# The Total Restrained Monophonic Number of a Graph 

A.P. Santhakumaran<br>Department of Mathematics, Hindustan University, Hindustan Institute of Technology and Science, Chennai- 603 103, India.

T. Venkata Raghu

Department of Applied Sciences and Humanities, Sasi Institute of Technology and Engineering, Tadepalligudem - 534 101, India.
P. Titus

Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region,

Nagercoil- 629 004, India.
K. Ganesamoorthy

Department of Mathematics, Coimbatore Institute of Technology, (Government Aided Autonomous Institution), Coimbatore - 641 014, India.


#### Abstract

For a connected graph $G=(V, E)$ of order at least two, a total restrained monophonic set $S$ of a graph $G$ is a restrained monophonic set $S$ such that the subgraph induced by $S$ has no isolated vertices. The minimum cardinality of a total restrained monophonic set of $G$ is the total restrained monophonic number of $G$ and is denoted by $m_{t r}(G)$. A total restrained monophonic set of cardinality $m_{t r}(G)$ is called a $m_{t r}$-set of $G$. We determine bounds for it and characterize graphs which


realize these bounds. It is shown that if $p, d$ and $k$ are positive integers such that $2 \leq d \leq p-2,3 \leq k \leq p$ and $p-d-k+2 \geq 0$, there exists a connected graph $G$ of order $p$, monophonic diameter $d$ and $m_{t r}(G)=k$.

AMS subject classification: 05C12.
Keywords: Restrained monophonic set, restrained monophonic number, total restrained monophonic set, total restrained monophonic number.

## 1. Introduction

By a graph $G=(V, E)$ we mean a finite undirected connected graph without loops or multiple edges. The order and size of $G$ are denoted by $p$ and $q$, respectively. For basic graph theoretic terminology we refer to Harary [1, 2]. The neighborhood of a vertex $v$ is the set $N(v)$ consisting of all vertices $u$ which are adjacent with $v$. A vertex $v$ is an extreme vertex if the subgraph induced by its neighbors is complete. A vertex $v$ of a connected graph $G$ is called a support vertex of $G$ if it is adjacent to an endvertex of $G$.

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A set $S$ of vertices of $G$ is a monophonic set of $G$ if each vertex $v$ of $G$ lies on an $x-y$ monophonic path for some $x$ and $y$ in $S$. The minimum cardinality of a monophonic set of $G$ is the monophonic number of $G$ and is denoted by $m(G)$ [6]. A restrained monophonic set $S$ of a graph $G$ is a monophonic set such that either $S=V$ or the subgraph induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained monophonic set of $G$ is the restrained monophonic number of $G$ and is denoted by $m_{r}(G)$. The restrained monophonic number of a graph wast introduced and studied in [7]. A set $S$ of vertices of $G$ is a restrained edge geodetic set of $G$ if $S$ is an edge geodetic set, and if either $S=V$ or the subgraph $G[V-S]$ induced by $V-S$ has no isolated vertices. The minimum cardinality of a restrained edge geodetic set of $G$ is the restrained edge geodetic number, denoted by $e g_{r}(G)$. The restrained edge geodetic number of a graph was introduced and studied in [3].

A connected restrained monophonic set of $G$ is a restrained monophonic set $S$ such that the subgraph $G[S]$ induced by $S$ is connected. The minimum cardinality of a connected restrained monophonic set of $G$ is the connected restrained monophonic number of $G$ and is denoted by $m_{c r}(G)$. The connected restrained monophonic number of a graph was introduced and studied in [8].

For any two vertices $u$ and $v$ in a connected graph $G$, the monophonic distance $d_{m}(u, v)$ from $u$ to $v$ is defined as the length of a longest $u-v$ monophonic path in $G$. The monophonic eccentricity $e_{m}(v)$ of a vertex $v$ in $G$ is $e_{m}(v)=\max \left\{d_{m}(v, u): u \in V(G)\right\}$. The monophonic radius, $\operatorname{rad}_{m}(G)$ of $G$ is $\operatorname{rad}_{m}(G)=\min \left\{e_{m}(v): v \in V(G)\right\}$ and the monophonic diameter, $\operatorname{diam}_{m}(G)$ of $G$ is $\operatorname{diam}_{m}(G)=\max \left\{e_{m}(v): v \in V(G)\right\}$. A vertex $u$ in $G$ is monophonic eccentric vertex of a vertex $v$ in $G$ if $e_{m}(u)=d_{m}(u, v)$. The monophonic distance was introduced and studied in [4, 5].

The following theorems will be used in the sequel.
Theorem 1.1. [7] Each extreme vertex of a connected graph $G$ belongs to every restrained monophonic set of $G$.

