Nonexistence of global solutions for a fractional problems with a nonlinearity of the Fisher type

Brahim Tellab
Department of Mathematics, Ouargla University, Ouargla 30000, Algeria.
\section*{Kamel Haouam}
Mathematics and Informatics Department, Tebessa University, Tebessa 12000, Algeria.

Abstract

This paper deals with the Cauchy problem for a nonlinear hyperbolic equation

$$
D_{0 \mid t}^{1+\alpha} u+D_{0 \mid t}^{\beta} u+(-\Delta)^{\frac{\gamma}{2}} u=h(t, x)|u|^{p}|1-u|^{q},
$$

posed in $Q=\mathbb{R}^{+} \times \mathbb{R}^{N}$, where $p_{i}, q_{i}>1,-1<\alpha<1,0<\beta<2,0<\gamma \leq 2$, and $\beta<1+\alpha$ with given initial position and velocity $u(x, 0)=u_{0}(x), u_{t}(x, 0)=$ $u_{1}(x)$, and the Cauchy problem for a nonlinear hyperbolic system with initial data

$$
\begin{cases}D_{0 \mid t}^{1+\alpha_{1}} u+D_{0 \mid t}^{\beta_{1}} u+(-\Delta)^{\gamma_{1}} u=h_{1}(t, x)|v|^{p_{1}}|1-v|^{q_{1}}, & (t, x) \in Q \\ D_{0 \mid t}^{1+\alpha_{2}} v+D_{0 \mid t}^{\beta_{2}} v+(-\Delta)^{\gamma_{2}} v=h_{2}(t, x)|u|^{p_{2}}|1-u|^{q_{2}}, & (t, x) \in Q \\ u(x, 0)=u_{0}(x) \geq 0, \quad u_{t}(x, 0)=u_{1}(x) \geq 0, \quad x \in \mathbb{R}^{N} \\ v(x, 0)=v_{0}(x) \geq 0, \quad v_{t}(x, 0)=v_{1}(x) \geq 0, \quad x \in \mathbb{R}^{N} & \end{cases}
$$

where $-1<\alpha_{i}<1,0<\beta_{i}<2,0<\gamma_{i} \leq 2$, and $\beta_{i}<1+\alpha_{i} . D^{\alpha_{i}}(i=1,2)$ denote the time-derivative of arbitrary order α_{i} in the sense of Caputo.

We find a critical exponent of Fujita type in the case of the particular values of the fractional order and the separate terms $p_{i}, q_{i}(i=1,2)$ and N.

AMS subject classification: 26A33, 34K30, 35R10, 47D06.
Keywords: Fractional derivatives, test-function, critical exponent.

1. Introduction

In fractional calculus, we us derivatives and integrals of non integer order (see [9, 10]). Initial value fractional differential equations and systems was studied in several papers (see [3, 4, 5, 6, 7]) where was involved Riemann-Liouville fractional differential operator of order $\alpha \in(0,1)$.

Kirane and Tatar in [6], considered the Cauchy problem for the hyperbolic fractional equation

$$
\begin{equation*}
u_{t t}+D_{0 \mid t}^{\beta} u=\Delta u+h(t, x)|u|^{p}, \tag{1}
\end{equation*}
$$

where $p>1$ and $\beta \in(0,1)$. This equation is used to describe anomalous diffusion fractal media, biological phenmena etc. (see [8]). The two authors cited above established that the conditions

$$
\begin{equation*}
1<p \leq 1+\frac{2 \beta+\rho}{2+N-2 \beta} \tag{2}
\end{equation*}
$$

on the initial data arise, then solution of the last equation (1) doses not exist globally.
A large number of searcher treated the case when $\beta=1$, so a lot of results of nonexistence has been proved, also global existence results has been found while using the fractional telegraph equation $D^{2 \beta} u+D^{\beta} u=\Delta u, 0<\beta \leq 1$, or studying various other hyperbolic fractional equations as Brownian motions for example. (see also [2]) where Fuquin and Mingxin used a critical exponent while studying a huperbolic system of reaction-diffusion type form a point of view of existence and nonexistence of the solutions.

