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Abstract

We have checked the intrinsic structure of fast Fourier transform, centering on
Danielson-Lanczos lemma, and investigated a synopsis of sparse Fourier transform.
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1. Introduction

If a given function f (x) has only values at finite points, we think over the discrete Fourier
transform (DFT). This DFT concerns large amounts of equal speed data, as it occur in
compression, signal processing, analysis images, time series analysis, and various sim-
ulation problems. The fast Fourier transform (FFT) is a practical method of computing
DFT that needs only O(N) log2 N operations instead of O(N2). Although this algorithm
is not novel, the importance is still valid because the existing commercialized system is
based on FFT. Additionally, this FFT has an important application to Radon transform
which is widely applicable to tomography, and the short-term fast Fourier transform
weightily is applied to the analysis of brain waves. It is well-known fact that the Fourier
transform of f has the form of

f̂ (w) =
∫ ∞

−∞
f (x)e−iwxdw,
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and we can interpret that a function f is the given signal and f̂ is the frequency spectrum
of f . Let us define the DFT of the given signal f = [f0, · · · , fN−1]T to be the vector
f̂ = [f̂0, · · · , ˆfN−1] with the components

f̂n = Ncn =
N−1∑
k=0

fke
−inxk ,

where fk = f (xk) and xk = 2πk/N [7]. This is the frequency spectrum of the signal
f , and we can write f̂ = FNf , where the N × N Fourier matrix FN = [enk] has the
entries

enk = e−inxk = e−2πink/N = wnk, w = wN = e−2πi/N

for n, k = 0, · · · , N − 1. Here, since N is normally large, we need quite a number of
operations. To avoid this difficulty, we use FFT, a computational method for the DFT,
which needs only O(N log N) instead of O(N). This FFT can get possible the Fourier
matrix to break down the given problem into smaller problems by using

w2
2M = (e−2πi/N)2 = e−2πi/M = wM

for N = 2M , sometimes called the Danielson-Lanczos lemma.
With relation to this Cooley-Tukey FFT, several researches have been pursued and

progressed [1-6, 9-11]. The Hartley transform [2], an efficient real Fourier transform al-
gorithm, gave a further increase in speed, Winograd transform algorithm [10] and Sande-
Tukey algorithm [9] gave big influence as well. The sparse Fourier transform(SFT) is
the most advanced algorithm recently presented by Katabi, and it is a kind of improved
FFT which is increased in speed as ten times as FFT. Signals whose Fourier transforms
include a relatively small number of heavily weighted frequencies are called sparse. This
SFT determines the weights of a signals having heavily weighted frequencies; the sparser
the signal, the greater the speedup which the algorithm provides[8]. The researches that
identify the most heavily weighted frequency is being proceeded. For k is the sparsity
of the signal spectrum and for the typical case of n is a power of 2, the SFT is known
to require O(log n

√
nk log n) only as the number of needed operations for the l∞/l2

guarantee, and the importance of speed-up problem is increased in connection with big
data ones. In a word, SFT is a compressed version of DFT and it is using the sparsity
of the spectrum of the signal. Of course, this SFT is closely related to the concept of
streaming which save run time which is required to read the entire original data set.

In this article, we have checked the intrinsic structure of FFT and a synopsis of the
FFT and SFT.

2. The intrinsic structure of fast Fourier transform

To begin with, let us start by an example.
Let us consider the case of the sample values N = 8. Then

w = e−2πi/N = e−πi/4 = 1√
2
(1 − i)
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and so wnk =
(

1√
2
(1 − i)

)nk

. Since the frequency spectrum of the signal f is wrote

as f̂ = FNf , we have f̂ = F8f =



1 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 w6 w7

1 w2 w4 w6 w8 w10 w12 w14

1 w3 w6 w9 w12 w15 w18 w21

1 w4 w8 w12 w16 w20 w24 w28

1 w5 w10 w15 w20 w25 w30 w35

1 w6 w12 w18 w24 w30 w36 w42

1 w7 w14 w21 w28 w35 w42 w49




f

=




1 1 1 1 1 1 1 1
1 w −i −iw −1 −w i iw

1 −i −1 i 1 −i −1 i

1 −iw i w −1 iw −i −w

1 −1 1 −1 1 −1 1 −1
1 −w −i iw −1 w i −iw

1 i −1 −i 1 i −1 −i

1 iw i −w −1 −iw −i w







f0

f1

f2

f3

f4

f5

f6

f7




(1)

It is well-known fact that the given vector f = [f0 · · · fN−1]T is split into two vectors
with M components each, namely, feven and fodd . We determine the DFTs

f̂ev = [f̂ev,0 f̂ev,2 · · · f̂ev,N−2]T = FMfev

and
f̂od = [f̂od,1 f̂od,3 · · · f̂od,N−1]T = FMfod

involving the same M × M matrix FM [7]. From these things we have the components
of the DFT of f by

f̂n = f̂ev,n + wN
nf̂od,n (2)

and
f̂n+M = f̂ev,n − wN

nf̂od,n (3)

for n = 0, · · · , M − 1.