Theorem 1.2. [7] Let $G$ be a connected graph with cutvertices and let $S$ be a restrained monophonic set of $G$. If $v$ is a cutvertex of $G$, then every component of $G-v$ contains an element of $S$.

Theorem 1.3. [8] Every cutvertex of a connected graph $G$ belongs to every connected restrained monophonic set of $G$.

Theorem 1.4. [8] Let $G$ be a connected graph of order $p \geq 2$. Then $G=K_{2}$ if and only if $m_{c r}(G)=2$.

Theorem 1.5. [8] For the complete graph $K_{p}(p \geq 2), m_{c r}\left(K_{p}\right)=p$.
Theorem 1.6. [8] For the complete bipartite graph

$$
G=K_{m, n}(2 \leq m \leq n), m_{c r}(G)=\left\{\begin{array}{ll}
n+2 & \text { if } 2=m \leq n \\
4 & \text { if } 3 \leq m \leq n
\end{array} .\right.
$$

Theorem 1.7. [8] If $G=K_{1}+\bigcup m_{j} K_{j}$, where $j \geq 2, \sum m_{j} \geq 2$, then $m_{c r}(G)=p$.
Throughout this paper $G$ denotes a connected graph with at least two vertices.

## 2. Total restrained monophonic number

Definition 2.1. A total restrained monophonic set $S$ of a graph $G$ is a restrained monophonic set such that the subgraph $G[S]$ induced by $S$ has no isolated vertices. The minimum cardinality of a total restrained monophonic set of $G$ is the total restrained monophonic number of $G$ and is denoted by $m_{t r}(G)$. A total restrained monophonic set of cardinality $m_{t r}(G)$ is called a $m_{t r}$-set of $G$.


Figure 2.1: $G$
Example 2.2. For the graph $G$ in Figure 2.1, every vertex of $G$ is either a cutvertex or an extreme vertex. By Theorems 1.1 and 1.3, we have $m_{c r}(G)=7$. Let $S=$
$\left\{v_{1}, v_{3}, v_{6}, v_{7}, v_{2}\right\}$ be the set of all extreme vertices and support vertex of $G$. It is easily verified that the set $S-\left\{v_{2}\right\}$ is a minimum restrained monophonic set of $G$ and so $m_{r}(G)=4$. The subgraph induced by $S-\left\{v_{2}\right\}$ has the isolated vertices $v_{1}, v_{3}$ so that $S-\left\{v_{2}\right\}$ is not a total restrained monophonic set of $G$. It is clear that $S$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=5$. Thus the restrained monophonic number, total restrained monophonic number and connected restrained monophonic number of a graph are all different.

It is easily observed that every connected restrained monophonic set of $G$ is a total restrained monophonic set of $G$. The next theorem follows from Theorems 1.1 and 1.3.

Theorem 2.3. Each extreme vertex and each support vertex of a connected graph $G$ belongs to every total restrained monophonic set of $G$. If the set $S$ of all extreme vertices and support vertices form a total restrained monophonic set, then it is the unique minimum total restrained monophonic set of $G$.

Corollary 2.4. For the complete graph $K_{p}(p \geq 2), m_{t r}\left(K_{p}\right)=p$.
Theorem 2.5. Let $G$ be a connected graph with cutvertices and let $S$ be a total restrained monophonic set of $G$. If $v$ is a cutvertex of $G$, then every component of $G-v$ contains an element of $S$.

Proof. Since every total restrained monophonic set of $G$ is a restrained monophonic set of $G$, the result follows from Theorem 1.2.

Theorem 2.6. For a connected graph $G$ of order $p, 2 \leq m_{r}(G) \leq m_{t r}(G) \leq m_{c r}(G) \leq$ $p, m_{r}(G)=m_{c r}(G)=m_{t r}(G) \neq p-1$.

Proof. Any restrained monophonic set of $G$ needs at least two vertices and so $m_{r}(G) \geq$ 2. Since every total restrained monophonic set of $G$ is also a restrained monophonic set of $G$, it follows that $m_{r}(G) \leq m_{t r}(G)$. Also, since every connected restrained monophonic set of $G$ is a total restrained monophonic set of $G$ we have $m_{t r}(G) \leq d m_{c r}(G)$. Since $V(G)$ is a connected restrained monophonic set of $G$, it is clear that $m_{t r}(G) \leq p$. Hence $2 \leq m_{r}(G) \leq m_{t r}(G) \leq m_{c r}(G) \leq p$. From the definitions of restrained, connected restrained and total restrained monophonic number, we have $m_{r}(G)=m_{c r}(G)=$ $m_{t r}(G) \neq p-1$.