In [12] , Tatar studied the following fractional differential problem

$$
\left\{\begin{array}{l}
D^{1+\alpha} u+D^{\beta} u=\Delta u+h(t, x)|u|^{p}, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \tag{3}\\
u(0, x)=u_{0}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad u_{t}(0, x)=u_{1}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad x \in \mathbb{R}^{N} .
\end{array}\right.
$$

where $-1<\alpha<1$ and $0<\beta<2$. He proved that for $u_{0}(x), u_{1}(x) \geq 0$, $0<\alpha, \beta<1$ and the function h satisfies $h(t, x)>0, h^{1-q} \in L_{l o c}^{1}\left(\mathbb{R}^{+} \times \mathbb{R}^{N}\right)$ and $h\left(t R^{2}, x R^{\beta}\right)=R^{\rho} h(t, x)$ for some $\rho>0$ and large $R>0$. then, if $1<p \leq 1$ $+\frac{2 \beta+\rho}{2+\beta N-2 \beta}$, the problem (3) does not admit nontrivial solutions global in time.

In [11], Saoudi and Haouam considered the following fractional differential system

$$
\begin{cases}D_{0 \mid t}^{1+\alpha_{1}} u+D_{0 \mid t}^{\beta_{1}} u+(-\Delta)^{\frac{\gamma_{1}}{2}} u=|v|^{p}, & (t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \tag{4}\\ D_{0 \mid t}^{1+\alpha_{2}} v+D_{0 \mid t}^{\beta_{2}} v+(-\Delta)^{\frac{\gamma_{2}}{2}} v=|u|^{q}, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \\ u(x, 0)=u_{0}(x) \geq 0, \quad u_{t}(x, 0)=u_{1}(x) \geq 0, \quad x \in \mathbb{R}^{N} \\ v(x, 0)=v_{0}(x) \geq 0, \quad v_{t}(x, 0)=v_{1}(x) \geq 0, \quad x \in \mathbb{R}^{N}\end{cases}
$$

Where $p, q>1,-1<\alpha_{i}<1,0<\beta_{i}<2$ and $0<\beta_{i}<1+\alpha_{i}(i=1,2)$. They proved that for $p, q>1,0<\alpha_{i}<1,0<\beta_{i}<1(i=1,2)$. If

$$
\frac{N}{2} \leq \max \left\{\frac{1+p q\left(\beta_{2}-1\right)+\beta_{1} p}{\beta_{1}(p-1)+\beta_{2}(q-1) p}, \frac{1+p q\left(\beta_{1}-1\right)+\beta_{2} q}{\beta_{2}(q-1)+\beta_{1}(p-1) q}\right\} \quad \text { for } N \geq 1,
$$

the problem (4) does not admit nontrivial global weak solutions.
In this paper, we consider two problems. The first problem is

$$
\left\{\begin{array}{l}
D_{0 \mid t}^{1+\alpha} u+D_{0 \mid t}^{\beta} u+(-\Delta)^{\frac{\gamma}{2}} u=h(t, x)|u|^{p}|1-u|^{q}, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \tag{5}\\
u(0, x)=u_{0}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), u_{t}(0, x)=u_{1}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad x \in \mathbb{R}^{N}
\end{array}\right.
$$

with given initial data and where $p, q>1,-1<\alpha<1,0<\beta<2, \gamma<2$ and $\beta<1+\alpha . D^{\alpha}, D^{\beta}$ denote respectively the time-derivatives of arbitrary order α and β in the sens of Caputo, $(-\Delta)^{\frac{\gamma}{2}}$ is the fractional power of the Laplacien $-\Delta_{x}$ in the x variable defined by

$$
(-\Delta)^{\frac{\gamma}{2}} u(t, x)=\mathcal{F}^{-1}\left(|\xi|^{\gamma} \mathcal{F}(u)(\xi)\right)(t, x)
$$

where \mathcal{F} is the Fourier transform and \mathcal{F}^{-1} its inverse. And the second one is

