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Abstract 

 

In this paper, an order six implicit block multistep method is implemented for 

third order ordinary differential equations using variable step size approach. 

The idea which originated from Milne’s possess a number of computational 

vantages when equated with existing methods. They include; designing a 

suitable step size/changing the step size, convergence criteria (tolerance level) 

and error control/minimization. The approach employs the estimates of the 

principal local truncation error on a pair of explicit and implicit of Adams 

type formulas which are implemented in P(CE)m mode. Gauss Seidel method 

is adopted for the execution of the suggested method. Numerical examples are 

given to examine the efficiency of the method and will be compared with 

subsisting methods. 
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method •  convergence criteria (tolerance level) •  Gauss Seidel Method •  

Principal Local Truncation Error •  Adams type formulas 

 

 

1. Introduction 

Consider the initial value problem of the form 

( )yyyxfxy '',',,=)(''' , αay =)( , βay =)(' , ψay =)('' , [ ]bax ,∈  and 

RmRmRf →×:  . (1) 
The solution to (1) is generally, written as 
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where the step size is h, ,1 j  i , ,,...1 ji   j
 are unknown constants which are 

uniquely specified such that the formula is of order j as discussed in [1]. 

We assume that Rf  is sufficiently differentiable on ],[ bax and satisfies a global 

Lipchitz condition, i.e., there is a constant 0L  such that 

  ,,),(
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Under this presumption, equation (1) assured the existence and uniqueness defined on 

],[ bax  as discussed in [11, 20]. 

Where a and b are finite and ],...,,[ )()(
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T
, originate in real life applications for problems in science and 

engineering such as fluid dynamics and motion of rocket as presented by 

[15].Researchers have proposed that the reduction of (1) to the system of first-order 

equationwill lead to computationalburden and wastage of human effort (see[2 3, 4, 13, 

15, 18]). 

This paper presents optional method to design directly solution of (1) founded on 

variable step size approach. This approach has many computational advantages as 

stated in the abstract. Several authors in recent past suggested direct method to solve 

(1) such as [2, 3, 4, 13, 15, 18, 21] just to mention a few have applied and discovered 

a more appropriate method for solving (1) directly. [15] implemented directly variable 

step size block multistep method for solving general third order ODEs. The method 

which combined a pair of predictor and corrector of Adams type formula 

implemented in PE(CE)m mode. [13] developed two-point four step direct implicit 

block method in simple form of Adams-Moulton method for solving directly the 

general third order (ODEs) applying variable step size. [2]implemented block 

algorithm for the solution of general third order initial value problems of ODEs via 

the method of interpolation and collocation of the power series as the approximate 

solution. [4] constructed a five step P-stable method for the numerical integration of 

third order ODEs using fixed step size approach. [18] developed an accurate implicit 

block method for numerically integrating third order ODEs based on the idea of 

interpolation and collocation of power series approximate solution. 

 

Definition 1.1 According to [1]. A block-by-block method is a method for computing 

vectors ,...,
10 YY  in sequence. Let the r-vector (r is the number of points within the 

block) ,,FY 
 and G

, for n=mr, m=0, 1,. . . be given as 

),...,(),...,(
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,
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 , then the l -block r-point 

methods for (1) are given by 
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where A i)(
, B i)(

, ji ,...,0  are r by r matrices as introduced by [8]. 

Thus, from the above definition, a block method has the advantage that in each 

application, the solution is approximated at more than one point simultaneously. The 

number of points depends on the structure of the block method. Therefore applying 

these methods can give quicker and faster solutions to the problem which can be 

managed to produce a desired accuracy. See [12, 14]. The main purpose of this paper 

is to propose an order six implicit block multistep method for solving directly (1) by 

implementing an order six implicit block multistep method for third order ODEs 

applying variable step size method. This approach possess some computational 

advantages like designing a suitable step size/changing the step size, stating the 

convergence criteria (tolerance level) and error control/minimization and help 

addressed the gaps stated above. 

The block algorithm proposed in this paper is based on interpolation and collocation. 

The continuous representation of the algorithm generates a main discrete collocation 

method to render the approximate solution Y in  to the solution of (1) at points

kix in ,...1, 


 as discussed in [1]. 

The residual of this paper is discussed as follows: in Section 2 the introductory idea 

behind the computational method is discussed and a continuous representation )(xY  

for the exact solution )(xy  which is used to generate a main discrete block method 

for solving (1) is derived. In Section 3 the order of accuracy of the method is 

introduced. In Section 4 the stability regions of the order six implicit block multistep 

method is discussed. In Section 5 we show the accuracy of the method. In conclusion, 

Section 6 presents some final remarks as seen in [1]. 

