minimum
restrained monophonic set of G so that m,(G) = 3. The subgraph induced by S; is
not connected and it has an isolated vertex vg. It is clear that S, = S; U{vs} and S3 =
S1U{v7} are the two minimum total restrained monophonic sets of G and so m;.(G) = 4.
The subgraph induced by S;, i = 2,3 are not connected. Clearly S3U{v3} is a minimum
connected restrained monophonic set of G, it follows that m,,(G) = 5. Thus, we have
2 <mp(G) < my(G) < mer(G) < p.

Theorem 2.9. For any non-trivial tree 7', the set of all endvertices and support vertices
of T is the unique minimum total restrained monophonic set of G.

Proof. Since the set of all endvertices and support vertices of 7 forms a total restrained
monophonic set, the result follows from Theorem 2.3. [ |

Theorem 2.10. For any connected graph G, m;,(G) = 2 if and only if G = Kj.

Proof. If G = K, then m;(G) = 2. Conversely, let m;(G) = 2. Let S = {u,v} be a
minimum total restrained monophonic set of G. Then uv is an edge. It is clear that a
vertex different from u and v cannot lie on a ¥ — v monophonic path and so G=K;. B

Theorem 2.11. For any connected graph G, m;(G) = 3 if and only if m.,(G) = 3.

Proof. Suppose m.-(G) = 3. Let S = {x,y,z} is a minimum connected restrained mono-
phonic set of G. Therefore, S is a total restrained monophonic set of G. It follows
from Theorem 2.10 that S is a minimum total restrained monophonic set of G and so
my(G) = 3. Conversely, let m;(G) = 3. By Theorem 1.4 and the argument similar to
the first part, we have m,(G) = 3. ]

Theorem 2.12. For the cycle G=C3 0or G=C,(n>5) or G=K,+H (p>5), where
H is a 2-connected graph of order p — 2, then m,,(G) = 3.

Proof. First, suppose that G = C3, it is a complete graph, by Corollary 2.4, we have
myr(G) = 3. For any cycle C,(n > 5), it is easily verified that any three consecutive
vertices of C,, is a minimum total restrained monophonic set of C,, and so m,(C,) = 3.
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Next, suppose that G = K>+ H, where H is a connected graph of order p —2. Let
V(K3) = {u1,uz}. Then for any vertex v of H, the set S = {v,u;,us} is a minimum total
restrained monophonic set of G and so my(G) = 3. |

Problem 2.13. Characterize graphs G for which m;.(G) = 3.
The next two observations follow from Theorems 1.6 and 1.7.

Observation 2.14. For the complete bipartite graph

n+2 if 2=m<n
G=Ku,2<m<n),m,(G)= <n
mn(2 <m<n),m,(G) {4 it 3<m<n

Observation 2.15. If G = K; + UmjKj, where j > 1,2m_,~ > 2, then my,(G) = p.

Problem 2.16. Characterize the class of graphs G of order p for which m;,(G) = p.

3. Some realization results on the total restrained
monophonic number

Theorem 3.1. If p,d and k are positive integers such that 2 <d < p—-2,3<k<p
and p —d — k+2 > 0, then there exists a connected graph G of order p, monophonic
diameter d and m;,(G) = k.

Proof. We prove this theorem by considering two cases.

Case 1. Let d = 2. First, let k = 3. Let P53 : v{,v2,v3 be the path of order 3. Now,
add p — 3 new vertices wy,w2,...,wp_3 to P;. Let G be the graph obtained from P;
by joining each w;(1 <i < p—3) to v; and v3, and joining each w;(1 < j < p—4)
to we(j+1 <k < p—3). The graph G is shown in Figure 3.1. Then G has order p
and monophonic diameter d = 2. Clearly S = {v{,v2,v3} is a minimum total restrained
monophonic set of G so that m;-(G) = k = 3.

Figure 3.1: G
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Now, let 4 < k < p. Let K,,_» be the complete graph of order p —2 with the vertex set
{wi,wa, ..., wp_k,v1,v2,...,vk—2}. Now, add two new vertices x and y to K,_» and let
G be the graph obtained from K, by joining x and y with each vertex w;(1 <i < p—k),
and joining the vertices x and y. The graph G is shown in Figure 3.2. Then G has order p
and monophonic diameter d = 2. Let § = {vy,v7,...,vr_2,x,y} be the set of all extreme
vertices of G. By Theorem 2.3, every total restrained monophonic set of G contains S.
It is easily verified that S is a minimum total restrained monophonic set of G and so
my (G) = k.