$$
\begin{cases}D_{0 \mid t}^{1+\alpha_{1}} u+D_{0 \mid t}^{\beta_{1}} u+(-\Delta)^{\frac{\gamma_{1}}{2}} u=h_{1}(t, x)|v|^{p_{1}}|1-v|^{q_{1}}, & (t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \tag{6}\\ D_{0 \mid t}^{1+\alpha_{2}} v+D_{0 \mid t}^{\beta_{2}} v+(-\Delta)^{\frac{\gamma_{2}}{2}} v=h_{2}(t, x)|u|^{p_{2}}|1-u|^{q_{2}}, & (t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N} \\ u(0, x)=u_{0}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), u_{t}(0, x)=u_{1}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad x \in \mathbb{R}^{N} \\ \left.\left.v(0, x)=v_{0}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad v_{t}(0, x)=v_{1}(x) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right), \quad x \in \mathbb{R}^{N}\right)\right)\end{cases}
$$

where $-1<\alpha_{i}<1,0<\beta_{i}<2,0<\gamma_{i} \leq 2$, and $\beta_{i}<1+\alpha_{i}$.

2. Organization and Aim

Our paper is organized as follows:

- In section 3, we present the definitions of the fractional derivative in the sens of Riemann-Liouville and the fractional derivative in the sens of Caputo and the relationship between these two definitions.
- We also give the definition of a week solution of the cited problems.
- section 4, is devoted to a result of nonexistence of solutions for the fractional system (5)
- In section 5, we establish a result of nonexistence of solutions for the fractional system (6).

Remark 2.1. Especially the second term in equation (5) and in the system (6) are taken in a Fisher type form (see [1]), which interpret a mathematical model for the simulation growth and spread of a particular bacterial population in an unbounded domain R.

Remark 2.2. In the case $q=0$ and $\gamma=2$, the problem (5) reduces to the Cauchy problem (3) studied in [12].

Remark 2.3. In the case $h_{1}(t, x)=h_{2}(t, x)=1, q_{1}=q_{2}=0$ and $\gamma_{1}=\gamma_{2}=2$ the system (6) reduces to the system (4) studied in [11].

3. Preliminaries

In this section, we present two different definitions of fractional derivatives, some of their properties and the definition of weak solutions to our problem (5).

We define the left-handed derivative and the right-handed derivative in the RiemannLiouville sense respectively as follows:

$$
\begin{aligned}
D_{0 \mid t}^{\gamma} f(t) & =\frac{1}{\Gamma(n-\gamma)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t}(t-\tau)^{n-\gamma-1} f(\tau) d \tau, \quad n=[\gamma]+1, \quad \gamma>0 . \\
D_{t \mid T}^{\gamma} f(t) & =\frac{(-1)^{n}}{\Gamma(n-\gamma)}\left(\frac{d}{d t}\right)^{n} \int_{t}^{T}(\tau-t)^{n-\gamma-1} f(\tau) d \tau, \quad n=[\gamma]+1, \quad \gamma>0 .
\end{aligned}
$$

the Caputo derivative, in a general case, is given by

$$
\mathbf{D}^{\gamma} f(t)=\frac{1}{\Gamma(n-\gamma)} \int_{0}^{t}(t-\tau)^{n-\gamma-1} f^{(n)}(\tau) d \tau, \quad n=[\gamma]+1, \quad \gamma>0 .
$$

Therefore the Caputo derivative is related to the left-handed Riemann-Liouville derivative (see [9]) as follows:

$$
D_{t \mid T}^{\gamma} f(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(0) t^{k-\gamma}}{\Gamma(1+k-\gamma)}+\mathbf{D}^{\gamma} f(t) .
$$

We have also the following formula of integration by parts,(see [10])

$$
\int_{0}^{T} f(t) D_{0 \mid t}^{\gamma} g(t) d t=\int_{0}^{T} g(t) D_{t \mid T}^{\gamma} f(t) d t, \quad 0<\gamma<1 .
$$

Remark 3.1. The above defined integrals are assumed to be convergent and the solution is called global if $T=+\infty$.

Denoting by Q_{T} the set $Q_{T}=(0, T) \times \mathbb{R}^{N}$ and by $L_{l o c}^{p}\left(Q_{T}, h d t d x\right)$ the space of all functions $v: \mathbb{R}^{+} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$such that $\int_{K}|v|^{p} h(t, x) d t d x<+\infty$ for any compact K in $\mathbb{R}^{+} \times \mathbb{R}^{N}$.