 

 

2. Formulation of the Method 

Following [1, 18] in this section, the main aim is to derive the principal implicit block 

method of the form (2). We proceed forward by seeking an approximation of the 

exact solution )(xy  by assuming a continuous solution )(xY  of the form 

)()(
1

0

xxY i

kq

i
im





  (3) 

such that ],[ bax , mi  are unknown coefficients and )(xi  are polynomial basis 

functions of degree 1 kq , where q is the number of interpolation point and the 

collocation points k are respectively chosen to satisfy 3≥= jq and 1>k . The 

integer 1≥j  denotes the step number of the method. Thus, weconstruct a j-step 

implicit block multistep method with 






 


h
xx ix
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i )(  by imposing the following 

conditions 
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where y in
 is he approximation for the exact solution ),,(),( yxfx inininin fy


  

n is the grid index and ihxx nin 


. It should be observed that equations (4) and (5) 

leads to a system of 1q  equations of the AX=B where 
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Solving equation (6) using Mathematica, we get the coefficients of mi and 

substituting the values of mi into (4) and after some algebraic computation, the 

implicit block multistep method is obtain as 
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(7) 

 

where  i  and  i
 are continuous coefficients. 

 

Differentiating (7) once and twice, we arrive at a block of first and second order 

derivatives which can be used to evaluate the derivative term in the initial value 

problem (1) as sited by [6]. 
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3. Analysis of Some Theoretical properties 

3.1 Order of Accuracy of the Method 

Following [1, 4, 11], we define the associated linear multistep method (7)) and the 

difference operator as 

[ ]∑
j

i
ii

ihxihxyhxyL yβhα
0=

'''3
)+(+)+(=]);([ . (10) 

Presuming that )(xy  is sufficiently and continuously differentiable on an interval 

],[ ba  and that y(x)  has as many higher derivatives as needed then, we write the terms 

in (10) as a Taylor series expression of )(x iny
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Substituting (10) and (11) into (7) we obtain the following expression 

...,+)(2++...+)(+)(=]);([
)2+(

2+

)1(

10
xpxxyhxyL yhchycc

p

p  
(12)

 
Thus, we noticed that the implicit block multistep method of (7) has order p, if 

jipcp
,...,2,1=,...,2,1,0=,

2+
, are given as follows: 

,...
2100  kc   

,+...++= 2 101 αααc k
k  

),+...+++()+...+++(
!2

1
=

2102102 ββββααααc kk
k - `- ,...3,4=q  

Hence, themethod (7) has order 1≥p  and error constants given by the vector, 

0≠
3+C p

. 

Agreeing with [11], we say that the method (2) has order p if 

),(=]);([
3+

h
p

OhxyL ,0====...==
2+1+10 CCCCC ppp

.0
3+
≠C p

 (13) 

Therefore, C p 3+
 is the error constant and )(

)3+(3+

3+ xyhC n

pp

p
 is the principal local 

truncation error at the point xn . Subsequently, this definition stated above is true for 

first and second order ODEs according to [11] then it is true for higher order ODEs. 

 

3.2 Stability Analysis of the Method 

To analyze the method for stability, (7) is normalize and written as a block method 

given by the matrix finite difference equations as seen in[1, 10, 16] 

)+(+
1

)1()0(3
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= FBFBhYAYA mmmm --
, (14) 

 

where 
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The matrices BBAA )1()0()0(
,)1(, , are r by r matrices with real entries while 

FFYY mmmm 11
,,,


 are r-vectors specified above. 

Adopting[10, 11], we stick to the boundary locus method to determine the region of 

absolute stability of the block method and to obtain the roots of absolute stability. 

Substituting the test equation yy 
'

and hh 
'

 into the block (14) to obtain 

( ) ( )[ ] 0=+det=)(
33)1()1(33)0()0(

λhBAλhBArrρ --  (15) 

Replacing 0h  in (15), we obtain all the roots of the derived equation to be 1≤r . 

Therefore, according to [11], the implicit block multistep method is absolutely stable. 

So, as seen in [11], the boundary of the region of absolute stability can be obtained by 

filling (7) into 

 
)(

)(
)(

r
rrh




  (16) 

and permit 


sincos ier i
  then after reduction together with evaluating (16) 

within ],[ 1800
00 . Consequently, the boundary of the region of absolute stability rests 

on the real axis. 

 

Note- fig. 1 is free handing. 

