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Abstract

We study regular cube-complementary graphs, that is, regular graphs whose com-
plement and cube are isomorphic. We prove several necessary conditions for a
graph to be regular cube-complementary, and characterize all cube-complementary
circulant graphs with number of vertices is 9k where k is an integer.
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1. Introduction

Given a graph G and a positive integer d, a new graph Gd , called the dth power of G,
is defined as vertex set V (Gd) = V (G) and two distinct vertices x and y are adjacent
in Gd if the distance between x and y, d(x, y), is at most d. Recall that a graph G is
called kth complementary if the graph Gk, called the kth − co of G, is isomorphic to
the complement of G, G. That is, Gk ∼= G. Cube-complementary graphs were studied
by [1].

A graph G is caled r−regular if every vertex has degree r . Motivated by the study
of cube-complementary graphs (cubeco for short), we study the cube-complementary
regular graphs. These graphs are defined as graphs G for which G is regular graph and
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G3 is isomorphic to the complement of G, i.e. G3 ∼= G. Of course, also we will have
G ∼= G3.

After introducing the necessary basic terms and definitions, we provide basic exam-
ples of regular cubeco graphs. In Section 3, we give an upper-bound for n and show
that there exist no regular cubeco circulant graphs of certain jumps for n larger than this
upper-bound. This upper-bound improves computations significantly. We also charac-
terize an infinite family of regular cubeco graphs. Basic properties in terms of girth,
cute-vertex, radius, and diameter are also studied in Section 3. We finally end up with
some possible open problems.

Unless stated otherwise, all graphs considered in this paper will be finite, simple
and undirected. Let G be a graph. A k − vertex of G is a vertex of degree k in G.
An n − vertex graph is a graph of order n, that is, a graph on exactly n vertices. We
denote by n(G) the number of vertices of G and by m(G) the number of its edges.
Given a vertex v in a graph G, we denote by deg(v, G) its degree, that is, the size of its
neighborhood NG(v) := {u ∈ V (G) : uv ∈ E(G)}. The closed neighborhood of v is
the set NG(v) := NG(v) ∪ {v}. Vertices that are further away from v by more than k

distance is the set N>k(G, v) := {u ∈ G : d(u, v) > k}. Vertices that are further away
from v by exactly k distance is the set Nk(G, v) := {u ∈ G : d(u, v) = k}. The ball
Bk(v, G := {u ∈ G : d(u, v) ≤ k}.

By �(G) and δ(G) we denote the maximum and the minimum degrees of a vertex in
G respectively. For two vertices u, v in a graph G, we denote by dG(u, v) the distance
between u and v, that is, the number of edges on a shortest path connecting u and v; if
there is no path connecting the two vertices, then the distance is defined to be infinite.

The eccentricity eccG(u) of a vertex u in a graph G is maximum of the numbers
dG(u, v) where v ∈ V (G). The radius of a graph G, denoted radius(G), is the minimum
of the eccentricities of the vertices of G. The diameter of a graph G, denoted diam(G),
is the maximum of the eccentricities of the vertices of G, or, equivalently, the maximum
distance between any two vertices in G. The girth of a graph G, denoted girth(G), is
the length of a shortest cycle in G (or infinity, if G has no cycles).

Given two graphs G and H , an isomorphism between G and H is a bijective mapping
φ : V (G) → V (H) such that for every two vertices u, v ∈ V (G), we have uv ∈ E(G)

if and only if φ(u)φ(v) ∈ E(H). If there exists an isomorphism between graphs G

and H , we say that G and H are isomorphic, and denote this relation by G ∼= H . An
automorphism of a graph G is an isomorphism between G and itself. The complement
of a graph G is the graph G with V (G) = V (G), in which two distinct vertices are
adjacent if and only if they are not adjacent in G.

2. Preview

In this section, we give some results that were proved in [1].

