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Abstract 

 

In this paper we shall establish some coincidence theorems on an arbitrary set 
with values in generalized Menger space and derive fixed-point theorems for 
mappings commuting only at coincidence point. The results of this paper is an 
application of well-known results of Piyush Tripathi, et al[ 8]. 

 
 

Introduction 
In 1932, Menger [127] generalized the metric axioms by associating a distribution 
function with each pair of points of an abstract set X. (A distribution functions is a 
mapping :f R R  which is non-decreasing, left continuous, with inf f = 0 and sup f 
= 1). Thus for any ordered pair of points p, q of X, we associate a distribution function 
denoted by ,p qF  and, for any positive number x, we interpret , ( )p qF x  as the 
probability that the distance between p and q is less than x. This gives rise to a new 
theory of ‘probabilistic metric spaces’ which started developing rapidly after the 
publication of the paper of Schweizer and Sklar [177]. 
For the further basic works in this direction, refer to Constantin and Istrătescu [43], 
Schweizer [172]-[175], Schweitzer et al. [176]. 
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Probabilistic Metric Spaces [8] 

Definition 2.1. A mapping :f R R is called a distribution function if it is non 
decreasing, left continuous and inf f( x ) = 0, sup f( x ) = 1. 
We shall denote by L the set of all distribution functions. The specific distribution 
function H L  is defined by 

( ) 0,   0
        1,   0 
H x x

x
  


  

 

 

Definition 2.2. A probabilistic metric space (PM space) is an ordered pair (X,F), X is 
a nonempty set and :F X X L  is mapping such that, by denoting ( , )F p q  by ,p qF  
for all p, q in X, we have 

,

,

, ,

, , ,
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We note that , ( )p qF x  is value of the distribution function , ( , )  at .p qF F p q L x R    
 

Definition 2.3. A mapping :[0,1] [0,1] [0,1]t    is called t-norm if it is non-
decreasing (by non-decreasing, we mean , ( , ) ( , )a c b d t a b t c d    ), 
commutative, associative and ( ,1)t a a  for all a in [0, 1], t(0,0) = 0. 
 

Definition 2.4. A Menger PM space is a triple (X, F; t) where (X, F) is a PM space 
and t is t-norm such that, 

 , , ,( ) ( ), ( )     , 0p r p q q rF x y t F x F y x y    . 

If (X, F; t) is Menger Probabilistic metric space with  sup , 1, 0 1t x x x   , then (X, 
F; t) is a Hausdorff topological space in the topology T induced by the family of ( , )   
neighborhoods { ( , ) : , 0, 0}pU p X     where ,( , ) { : ( ) 1 }p x pU x X F        ([8]). 
Singh and Jain [191] defined a class of functions   of all real continuous functions

4:[0,1] ,R   (where R is the set of real numbers) with the property, 

( )   for  , 0,     ( , , , ) 0  or  ( , , , ) 0  implies   .

( )   ( , ,1,1) 0  implies   1.

i u v u v v u u v u v u v

ii u v u

 



   

 

 ( )   for  , 0,     ( , , , ) 0  or  ( , , , ) 0  implies   .

( )   ( , ,1,1) 0  implies   1.

i u v u v v u u v u v u v

ii u v u

 



   

 

 

 
In 2010 Piyush Tripathi and Manisha Gupta [  ] Proved the following theorems. 
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Theorem 3.1. Let (X, F; T) be a generalized Menger space under a continuous t-norm 
T in (a, 1) (0,1)a  . Suppose (0,1)k ,   and , :f g Y X are mappings such 
that, 

 

0 1

, , , ,

0 1 0 1 ,

           ( ) ( ), ( ), ( ), ( ) 0  , , 0,

           ( )  ( ) ( ),

and     ( )  ,  in  such that    and   lim ( ) 1,  for 1.

fp fq gp gq fp gp fq gq

i
n i n fp fp

i F kx F x F x F kx p q Y x

ii f Y g Y

iii p p Y fp gp T F r r





 

    



   

 

Then f and g have a coincidence point. 
 

Theorem 3.2: Let (X, F; T) be a generalized Menger space under a continuous t-norm 
T in (a, 1) (0,1)a  . Suppose (0,1)k ,   and , :f g X X are mappings such 
that, 

 

0 1

, , , ,

0 1 0 1 ,

            ( ) ( ), ( ), ( ), ( ) 0  , , 0,

            ( )  ( ) ( ),

            ( )  ,  such that  and lim ( ) 1,  for 1,

            (

fp fq gp gq fp gp fq gq

i
n i n fp fp

i F kx F x F x F kx p q Y x

ii f X g X

iii p p fp gp T F r r

iv





 

    



   

) Either ( ) or ( ) is  complete,

and       ( )   and  are commuting at their coincidence point.

f X g X F

v f g



 

Then f and g have a unique common fixed point. 
 

Corollary 3.1. Let (X, F; T) be a generalized Menger space under a continuous t-
normT H . Suppose (0,1)k ,   and , :f g X X are mappings such that, 

 

0 1

, , , ,

0 1 0 1 ,

         ( ) ( ), ( ), ( ), ( ) 0  , , 0,

         ( )  ( ) ( ),

         ( )  ,  such that  for which ,

         ( ) Either ( ) or ( ) is  c

fp fq gp gq fp gp fq gq

fp fp

i F kx F x F x F kx p q X x

ii f X g X

iii p p fp gp F D

iv f X g X F





    



  

 omplete,

and    ( )   and  are commuting at their coincidence point.v f g

 

Then f and g have coincidence point as well as unique fixed point. 
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Application 

Now as an application of theorem 3.1, in this section we prove coincidence and 
common fixed point theorems for three mappings. 
 