Corollary 2.7. Let $G$ be a connected graph. If $m_{t r}(G)=2$, then $m_{r}(G)=2$.
For any non-trivial path of order at least 4 , the restrained monophonic number is 2 and the total restrained monophonic number is 4 . This shows that the converse of the Corollary 2.7 need not be true.


Figure 2.2: $G$
Remark 2.8. The bounds in Theorem 2.6 are sharp. For the complete graph $G=K_{p}$, then $m_{r}(G)=m_{t r}(G)=p$ and $m_{c r}\left(K_{p}\right)=p$. Also, all the inequalities in Theorem 2.6 are strict. For the graph $G$ given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{2}, v_{6}\right\}$ is the unique minimum restrained monophonic set of $G$ so that $m_{r}(G)=3$. The subgraph induced by $S_{1}$ is not connected and it has an isolated vertex $v_{6}$. It is clear that $S_{2}=S_{1} \cup\left\{v_{5}\right\}$ and $S_{3}=$ $S_{1} \cup\left\{v_{7}\right\}$ are the two minimum total restrained monophonic sets of $G$ and so $m_{t r}(G)=4$. The subgraph induced by $S_{i}, i=2,3$ are not connected. Clearly $S_{3} \cup\left\{v_{3}\right\}$ is a minimum connected restrained monophonic set of $G$, it follows that $m_{c r}(G)=5$. Thus, we have $2<m_{r}(G)<m_{t r}(G)<m_{c r}(G)<p$.

Theorem 2.9. For any non-trivial tree $T$, the set of all endvertices and support vertices of $T$ is the unique minimum total restrained monophonic set of $G$.

Proof. Since the set of all endvertices and support vertices of $T$ forms a total restrained monophonic set, the result follows from Theorem 2.3.

Theorem 2.10. For any connected graph $G, m_{t r}(G)=2$ if and only if $G=K_{2}$.
Proof. If $G=K_{2}$, then $m_{t r}(G)=2$. Conversely, let $m_{t r}(G)=2$. Let $S=\{u, v\}$ be a minimum total restrained monophonic set of $G$. Then $u v$ is an edge. It is clear that a vertex different from $u$ and $v$ cannot lie on a $u-v$ monophonic path and so $G=K_{2}$.

Theorem 2.11. For any connected graph $G, m_{t r}(G)=3$ if and only if $m_{c r}(G)=3$.
Proof. Suppose $m_{c r}(G)=3$. Let $S=\{x, y, z\}$ is a minimum connected restrained monophonic set of $G$. Therefore, $S$ is a total restrained monophonic set of $G$. It follows from Theorem 2.10 that $S$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=3$. Conversely, let $m_{t r}(G)=3$. By Theorem 1.4 and the argument similar to the first part, we have $m_{c r}(G)=3$.

Theorem 2.12. For the cycle $G=C_{3}$ or $G=C_{n}(n \geq 5)$ or $G=\bar{K}_{2}+H(p \geq 5)$, where $H$ is a 2-connected graph of order $p-2$, then $m_{t r}(G)=3$.

Proof. First, suppose that $G=C_{3}$, it is a complete graph, by Corollary 2.4, we have $m_{t r}(G)=3$. For any cycle $C_{n}(n \geq 5)$, it is easily verified that any three consecutive vertices of $C_{n}$ is a minimum total restrained monophonic set of $C_{n}$ and so $m_{t r}\left(C_{n}\right)=3$.

Next, suppose that $G=\bar{K}_{2}+H$, where $H$ is a connected graph of order $p-2$. Let $V\left(\bar{K}_{2}\right)=\left\{u_{1}, u_{2}\right\}$. Then for any vertex $v$ of $H$, the set $S=\left\{v, u_{1}, u_{2}\right\}$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=3$.

Problem 2.13. Characterize graphs $G$ for which $m_{t r}(G)=3$.
The next two observations follow from Theorems 1.6 and 1.7.
Observation 2.14. For the complete bipartite graph

$$
G=K_{m, n}(2 \leq m \leq n), m_{t r}(G)= \begin{cases}n+2 & \text { if } 2=m \leq n \\ 4 & \text { if } 3 \leq m \leq n\end{cases}
$$

Observation 2.15. If $G=K_{1}+\bigcup m_{j} K_{j}$, where $j \geq 1, \sum m_{j} \geq 2$, then $m_{t r}(G)=p$.
Problem 2.16. Characterize the class of graphs $G$ of order $p$ for which $m_{t r}(G)=p$.