Lemma 2.1. [1] If the cycle, Cn, is cubeco graph, then n = 9.
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Figure 1: C9

Theorem 2.2. [1] Let G be a cubeco graph. For every nonempty proper subset of S of
V (G) there exists a u ∈ S and v ∈ V (G)\S such that dG(u, v) ≥ 4.

Theorem 2.3. [1] If G is a nontrivial cubeco graph, then 4 ≤ radius(G) ≤ diam(G) ≤
6.

Recall that the graph G is called a circulant graph if it is a Cayley graph over the

cyclic graph of order n denoted by Cn(D), where D ⊆ [�n

2
	] := {1, . . . , �n

2
	}. In

fact, the circulant Cn(D) is the graph with vertex set {0, 1, . . . , n − 1} and two distinct
vertices i, j ∈ [0, 1, . . . , n− 1] are adjacent if |i − j | ∈ D. The cycle Cn is the circulant
graph Cn{1}. By Theorem 2.1, C9 is a cubeco graph. Other circulant graphs are also
cubeco graphs. In fact, it is known that the two circulant graphs Cn(D) and Cn(D

′) are
isomorphic if there is a unit u in the ring Zn with uD = D′.

The following are examples of non-isomorphic circulant cubeco graphs that were
obtained using a computer:

C18{1, 8},
C27{1, 8, 10},
C29{1, 12},
C27{1, 5},

C36{1, 8, 10, 17},
C43{1, 6, 7},

C45{4, 5, 13, 14, 22},
C61{1, 5, 24},

and
C63{1, 5, 25}.
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We also showed that for any positive integer k, if G is cubeco graph, then G[k] is
also cubeco graph. G[k] is defined as follows: Given an n-vertex graph G with vertices
labeled v1, . . . , vn and positive integers k1, . . . , kn, we denote by G[k1, k2, . . . , kn] the
graph obtained from G by replacing each vertex vi of G with a set Ui of nonadjacent
ki (new) vertices and joining vertices ui ∈ Ui and uj ∈ Uj with an edge if and only
if vi and vj are adjacent in G. If k1 = . . . = kn = k, then we write G[k] instead of
G[k1, . . . , kn],

3. Properties of regular cubeco graphs

In this section we find out several necessary conditions that every regular cube-
complementary graph must satisfy. First we introduce the following theorem which
shows that we have infinitely many circulant cubeco graphs. It should be mentioned that
one can use the same technique to show that we can construct infinitely many cubeco
based on any cubeco circulant graph.

Theorem 3.1. For any positive integer k, the circulant graph G = C9k(i, i ≡ 1 mod 9)

is cubeco.

Proof. For each 0 ≤ j ≤ 8, define Uj = {m : m ≡ j mod 9}, then for each x ∈ Uj

and y ∈ Uj+1, we have x − y = 1 + 9k or x − y = 1. This means that x and y are
adjacent, therefore, G ∼= C9[k]. �

In the general case (non-regular), an open problem is that whether a cubeco graph
with diameter 5 or 6 exists. The following theorem addresses this open problem for
regular cubeco graphs.

Theorem 3.2. If G is regular cubeco graph, then, diam(G) = 4.

Proof. Let G be a regular cubeco graph with diam(G) > 4. Let u, v be two vertices
with d(u, v) = 5 or 6. If degG(u) = degG(v) = 5, then, because G is cubeco graph,
we have, |N>3(v, G)| > δ + 1. This is a contradiction, therefore, diam(G) = 4. �

Based on our previous work [1] and above result, we can conclude that, if G is a
regular cubeco graph, then diam(G) = radius(G) = 4.

It is still an open problem to show that whether there exists a cubeco graph of
girth > 9. This is related to the existence of cut vertex in cube-complementary graphs,
that is, if such graph exists, then it must contain a cut vertex, which is another open
problem. The above discussion is true for non-regular cubeco graphs, the following
theorem solves this problem for regular cubeco graphs.