Theorem 4.1. Let (X, F; T) be a generalized Menger space under a continuous t-norm 
T in (a, 1) (0,1)a   and Y an arbitrary set. Suppose (0,1),k    and 

, , ,:f g h Y X  are mappings such that, 

 

1 2

, , , ,

1 2 1 ,

            ( ) ( ), ( ), ( ), ( ) 0  , , 0,

            ( )  ( ) ( ) ( ),

            ( ) ,  and 1 for which ( ) 1,

  and     ( ) One of  ( ) , 

fp gq hp hq fp hp gq hq

i
i hp hp

i F kx F x F x F kx p q Y x

ii f Y g Y h Y

iii p p r T F r

iv f Y







    

 

  

( ), ( )  is  complete.g Y h Y F 

 

Then f, g and h have coincidence point. 
 

Proof. For 0p Y there exist 1 2,p p Y such that 0 1 1 2,fp hp gp hp   (because
( ) ( ) ( )f Y g Y h Y  ). Inductively we can construct a sequence { }np such that 

2 2 1 2 1 2 2,    .n n n nfp hp gp hp     
Putting 2 2 1 and n np p q p    in (i), we have, 

 

 

2 2 1 2 2 1 2 2 2 1 2 1

2 1 2 2 2 2 1 2 1 2 2 2 2 1

, , , ,

, , , ,

           ( ), ( ), ( ) ( ) 0,

   i.e.  ( ), ( ), ( ), ( ) 0.

n n n n n n n n

n n n n n n n n

fp gp hp hp fp hp gp hp

hp hp hp hp hp hp hp hp

F kx F x F x F kx

F kx F x F x F kx





   

     





 

 
From the property of  , we have, 

2 1 2 2 2 2 1, ,( ) ( )
n n n nhp hp hp hpF kx F x
  

 , 0x  . 
Again putting 2 2 2 1 and n np p q p    in (i), we get, 

2 3 2 2 2 2 2 1, ,( ) ( )
n n n nhp hp hp hpF kx F x
   

 , 0x  . 
 
Therefore by Lemma 2.1 { }nhp  is a Cauchy sequence. Suppose ( )h Y  is F – complete. 
Then { } ( ),nhp p h Y   also then there exists u Y  such that hu p . 
Putting 2 1, np u q p    in (i), we get, 

 

 

2 1 2 1 2 1 2 1, , , ,

, , , ,

           ( ), ( ), ( ) ( ) 0,

i.e.      ( ), ( ), ( ), ( ) 0.

n n n nfu gp hu hp fu hu gp hp

fu p p p fu hu p p

F kx F x F x F kx

F kx F x F x F kx




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


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Again from the property of  , we have, fu p hu  . 
Lastly, putting 2 1, nq u p p    in (i), we obtain 

 

 

2 2 2 2 2 2 2 2, , , ,

, , , ,

            ( ), ( ), ( ) ( ) 0,

i.e.       ( ), ( ), ( ), ( ) 0.
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


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
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  

 

2 2 2 2 2 2 2 2, , , ,

, , , ,

            ( ), ( ), ( ) ( ) 0,

i.e.       ( ), ( ), ( ), ( ) 0.

n n n nfp gu hp hu fp hp gu hu

p gu p p p p p p

F kx F x F x F kx

F kx F x F x F kx





   




 

 
Hence as above we have, gu p hu fu   . Therefore p is the coincidence point of f, 
g and h. 
 

Theorem 4.2. Let (X, F; T) be a generalized Menger space under a continuous t-norm 
T in (a, 1) (0,1)a  . Suppose (0,1)k ,   and , , ,:f g h X X  are mappings 
such that, 

 

1 2

, , , ,

1 2 1 ,

            ( ) ( ), ( ), ( ), ( ) 0  , , 0,

            ( )  ( ) ( ) ( ),

            ( )  ,  and 1 for which ( ) 1,

            ( ) If one of  

fp gq hp hq fp hp gq hq

i
i hp hp

i F kx F x F x F kx p q X x

ii f X g X h X

iii p p r T F r

iv f







    

 

  

( ) , ( ), ( )  is  complete,

   and    ( )    and  are coincidently commuting.

X g X h X F

v f h



 

Then f, g and h have a unique fixed point. 
 

Proof. In the Theorem 4.1 if we take Y = X then we get .gu p hu fu    Since f and 
g are coincidently commuting, hence fhu hfu fp hp   . 
Putting 2 1, np fu q p    in (i), we have 

 

 

2 1 2 1 2 1 2 1, , , ,

, , , ,

           ( ), ( ), ( ) ( ) 0,

  i.e.    ( ), ( ), ( ), ( ) 0.
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
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  

 
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, , , ,
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n n n nffu gp hu hp fu hu ghp hhp

fp p hp p fp hp p p

F kx F x F x F kx

F kx F x F x F kx





   




 

 
Hence from the property of   we have, fp p hp  . 
Again putting 2, nq p p p   in (i), we have, 

 

 

2 2 2 2, , , ,

, , , ,

           ( ), ( ), ( ) ( ) 0,

   i.e.   ( ), ( ), ( ), ( ) 0.
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
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 
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, , , ,
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p gp p p p p gp p

F kx F x F x F kx

F kx F x F x F kx






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Using the property of  , we have, gp p fp hp   . Therefore p is a common fixed 
point of f, g and h. 
For uniqueness suppose  and p q   are common fixed point of f, g and h. Then by 
putting  and p p q q    in (i), and using the property of  , we have p q  . 
Therefore f, g and h have unique common fixed point. 
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