Definition 3.1. Let $0<\alpha<1$ and $0<\beta<1$. A weak solution of (5) is a locally integrable function u such that $u \in L_{l o c}^{p}\left(Q_{T}, h d t d x\right)$ and

$$
\begin{aligned}
& \int_{Q_{T}} \varphi h|u|^{p}|1-u|^{q} d t d x \\
= & \int_{Q_{T}} u(t, x) D_{t \mid T}^{\alpha+1} \varphi d t d x-\int_{Q_{T}} u_{1}(x) D_{t \mid T}^{\alpha} \varphi d t d x \\
- & \int_{\mathbb{R}^{N}} u_{0}(x) D_{t \mid T}^{\alpha} \varphi(0) d x+\int_{Q_{T}}\left[u(t, x)-u_{0}(x)\right] D_{t \mid T}^{\beta} \varphi d t d x \\
+ & \int_{Q_{T}} u(t, x)(-\Delta)^{\frac{\gamma}{2}} \varphi d t d x
\end{aligned}
$$

holds for any $\varphi \in C_{0}^{2}\left(Q_{T}\right), \varphi \geq 0$ and satisfying $\varphi(T, x)=D_{t \mid T}^{\alpha} \varphi(T, x)=0$.
Definition 3.2. Suppose that $0<\alpha<1,1<\beta<2$ and $\beta \leq 1+\alpha$. A weak solution of (5) is a locally integrable function u such that $u \in L_{l o c}^{p}\left(Q_{T}, h d t d x\right)$ and

$$
\begin{aligned}
\int_{Q_{T}} \varphi h|u|^{p}|1-u|^{q} d t d x & =\int_{Q_{T}} u(t, x) D_{t \mid T}^{\alpha+1} \varphi d t d x-\int_{Q_{T}} u_{1}(x) D_{t \mid T}^{\alpha} \varphi d t d x \\
& -\int_{\mathbb{R}^{N}} u_{0}(x) D_{t \mid T}^{\alpha} \varphi(0) d x+\int_{Q_{T}} u(t, x) D_{t \mid T}^{\beta} \varphi d t d x \\
& -\int_{Q_{T}} u_{1}(x) D_{t \mid T}^{\beta-1} \varphi d t d x-\int_{\mathbb{R}^{N}} u_{0}(x) D_{t \mid T}^{\beta-1} \varphi(0) d x \\
& -\int_{Q_{T}} u(t, x)(-\Delta)^{\frac{\gamma}{2}} \varphi d t d x
\end{aligned}
$$

holds for any $\varphi \in C_{0}^{2}\left(Q_{T}\right), \varphi \geq 0$ and satisfying

$$
\varphi(T, x)=D_{t \mid T}^{\alpha} \varphi(T, x)=D_{t \mid T}^{\beta-1} \varphi(T, x)=0 .
$$

Remark 3.2. In order to get weak formulation in the above definitions, we used some added properties as:

$$
D_{0 \mid t}^{1+\alpha} f=D . D_{0 \mid t}^{\alpha} f \quad \text { and } \quad D_{t \mid T}^{1+\alpha} f=-D . D_{t \mid T}^{\alpha} f
$$

and the exponent property

$$
\mathbf{D}^{n+\alpha} f(t)=\mathbf{D}^{n} \mathbf{D}^{\alpha} f(t), \quad 0<\alpha<1, \quad n=1,2, \ldots
$$

4. Nonexistence result

Here we consider only the case $0<\alpha<1$ and $0<\beta<1$. The other cases can be treated similarly using the appropriate definition.

We announce our first result as a theorem.
Theorem 4.1. Suppose that $u_{0}(x), u_{1}(x) \geq 0,0<\alpha, \beta<1, u \neq 1$ and the function h satisfies $h(t, x)>0$ and $h\left(t R^{2}, x R^{\beta}\right)=R^{\rho} h(t, x)$ for some $\rho>0$ and large $R>0$. Then, if $1<p \leq 1+\frac{\beta \gamma+\rho}{2+\beta N-\beta \gamma}$, the problem (5) does not admit nontrivial global solutions in time.