 

 

4. Implementation of the Method 

Embracing [5, 11], afterward this is implemented in the P(EC)m mode then it becomes 

important if the explicit (predictor) and the implicit (corrector) methods are 

individually of the same order, and this prerequisite makes it necessary for the 

stepnumber of the explicit (predictor) method to be greater than that of the implicit 

(corrector) method. Consequently, the mode P(EC)m can be formally determined as 

follows for :,...2,1=m  

P(EC)m: 

fβhyαy
m

in

j

i
i

m

in

j

i
ijn

][

+
0=

•3][

+
0=

•]0[

+
=+ ∑∑

1-1-

, 

),(≡
][

++

][

+
yxf

s

jnjn

s

jn
f , 



Implementing an Order Six Implicit Block Multistep Method 1641 

} 1,-
1-

1-1-

∑∑ msfβhfβhyαy
m

in

j

i
i

s

jnj

m

in

j

i
i

s

jn
,...,1,0=,+=+

][

+
0=

3][

+

3][

+
0=

]1+[

+

 

(17)

 
Note that as ∞→m , the result of calculating with the above mode will incline to 

those given by the mode of correcting to convergence. 

Moreover, predictor-corrector pair based on (1) can be applied. The mode P(EC)m 

specified by (17), where h
3
 is the step size. Since the predictor and corrector both 

have the same order p , Milne’s device is applicable and relevant. 

According to [7, 11], Milne’s device proposes that it possible to estimate the principal 

local truncation error of the explicit-implicit (predictor-corrector) method without 

estimating higher derivatives of )(xy . Assume that pp
*

 , where p*

and p  

represents the order of the explicit (predictor) and implicit (corrector) method with the 

same order. Now for a method of order p , the principal local truncation errors can be 

written as 
 

     
3* 3 4

3
-

pp p

p n n j n jy OyC h x x W h
 

  
   (18) 

Also, 
 

     
33 4

3 -
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   (19) 

where W jn  and C jn are called the predicted and corrected approximations given 

by method of order p while C p

*

3+
 and C p 3+

 are independent of h. 

Neglecting terms of degree 4p   and above, it is easy to make estimates of the 

principal local truncation error of the method as 
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C
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(20)

 

Noting the fact that CC pp

*

3+3+
≠  and C jnW jn +≠+ . 

Furthermore, the estimate of the principal local truncation error (20) is used to 

determine whether to accept the results of the current step or to reconstruct the step 

with a smaller step size. The step is accepted based on a test as prescribed by (20) as 

in [19]. Equation (20) is the convergence criteria otherwise called Milne’s estimate 

for correcting to convergence 

Furthermore, equation (20) ensures the convergence criterion of the method during 

the test evaluation. ε is called the convergence criteria. 

 

 

5. Numerical Examples 

The performance of the implicit block multistep method was executed on nonstiff 

problems as discussed below. 

 

Example 5.1 The first example to be considered is sited by[13] which was gotten 

from [3]. Moreover, [3] designed a P-stable linear multistep method for solving third 
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order ODEs using fixed step size. On the other hand, [13] constructed a two-point 

four step block method for solving third order ODEs employing variable step size 

method. Furthermore, the newly intendedorder six implicit block multistep method is 

developed to numerically integrate third order ODEs applying variable step size 

approach. 

The problem is given as follows: 

2218x--1818y(x)-9- xy 2'

+=)()(2+)(
'''''

xxx yy , -2,=)0(y ,=)0(
'

-8y ,=)0(
''

-12y
,0 bx≤≤  

with theoretical solution 

1--2 ee
-2x-3x

xxy
2

++=)( . 

 

Examples 5.2 Example 5.2 is situated in [17]and afterward, [4]. [17]executed 

example 5.2 on a new block method for special third order ODEs applying fixed step 

size. While, [4]used example 5.2 on five-step P-stable method for the numerically 

integrating third order ODEs with the same fixed step size method. Moreover, the 

newly proposed order six implicit block multistep method is designed to compute 

nonstiff third order ODEs employing variable step size approach. 

The experiment is given as follows: 

,0=)(
'''

e
x

-xy
 

,3=)0(y  ,1=)0(
'

y
 

,5=)0(
''

y
 

,10 ≤≤x  

with exact solution 

ex
x

xy +
2

2+2=)( . 

 

Example 5.3 

Nutrient Flow in an Aquarium 

Example 5.3 is extracted from www.math.edu/~gustafso/2250systems-de.pdf and 

results are offered using first order method for solving ODEs analytically. The newly 

proposed method transform the first order systems of first order ODEs into third order 

ODEs before they were successfully implemented applying variable step size 

approach. 

Consider a vessel of water containing a radioactive isotope, to be used as a tracer for 

the food chain, which consists of aquatic plankton varieties A and B. 