Kp2
7‘W1 V]
X ¢
W) v
y 'Wp—k *Vi—2

Figure 3.2: G

Case 2. d > 3. First, let k = 3. Let Cg4 : vi,V2,...,v4+2,Vv1 be the cycle of order d + 2.
Add p —d —2 new vertices wi,ws,...,w,_q—2 to C and join each vertex w;(1 <i <
p—d —2) to both v; and v3, thereby producing the graph G of Figure 3.3. Then G has
order p and monophonic diameter d. It is clear that S = {v3, v4, v5} is a minimum total
restrained monophonic set of G and so m;(G) =3 = k.

Vd+2
V]
Wp—d—2
V3
V4
Figure 3.3: G

Now, let k > 4. Let Py, : vo,Vv1,...,vq be a path of length d. Add p—d — 1 new vertices
WIW2, oo s Wp—d—f42, U1, U2, . ., U3 1O P;.1 and join wy,wo,... yWp—d—k+2 O both vy
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and v, and also join uy,uz,...,ux_3 to vg; and join each w;(1 < j<p—d+k+1)to
wi(j+1 <k < p—d+k+2), thereby producing the graph G of Figure 3.4.

>

Wp—d—k+2

2 1%

| ﬁd\
up Uz U—3

Figure 3.4: G

Then G has order p and monophonic diameter d. Let S = {u;,uz, ..., ux_3,v4} be the
set of all endvertices and support vertex of G. By Theorem 2.3, every total restrained
monophonic set of G contains S. It is clear that S is not a total restrained monophonic
set of G. Also, for any x ¢ S, SU{x} is not a total restrained monophonic set of G. It is
easily seen that SU{vp,v;} is a minimum total restrained monophonic set of G and so
m(G) = k. [

Theorem 3.2. If a,b are two positive integers such that 3 < a < b, then there exists a
connected graph G of order p with m;(G) = a and m,(G) = b.

Proof. We prove this theorem by considering two cases.
Case 1. a =b. Let G be the complete graph of order b. Then by Corollary 2.4 and
Theorem 1.5, we have m;.(G) = m.,(G) = b.

Figure 3.5: G
Case2.3<a<b.LetP, ,:uy,uy,...,up_,beapathof order b—a. Let H be the graph
obtained from P,_, by adding a new vertices vi,vs,...,v4—2,u,v to P,_, and joining the
vertices u,v  to Ub—q; and  joining the  vertices V1, V2, eney

va—2 to the vertices u, v; and joining the vertices v;(1 < j <a—3)tow(j+1 <k <
a—?2). The graph G is obtained from H and the complete graph K, with the vertex set
V(K>) = {x,y}, by joining the vertices x, y to u;; and joining the vertices u and v, thereby
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producing the graph G and is shown in Figure 3.5. Let S = {v;,v2,...,v,_2,x,y} be the
set of all extreme vertices of G. By Theorem 2.3, every total restrained monophonic set
of G contains S. It is clear that, S is a minimum total restrained monophonic set of G
and so m;(G) = a.

Let S; = SU{uj,ua,...,up_,} be the set of all extreme vertices and cutvertices of
G. By Theorems 1.1 and 1.3, every connected restrained monophonic set of G contains
S1. It is easily verified that S is a minimum connected restrained monophonic set of G
and so m¢-(G) = b. |

Theorem 3.3. For positive integers a, b such that 3 < a < b with b < 2aq, there exists a
connected graph G such that m,(G) = a and m;,(G) = b.

Proof. Case 1. For a = b, the complete graph K, has the desired properties.

Case 2. a<b. Letb=a+k where | <k <a. Let C;: x;,yi,zi,ui,vi,xi (1 <i<k)
be “k”copies of Cs. Let H be the graph obtained from C; by identifying the vertices
x; (1 <i<k), say x be the identified vertices and joining the vertices y; and u; (1 <i <k).
Let G be the graph obtained from H and the complete graph K, ; with the vertex set
V(Kq—k) = {w1,w2, - ,w,_k} by joining each vertex w;(1 < j < a—k) to the vertex x
of H. The graph G is shown in Figure 2.8. Let S = {wy, w2, -+ , W4 ,21,22,.--,2k} be
the set of all extreme vertices of G. By Theorem 1.1, every restrained monophonic set
of G contains S. It is easily seen that S is a minimum restrained monophonic set of G
and so m,(G) = a.

Vig » Vi

Uy ) k
Figure: 3.6 G

By Theorem 2.3, every total restrained monophonic set of G contains S. We observe
that every minimum total restrained monophonic set of G contains exactly one vertex
from {yj,u;} for every i(1 <i < k). Thus m;(G) > b. Since S| = SU{uy,up,...,u} is
a total restrained monophonic set of G, it follows that m;.(G) = a+k = b. n
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