Proof. Proceed by contradiction that a solution exists for all time $t>0$. and let us consider the solution u on $\left(0, T_{\star}\right)$ and let T and R be two positive constants such that $0<T R^{2}<T_{\star}$. As a test function, we consider

$$
\varphi(t, x)=\varphi_{0}\left(\frac{t^{2 \beta}+|x|^{4}}{R^{4 \beta}}\right)
$$

such that $\varphi\left(T R^{2}, x\right)=\left.D_{t \mid T R^{2}}^{\alpha} \varphi(t, x)\right|_{T R^{2}}=0$. The function $\varphi_{0} \in C_{0}^{2}\left(R_{+}\right)$is nonnegative, nonincreasing and satisfying

$$
\varphi_{0}(z)= \begin{cases}1 & \text { if } 0 \leq z \leq 1 \\ 0 & \text { if } z \geq 2\end{cases}
$$

and $0 \leq \varphi_{0} \leq 1$.
From definition 3.1, the weak formulation of solution to our problem is

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d t d x+\int_{Q_{T R^{2}}} u_{1}(x) D_{t \mid T R^{2}}^{\alpha} \varphi d t d x \\
& +\int_{Q_{T R^{2}}} u u_{0}(x) D_{t \mid T R^{2}}^{\beta} \varphi d t d x+\int_{\mathbb{R}^{N}} u_{0}(x) D_{t \mid T}^{\alpha} \varphi(0) d x \\
& =\int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\alpha+1} \varphi d t d x \\
+ & \int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\beta} \varphi d t d x+\int_{Q_{T R^{2}}} u(t, x)(-\Delta)^{\frac{\gamma}{2}} \varphi d t d x . \tag{7}
\end{align*}
$$

It is clear from the definitions of the test function and the derivative function that $D_{t \mid T}^{\alpha} \varphi \geq$ 0 and $D_{t \mid T}^{\beta} \varphi \geq 0$, then

$$
\begin{align*}
\int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d t d x \leq & \int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\alpha+1} \varphi d t d x \\
& +\int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\beta} \varphi d t d x \\
& +\int_{Q_{T R^{2}}} u(t, x)(-\Delta)^{\frac{\nu}{2}} \varphi d t d x \tag{8}
\end{align*}
$$

Now, to follow the proof, the test function φ is chosen so that

$$
\begin{aligned}
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\alpha+1} \varphi\right|^{\frac{p}{p-1}} d t d x<\infty \\
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\beta} \varphi\right|^{\frac{p}{p-1}} d t d x<\infty \\
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|(-\Delta)^{\frac{\nu}{2}} \varphi\right|^{\frac{p}{p-1}} d t d x<\infty
\end{aligned}
$$

By the ε-Young inequality, we have

$$
\begin{align*}
& \int_{Q_{T R^{2}}} u D_{t \mid T R^{2}}^{\alpha+1} \varphi d t d x \\
& =\int_{Q_{T R^{2}}} u(1-u)^{\frac{q}{p}}(\varphi h)^{\frac{1}{p}}(1-u)^{-\frac{q}{p}}\left(D_{t \mid T R^{2}}^{\alpha+1} \varphi\right)(\varphi h)^{\frac{-1}{p}} d t d x \\
& \leq \varepsilon \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d x d t \\
& +C_{\varepsilon} \int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}\left|D_{t \mid T R^{2}}^{\alpha+1} \varphi\right|^{\frac{p}{p-1}}(\varphi h)^{-\frac{1}{p-1}} d t d x . \tag{9}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \int_{Q_{T R^{2}}} u D_{t \mid T R^{2}}^{\beta} \varphi d t d x \\
& =\int_{Q_{T R^{2}}} u(1-u)^{\frac{q}{p}}(\varphi h)^{\frac{1}{p}}(1-u)^{-\frac{q}{p}}\left(D_{t \mid T R^{2}}^{\beta} \varphi\right)(\varphi h)^{\frac{-1}{p}} d t d x \\
& \leq \varepsilon \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d x d t \\
& +C_{\varepsilon} \int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}\left|D_{t \mid T R^{2}}^{\beta} \varphi\right|^{\frac{p}{p-1}}(\varphi h)^{-\frac{1}{p-1}} d t d x . \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{Q_{T R^{2}}} u(-\Delta)^{\frac{\nu}{2}} \varphi d t d x \\
& =\int_{Q_{T R^{2}}} u(1-u)^{\frac{q}{p}}(\varphi h)^{\frac{1}{p}}(1-u)^{-\frac{q}{p}}\left((-\Delta)^{\frac{\gamma}{2}} \varphi\right)(\varphi h)^{\frac{-1}{p}} d t d x \\
& \leq \varepsilon \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d x d t \\
& +C_{\varepsilon} \int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}\left|(-\Delta)^{\frac{\nu}{2}} \varphi\right|^{\frac{p}{p-1}}(\varphi h)^{-\frac{1}{p-1}} d t d x . \tag{11}
\end{align*}
$$