Let 

=)(xw Isotope concentration in A, 

=)(xy Isotope concentration in B, 

=)(xz Isotope concentration in water, 

Typical biological model is 

),(3)(2=)(
'

xyxwxw -  

,)(6+)(=)(
'

5z(x)-xyxwxy  

).(5+)(6+)(3=)(
'

xzxyxwxz -  

http://www.math.edu/~gustafso/2250systems-de.pdf
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The initial radioactive isotope concentrations is given by z0
z(0)0,y(0)w(0) ===  

(assuming )1=z0
. 

However, we convert from systems of first order ODEs to third order ODEs. The 

conversion to third order ODEs is expressed below: 

,0=94+)()(
'''''
xx ww 13-

 
,0=)0(=)0(

'

ww
 

,1=)0(
''

w  

with exact solution 
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2

233sin2313
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2
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ee 2

13x

2

13x
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- . 

The following notational system are used on Tables 1, 2 and 3. 

TOL- Tolerance Level 

MAXE NPM- Magnitude of the Maximum Errors of the Implicit Block Multistep 

Method of Order Six (IBMMOS) 

MAXE [17] - Magnitude of the Maximum Errors of [17] 

MAXE [13] - Magnitude of the Maximum Errors of [13] 

MAXE [4] - Magnitude of the Maximum Errors of [4] 

 

Table 1: Comparing the Maximum Errors in the Implicit Block Multistep Method of 

Order Six to Maximum Errors in [13] for example 5.1. 

 

B MAXE [13] TOL MAXE IBMMOS 

1.0 9.33(-7) 10
-6  8.55792(-7) 

4.0 2.26(-6) 10
-6   

    

1.0 7.82(-8) 10
-8  1.3373(-8) 

4.0 7.82(-8) 10
-8   

    

1.0 8.16(-10) 10
-10  2.08949(-10) 

4.0 1.07(-9) 10
-10   

 

Table 2: Comparing the Maximum Errors in the Implicit Block Multistep Method of 

Order Six to [4, 17] for example 2. 

 

MAXE [17] MAXE [4] TOL MAXE IBMMOS 

1.65922(-10) 0.0000 10
-10

 1.10437(-10) 

4.76275(-10) 2.8422(-13)  4.0499(-10) 

6.23182(-10) 1.6729(-12)  1.44484(-09) 

2.91345(-10) 2.9983(-11)   

8.71118(-10) 3.1673(-11)   

3.92904(-09) 9.1899(-11)   
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9.55347(-09) 8.9531(-11)   

1.80415(-08) 1.9168(-10)   

3.03120(-08) 2.1110(-10)   

4.73044(-08) 4.9398(-10)   

7.00367(-08) 8.6728(-10)   

9.96300(-08) 2.3764(-09)   

  10
-12  1.61426(-12) 

   5.95746(-12) 

   2.10232(-11) 

 

Table 3: gives the Maximums Errors of the Implicit Block Multistep Method of 

Order Six Implemented Using Variable Step Size Approach. 

 

TOL MAXE IBMMOS 

10
-6  1.99839(-6) 

 7.58587(-6) 

 1.08127(-4) 

  

10
8-  3.4862(-8) 

 1.28809(-7) 

 6.57593(-7) 

  

10
-10  5.47059(-10) 

 2.00965(-9) 

 7.81941(-9) 

 

 

6. Conclusion 

Table 1 stated that[13] constructed two-point four step block method for solving 

general third order ODEs directly. The method which is particularly projected to solve 

stiff ODEs, but instead, solved problems is focused on nonstiff ODEs extracted from 

[3]. Furthermore, the implicit block multistep method of order six is formulated to 

solve directly general third order ODEs with particular interest on nonstiff problems. 

Hence, in comparison with the maximum errors at all tolerance levels of10
-6

, 10
-8

 

and10
-10

, the implicit block multistep method of order six performs better than [13]. 

Table 2 presents the results of [4, 17] apart from the implicit block multistep method 

of order six. [17] develop a method which integrates special third order ODEs using 

fixed step size, while [4] constructed a five step P-stable method to integrate third 

order ODEs directlyadopting fixed step size. Nevertheless, both results cannot be 

compared with the implicit block multistep method of order six which is implemented 

employing variable step size approach. Furthermore, comparing the results of both 
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maximum errors with the implicit block multistep method of order six, the is found to 

be more efficient and perform better at all tolerance levels of 10
-10

 and 10
-12

. 

Table 3 shows the tolerance levels of 10
-8

, 10
-10

, 10
-12

and maximum error results. 

This displays that the implicit block multistep method of order six which is 

particularly designed for nonstiff ODEs has shown to be more efficient and consistent 

applying variable step size approach in solving real life mathematical model. 

 

 

Remark 

The implementation of an order six implicit block multistep method is performed on 

windows operating system and coded in Mathematica language. 
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