## 3. Some realization results on the total restrained monophonic number

Theorem 3.1. If $p, d$ and $k$ are positive integers such that $2 \leq d \leq p-2,3 \leq k \leq p$ and $p-d-k+2 \geq 0$, then there exists a connected graph $G$ of order $p$, monophonic diameter $d$ and $m_{t r}(G)=k$.

Proof. We prove this theorem by considering two cases.
Case 1. Let $d=2$. First, let $k=3$. Let $P_{3}: v_{1}, v_{2}, v_{3}$ be the path of order 3. Now, add $p-3$ new vertices $w_{1}, w_{2}, \ldots, w_{p-3}$ to $P_{3}$. Let $G$ be the graph obtained from $P_{3}$ by joining each $w_{i}(1 \leq i \leq p-3)$ to $v_{1}$ and $v_{3}$, and joining each $w_{j}(1 \leq j \leq p-4)$ to $w_{k}(j+1 \leq k \leq p-3)$. The graph $G$ is shown in Figure 3.1. Then $G$ has order $p$ and monophonic diameter $d=2$. Clearly $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a minimum total restrained monophonic set of $G$ so that $m_{t r}(G)=k=3$.


Figure 3.1: $G$

Now, let $4 \leq k \leq p$. Let $K_{p-2}$ be the complete graph of order $p-2$ with the vertex set $\left\{w_{1}, w_{2}, \ldots, w_{p-k}, v_{1}, v_{2}, \ldots, v_{k-2}\right\}$. Now, add two new vertices $x$ and $y$ to $K_{p-2}$ and let $G$ be the graph obtained from $K_{p-2}$ by joining $x$ and $y$ with each vertex $w_{i}(1 \leq i \leq p-k)$, and joining the vertices $x$ and $y$. The graph $G$ is shown in Figure 3.2. Then $G$ has order $p$ and monophonic diameter $d=2$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k-2}, x, y\right\}$ be the set of all extreme vertices of $G$. By Theorem 2.3, every total restrained monophonic set of $G$ contains $S$. It is easily verified that $S$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=k$.


Figure 3.2: $G$
Case 2. $d \geq 3$. First, let $k=3$. Let $C_{d+2}: v_{1}, v_{2}, \ldots, v_{d+2}, v_{1}$ be the cycle of order $d+2$. Add $p-d-2$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-2}$ to $C$ and join each vertex $w_{i}(1 \leq i \leq$ $p-d-2$ ) to both $v_{1}$ and $v_{3}$, thereby producing the graph $G$ of Figure 3.3. Then $G$ has order $p$ and monophonic diameter $d$. It is clear that $S=\left\{v_{3}, v_{4}, v_{5}\right\}$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=3=k$.


Figure 3.3: $G$
Now, let $k \geq 4$. Let $P_{d+1}: v_{0}, v_{1}, \ldots, v_{d}$ be a path of length $d$. Add $p-d-1$ new vertices $w_{1}, w_{2}, \ldots, w_{p-d-k+2}, u_{1}, u_{2}, \ldots, u_{k-3}$ to $P_{d+1}$ and join $w_{1}, w_{2}, \ldots, w_{p-d-k+2}$ to both $v_{0}$
and $v_{2}$ and also join $u_{1}, u_{2}, \ldots, u_{k-3}$ to $v_{d}$; and join each $w_{j}(1 \leq j \leq p-d+k+1)$ to $w_{k}(j+1 \leq k \leq p-d+k+2)$, thereby producing the graph $G$ of Figure 3.4.


Figure 3.4: G

Then $G$ has order $p$ and monophonic diameter $d$. Let $S=\left\{u_{1}, u_{2}, \ldots, u_{k-3}, v_{d}\right\}$ be the set of all endvertices and support vertex of $G$. By Theorem 2.3, every total restrained monophonic set of $G$ contains $S$. It is clear that $S$ is not a total restrained monophonic set of $G$. Also, for any $x \notin S, S \cup\{x\}$ is not a total restrained monophonic set of $G$. It is easily seen that $S \cup\left\{v_{0}, v_{1}\right\}$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=k$.

Theorem 3.2. If $a, b$ are two positive integers such that $3 \leq a \leq b$, then there exists a connected graph $G$ of order $p$ with $m_{t r}(G)=a$ and $m_{c r}(G)=b$.

Proof. We prove this theorem by considering two cases.
Case 1. $a=b$. Let $G$ be the complete graph of order $b$. Then by Corollary 2.4 and Theorem 1.5, we have $m_{t r}(G)=m_{c r}(G)=b$.