Taking into account (9)-(11) in (8) we infer, for $\varepsilon<\frac{1}{3}$ that

$$
\begin{equation*}
\int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d x d t \leq C_{\varepsilon}\left[A_{1}+A_{2}+A_{3}\right] . \tag{12}
\end{equation*}
$$

Where

$$
\begin{align*}
& A_{1}=\int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\alpha+1} \varphi\right|^{\frac{p}{p-1}} d t d x \tag{13}\\
& A_{2}=\int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\beta} \varphi\right|^{\frac{p}{p-1}} d t d x \tag{14}\\
& A_{3}=\int_{Q_{T R^{2}}}|1-u|^{-\frac{q}{p-1}}(\varphi h)^{-\frac{1}{p-1}}\left|(-\Delta)^{\frac{\nu}{2}} \varphi\right|^{\frac{p}{p-1}} d t d x \tag{15}
\end{align*}
$$

Now, we estimate the right hand of (12). For $u>1,(u \neq 1)$ we distingue two cases.

- First case: If $0<u<1$, then $\exists r>0: 0<u<r<1$ and we have $|1-u|^{-\frac{q^{2}}{p-1}}<C_{p, q}$.
- Second case: If $u>1$, then $\exists r>0: u>r>1$ that is $|1-u|^{-\frac{q^{2}}{p-1}}<C_{p, q}$.

So, we have

$$
\begin{equation*}
\forall u>0,(u \neq 1):|1-u|^{-\frac{q^{2}}{p-1}}<C_{p, q} . \tag{16}
\end{equation*}
$$

Using (16) and (12), we can write

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d t d x \leq \\
& C\left[\int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\alpha+1} \varphi\right|^{\frac{p}{p-1}} d t d x\right. \\
& +\int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\beta} \varphi\right|^{\frac{p}{p-1}} d t d x \\
& \left.+\int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|(-\Delta)^{\frac{\nu}{2}} \varphi\right|^{\frac{p}{p-1}} d t d x\right] \tag{17}
\end{align*}
$$

For some generic positive constant C.
Next, we introduce the scaled variables $t=R^{2} \tau$ and $x=R^{\beta} y$, we define the set Ω and the function χ by

$$
\Omega=\left\{(\tau, y) \in \mathbb{R}^{+} \times \mathbb{R}^{N}: \tau^{2 \beta}+|y|^{4} \leq 2\right\}
$$

and

$$
\chi(\tau, y)=\varphi\left(R^{2} \tau, R^{\beta} y\right)=\varphi(t, x) .
$$

Clearly, we have

$$
\begin{aligned}
d t d x & =R^{2+\beta N} d \tau d y, \\
D_{t \mid T R^{2}}^{\alpha+1} \varphi & =R^{-2(\alpha+1)} D_{\tau \mid T}^{\alpha+1} \chi, \\
D_{t \mid T R^{2}}^{\beta} \varphi & =R^{-2 \beta} D_{\tau \mid T}^{\beta} \chi,
\end{aligned}
$$

and

$$
(-\Delta \varphi)^{\frac{\gamma}{2}}=R^{-\beta \gamma}(-\Delta \chi)^{\frac{\gamma}{2}} .
$$