Example 2.1. From the case of N = 8, let us check the validity of the above formulas
(2) and (3).

Solution. When N = 8, we have w = wN = 1√
2
(1 − i) and M = N/2 = 4. Thus
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w = wM = e−2πi/4 = e−πi/2 = −i. From the above statements,

f̂ev =




f̂0

f̂2

f̂4

f̂6


 = F4fev =




1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i







f0

f2

f4

f6


 =




f0 + f2 + f4 + f6

f0 − if2 − f4 + if6

f0 − f2 + f4 − f6

f0 + if2 − f4 − if6




and similarly, we have

f̂od =




f̂1

f̂3

f̂5

f̂7


 = F4fod =




1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i







f1

f3

f5

f7


 =




f1 + f3 + f5 + f7

f1 − if3 − f5 + if7

f1 − f3 + f5 − f7

f1 + if3 − f5 − if7


 .

Using the formulas (2) and (3), we have

f̂0 = f̂ev,0 + wN
0f̂od,0 = (f0 + f2 + f4 + f6) + (f1 + f3 + f5 + f7)

f̂1 = f̂ev,1 + wN
1f̂od,1 = (f0 − if2 − f4 + if6) + w(f1 − if3 − f5 + if7)

. . .
. . .

. . .

f̂6 = f̂2+4 = f̂ev,2 − wN
2f̂od,2 = (f0 − f2 + f4 − f6) − (−i)(f1 − f3 + f5 − f7)

f̂7 = f̂3+4 = f̂ev,3 − wN
3f̂od,3 = (f0 + if2 − f4 − if6) − (−iw)(f1 + if3 − f5 − if7).

This agrees with the equation (1).

3. A synopsis of Sparse Fourier transform

The concept of compress sensing (CS) has aroused many researcher’s interest in signal
processing field. We are using sample signals in their entire ones either to save space
while storing them or to save time while sending them. In the compressing process, we
sample only the qualifying parts of the signals, and we call it the signal sparsity. In a
word, we can compress data by using the signal sparsity. Even if the given signal is not
sparse, we can use the best k-sparse approximation of its Fourier transform. The SFT
applies almost same principle as CS to Fourier transform, and computes the significant
coefficients in the frequency domain.

Let us see the needed definitions. The frequency spectrum of the signal f is written
as f̂ = FNf in section 2, and equivalently, we can write

f̂n = Ncn =
N−1∑
k=0

fke
−inxk ,
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where fk = f (xk) and xk = 2πk/N . Thus we can write FN
−1 = einxk . Since

f = FN
−1f̂ , we have

fk =
N−1∑
k=0

f̂ne
inxk

for xk = 2πk/N . In case that a vector f contains a single frequency, we can write
fk = f̂ne

inxk = f̂ne
in2πk/N . In this case, let us compute fk+1/fk = e2πnki/N =

cos (2πk/N) + i sin (2πk/N). This requires only 2 entries, and so, faster than the
existing FFT [5].

[4] insists that this SFT does not estimating large coefficients, but subtracting them
and recursing on the reminder, it identifies and estimates the k largest coefficients in “one
shot”, in a manner akin to sketching/streaming algorithms. The approximation f̂ ′ of f̂

satisfies the following l2/l2 guarantee for a function f whose Fourier transform f̂ :

||f̂ − f̂ ′||2 ≤ C min
k−sparse g

||f̂ − g||2,

where C is some approximation factor and the minimization is over k-sparse signals[11].
Recently, the approximation is performed for l∞/l2 guarantee:

||f̂ − f̂ ′||2∞ ≤ ε||f̂ − g||22/k + δ||f ||21,
with probability 1 − 1/n. It is known that this l∞/l2 guarantee is better than l2/l2 one
in speed-up and efficiency. The detailed techniques are found in [1], [4] and [5].

Next, let us check the computational side. Normally, the SFT hashes the Fourier
coefficients of the input signal into a small number of bins, and the vector f̂ ′ computed
by the algorithm satisfies l2l2 or l∞/l2 guarantee: The sum and the weighted sum of the
Fourier coefficients stored inside i-th bin are defined as

ûi = �n f̂n, û′
i = �n n · f̂n

respectively, for n in i-th bin. If the given signal is sparse, we can make each bin
contains just one coefficient (or frequency). Otherwise, if the given signal is not sparse
or sparse enough, that is, if each bin contains more than one coefficient, then we have to
approximate it to sparse. If k = O(N) and the number of unidentified coefficients is k′,
then we can remove k − k′ from the given signal and we say k′-sparse. Consequently,
the identified coefficients k − k′ is removed from bins, and the process is repeated to
each coefficients are identified.
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