Theorem 3.3. If G is regular cubeco graph, then, G can not have a cut vertex.

Proof. Let G be a regular cubeco graph with a cur vertex x. Let A, B be the connected
components of G − {x}.
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Figure 2: regular graph with v0 cut-vertex

Using Theorem 2.2, then, there exists a y ∈ G such that d(y, x) > 3. Since
diam(G) = 4, we have d(x, y) = 4, this means either A or B is empty set which is a
contradiction. �

Theorem 3.4. If G is regular cubeco graph of girth ≥ 9, then, G ∼= C9.

Proof. Let G be a regular cubeco graph with girth(G) ≥ 9. Let v be any vertex in G,
then, δ = |N(v, G)| = |N>3(v, G)|.

Since diam(G) = 4 and girth(G) ≥ 9, one can conclude that girth(G) = 9. Now,
suppose that δ > 3, then, since girth(G) = 9, we have |N3(v, G)| = δ(δ − 1)2 vertex.
Moreover, since girth(G) = 9 and diam(G) = 4, we have each vertex in N>3(v, G)

is adjacent to exactly one vertex in N3(v, G). This means |N>3(v, G)| = δ(δ − 1)2 or
δ = δ(δ − 1)2, hence, δ = 2, and therefore, G ∼= C9. �

An example of a regular cubeco graph of girth = 3 is C43{1, 6, 7}, and of girth = 4
is C18{1, 8}, and of girth = 9 is C9. In general, one can easily show that if |D| > 2,
then girth(Cn(D)) < 4).

Theorem 3.5. A regular cubeco graph can not have girth 8.

Proof. Let G be a regular cubeco graph of degree k. Suppose that girth(G) = 8 and let
v ∈ V (G), then, |N(v, G)| = k and since girth(G) = 8, we have, |N2(v, G)| = k(k−1)

and |N3(v, G)| = k(k − 1)2, moreover, each vertex in N3(v, G) is adjacent to exactly
one vertex in B3(v, G), so, the number of edges from N3(v, G) to N4(v, G) is at most
k(k − 1)3.

On the other hand, since diam(G) = 4 and G is cubeco, we have |N>3(v, G)| = k,
so, the number of edges from N>3(v, G) to N3(v, G) is at most k2, therefore, k ≤ 2,
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so, G is regular graph of degree 2 and therefore it must be a cycle or G ∼= C8 which is
impossible. �

It should be mentioned that we used computers to search for regular cubeco graphs,
the search is time consuming, the following theorem puts a good upper bound on the
number of vertices of the graph and the degree of each vertex, which reduces the computer
search significantly especially for large n.

Theorem 3.6. If G is δ-regular cubeco graph, then, n ≤ δ(δ2 − 2δ + 2) + 1.

Proof. Let G be a regular cubeco graph. Let v be any vertex in G, then, G contains at
most 1 + δ + δ(δ − 1) + δ(δ − 1)2 vertices in B3(v, G).

On the other hand, N>3(v, G) = N(v, G3) = δ. That is,

δ ≥ n − (δ(δ − 1)2 + δ(δ − 1) + δ + 1),

therefore, n ≤ δ(δ2 − 2δ + 2) + 1. �

4. Summary

In this paper we have studied cube-complementary regular graphs, we were able to
prove several necessary conditions for a regular graph to be cube complementary and
characterized all circulant cube-complementary graphs with number of vertices equal 9k

where k is any integer.
Results obtained in this paper motivate a further study of regular cubeco graphs.

Since a complete characterization of regular cubeco graphs seems perhaps too challeng-
ing, we pose the following:

Open problem:

• Is it true that for circulant graphs if Cn(D) is cubeco, then, n is a multiple of 9 or
n is a prime?

• In regular cubeco graphs, the girth can be 3, 4, or, 9, but it can not be 8. Is there
a regular cubeco graph of girth 5, 6, or 7?
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