Substitution gives:

$$
\begin{align*}
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\alpha+1} \varphi\right|^{\frac{p}{p-1}} d t d x \\
& =R^{\beta N+2-\frac{2(\alpha+1) p}{p-1}-\frac{p}{p-1}} \int_{\Omega}(\chi h)^{-\frac{1}{p-1}}\left|D_{\tau \mid T}^{\alpha+1} \chi\right|^{\frac{p}{p-1}} d \tau d y \tag{18}\\
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|D_{t \mid T R^{2}}^{\beta} \varphi\right|^{\frac{p}{p-1}} d t d x \\
& =R^{\beta N+2-\frac{2(\alpha+1) p}{p-1}-\frac{p}{p-1}} \int_{\Omega}(\chi h)^{-\frac{1}{p-1}}\left|D_{\tau \mid T}^{\beta} \chi\right|^{\frac{p}{p-1}} d \tau d y \tag{19}\\
& \int_{Q_{T R^{2}}}(\varphi h)^{-\frac{1}{p-1}}\left|(-\Delta)^{\frac{\gamma}{2}} \varphi\right|^{\frac{p}{p-1}} d t d x \\
& =R^{\beta N+2-\frac{\beta \gamma p}{p-1}-\frac{p}{p-1}} \int_{\Omega}(\chi h)^{-\frac{1}{p-1}}\left|(-\Delta)^{\frac{\gamma}{2}} \chi\right|^{\frac{p}{p-1}} d \tau d y . \tag{20}
\end{align*}
$$

These relations (18)-(20) together with (17) imply that

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi h|u|^{p}|1-u|^{q} d t d x \\
\leq & C R^{\beta N+2-\frac{\beta \gamma p}{p-1}-\frac{\rho}{p-1}} \tag{21}\\
& \int_{\Omega}(\chi h)^{-\frac{1}{p-1}}\left[\left|D_{\tau \mid T}^{\alpha+1} \chi\right|^{\frac{p}{p-1}}+\left|D_{\tau \mid T}^{\beta} \chi\right|^{\frac{p}{p-1}}+\left|(-\Delta)^{\frac{\gamma}{2}} \chi\right|^{\frac{p}{p-1}}\right] d \tau d y \\
\leq & C R^{\beta N+2-\frac{\beta \gamma p}{p-1}-\frac{p}{p-1}} . \tag{22}
\end{align*}
$$

Observe that $\beta N+2-\frac{\beta \gamma p}{p-1}-\frac{\rho}{p-1} \leq 0$ is equivalent to our assumption $p \leq$ $1+\frac{\beta \gamma+\rho}{2+\beta N-\beta \gamma}$.
First case:
If $p<1+\frac{\beta \gamma+\rho}{2+\beta N-\beta \gamma}$, then $\lim _{R \rightarrow+\infty} \int_{Q T R^{2}} h|u|^{p}|1-u|^{q}=0$. This implies that
$u=0$, Since $h(t, x)>0$ on $R^{+} \times R^{N}$ and $u \neq 1$. This is a contradiction.

Second case:

If $p=1+\frac{\beta \gamma+\rho}{2+\beta N-\beta \gamma}$, then from (21), we have

$$
\begin{equation*}
\int_{Q_{\infty}} h|u|^{p}|1-u|^{q} \leq C . \tag{23}
\end{equation*}
$$

Applying Hölder inequality to all three terms in the right-hand side of (8), we find

$$
\begin{aligned}
& \int_{Q T R^{2}} \varphi h|u|^{p}|1-u|^{q} \\
\leq & \left(\int_{C_{R}} \varphi h|u|^{p}|1-u|^{q}\right)^{\frac{1}{p}} \\
& \cdot\left(\int_{C_{R}}|1-u|^{-\frac{q}{p p^{\prime}}}(\varphi h)^{-\frac{p^{\prime}}{p}}\left[\left|D_{\tau \mid T}^{\alpha+1} \chi\right|^{p^{\prime}}+\left|D_{\tau \mid T}^{\beta} \chi\right|^{p^{\prime}}+\left|(-\Delta)^{\frac{\nu}{2}} \chi\right|^{p^{\prime}}\right]\right)^{\frac{1}{p^{\prime}}},
\end{aligned}
$$

where

$$
\frac{1}{p}+\frac{1}{p^{\prime}}=1 \quad \text { and } \quad C_{R}=\left\{(t, x) \in R^{+} \times R^{N}: 0 \leq t^{2 \beta}+|x|^{4} \leq 2 R^{4 \beta}\right\}
$$

passing to the limit as $R \rightarrow \infty$, and using the convergence of the integral in (22), we get

$$
\int_{Q_{\infty}} h|u|^{p}|1-u|^{q}=0 \text {, i.e } u=0(\text { since } h(t, x)>0, u \neq 1) .
$$

We conclude that there cannot exist nontrivial global solutions.
Remark 4.1. If $\gamma=2, q=0$, we obtain the critical exponent $p \leq 1+\frac{2 \beta+\rho}{2+\beta N-2 \beta}$ of the problem (3) treated by Nasser-eddine Tatar in [12].