Figure 3.5: $G$
Case 2. $3 \leq a<b$. Let $P_{b-a}: u_{1}, u_{2}, \ldots, u_{b-a}$ be a path of order $b-a$. Let $H$ be the graph obtained from $P_{b-a}$ by adding $a$ new vertices $v_{1}, v_{2}, \ldots, v_{a-2}, u, v$ to $P_{b-a}$ and joining the vertices $u, v$ to $u_{b-a}$; and joining the vertices $v_{1}, v_{2}, \ldots$, $v_{a-2}$ to the vertices $u, v$; and joining the vertices $v_{j}(1 \leq j \leq a-3)$ to $v_{k}(j+1 \leq k \leq$ $a-2$ ). The graph $G$ is obtained from $H$ and the complete graph $K_{2}$ with the vertex set $V\left(K_{2}\right)=\{x, y\}$, by joining the vertices $x, y$ to $u_{1}$; and joining the vertices $u$ and $v$, thereby
producing the graph $G$ and is shown in Figure 3.5. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a-2}, x, y\right\}$ be the set of all extreme vertices of $G$. By Theorem 2.3, every total restrained monophonic set of $G$ contains $S$. It is clear that, $S$ is a minimum total restrained monophonic set of $G$ and so $m_{t r}(G)=a$.

Let $S_{1}=S \cup\left\{u_{1}, u_{2}, \ldots, u_{b-a}\right\}$ be the set of all extreme vertices and cutvertices of $G$. By Theorems 1.1 and 1.3 , every connected restrained monophonic set of $G$ contains $S_{1}$. It is easily verified that $S_{1}$ is a minimum connected restrained monophonic set of $G$ and so $m_{c r}(G)=b$.

Theorem 3.3. For positive integers $a, b$ such that $3 \leq a \leq b$ with $b \leq 2 a$, there exists a connected graph $G$ such that $m_{r}(G)=a$ and $m_{t r}(G)=b$.

Proof. Case 1. For $a=b$, the complete graph $K_{a}$ has the desired properties.
Case 2. $a<b$. Let $b=a+k$ where $1 \leq k \leq a$. Let $C_{i}: x_{i}, y_{i}, z_{i}, u_{i}, v_{i}, x_{i}(1 \leq i \leq k)$ be " $k$ "copies of $C_{5}$. Let $H$ be the graph obtained from $C_{i}$ by identifying the vertices $x_{i}(1 \leq i \leq k)$, say $x$ be the identified vertices and joining the vertices $y_{i}$ and $u_{i}(1 \leq i \leq k)$. Let $G$ be the graph obtained from $H$ and the complete graph $K_{a-k}$ with the vertex set $V\left(K_{a-k}\right)=\left\{w_{1}, w_{2}, \cdots, w_{a-k}\right\}$ by joining each vertex $w_{j}(1 \leq j \leq a-k)$ to the vertex $x$ of $H$. The graph $G$ is shown in Figure 2.8. Let $S=\left\{w_{1}, w_{2}, \cdots, w_{a-k}, z_{1}, z_{2}, \ldots, z_{k}\right\}$ be the set of all extreme vertices of $G$. By Theorem 1.1, every restrained monophonic set of $G$ contains $S$. It is easily seen that $S$ is a minimum restrained monophonic set of $G$ and so $m_{r}(G)=a$.


Figure: 3.6 G

By Theorem 2.3, every total restrained monophonic set of $G$ contains $S$. We observe that every minimum total restrained monophonic set of $G$ contains exactly one vertex from $\left\{y_{i}, u_{i}\right\}$ for every $i(1 \leq i \leq k)$. Thus $m_{t r}(G) \geq b$. Since $S_{1}=S \cup\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ is a total restrained monophonic set of $G$, it follows that $m_{t r}(G)=a+k=b$.

## References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] F. Harary, Graph Theory, Addison-Wesley, 1969.
[3] A. P. Santhakumaran, M. Mahendran and P. Titus, The Restrained Edge Geodetic Number of a Graph, International Journal of Computational and Applied Mathematics, Accepted for publication (2016).
[4] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2 (2011), 159-169.
[5] A.P. Santhakumaran and P. Titus, A Note on "Monophonic Distance in Graphs", Discrete Mathematics, Algorithms and Applications, Vol. 4, No. 2 (2012).
[6] A.P. Santhakumaran, P. Titus, K. Ganesamoorthy, On the Monophonic Number of a Graph, J. Appl. Math. \& Informatics, Vol. 32(2014), No. 1-2, pp. 255-266.
[7] A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, The Restrained Monophonic Number of a Graph, Communicated.
[8] P. Titus, A.P. Santhakumaran and K. Ganesamoorthy, The Connected and Forcing Connected Restrained Monophonic Number of a Graph, Communicated.