5. System of fractional equations

In this section we consider the Cauchy problem (6) for a nonlinear hyperbolic fractional system with initial data, so we are able now to give our second result.

Theorem 5.1. Let $N>1, p>1, q>1,0<\alpha_{i}<1,0<\beta_{i}<1$, for $i=1,2$, then if

$$
N \leq \max \left\{\begin{array}{l}
\frac{2+2 p_{1} p_{2}\left(\beta_{2}-1\right)+2 \beta_{1} p_{1}+\rho\left(p_{1}+1\right)}{\beta_{1}\left(p_{1}-1\right)+\beta_{2} p_{1}\left(p_{2}-1\right)}, \\
\frac{2+2 p_{1} p_{2}\left(\beta_{1}-1\right)+2 \beta_{2} p_{2}+\rho\left(p_{2}+1\right)}{\beta_{2}\left(p_{2}-1\right)+\beta_{1} p_{2}\left(p_{1}-1\right)}
\end{array}\right\}
$$

for $N \geq 1$. Then the system (6) does not admit nontrivial global weak solutions.
Proof. We proceed always by contradiction. Suppose that the nontrivial nonnegative solution $u \neq 1$ exists for all time $t>0$ in $\left(0, T^{\star}\right)$, with arbitrary $T^{\star}>0$.

Let T and R be two positive constants such that $0<T R^{2}<T^{\star}$. We consider the test function

$$
\varphi_{j}(t, x)=\varphi_{0}\left(\frac{t^{2 \beta_{j}}+|x|^{4}}{R^{4 \beta_{j}}}\right), \quad j=1,2
$$

such that $\varphi_{j}\left(T R^{2}, x\right)=\left.D_{t \mid T R^{2}} \varphi_{j}(t, x)\right|_{T R^{2}}=0$.
The function $\varphi_{0} \in C_{0}^{2}\left(R_{+}\right)$is nonnegative, nonincreasing and satisfying

$$
\varphi_{0}(z)=\left\{\begin{array}{l}
1 \text { if } 0 \leq z \leq 1 \\
0 \text { if } z \geq 2
\end{array}\right.
$$

and $0 \leq \varphi_{0} \leq 1$.
From the definition 3.1 the weak formulation of solution to our problem is

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1} \mid}|1-v|^{q_{1}} d t d x+\int_{Q_{T R^{2}}} u_{1}(x) D_{t \mid T R^{2}}^{\alpha_{1}} \varphi_{1} d t d x \\
+ & \int_{Q_{T R^{2}}} u_{0}(x) D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1} d t d x+\int_{\mathbb{R}^{N}} u_{0}(x) D_{t \mid T R^{2}}^{\alpha_{1}} \varphi_{1}(0) d x \\
= & \int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1} d t d x \\
+ & \int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1} d t d x+\int_{Q_{T R^{2}}} u(t, x)(-\Delta)^{\frac{\gamma_{1}}{2}} \varphi_{1} d t d x \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}} d t d x+\int_{Q_{T R^{2}}} v_{1}(x) D_{t \mid T R^{2}}^{\alpha_{2}} \varphi_{2} d t d x \\
+ & \int_{Q_{T R^{2}}} v_{0}(x) D_{t \mid T R^{2}}^{\beta_{2}} \varphi_{2} d t d x+\int_{\mathbb{R}^{N}} v_{0}(x) D_{t \mid T R^{2}}^{\alpha_{2}} \varphi_{2}(0) d x \\
= & \int_{Q_{T R^{2}}} v(t, x) D_{t \mid T R^{2}}^{\alpha_{2}+1} \varphi_{2} d t d x \\
+ & \int_{Q_{T R^{2}}} v(t, x) D_{t \mid T R^{2}}^{\beta_{2}} \varphi_{2} d t d x+\int_{Q_{T R^{2}}} v(t, x)(-\Delta)^{\frac{\gamma_{2}}{2}} \varphi_{2} d t d x . \tag{25}
\end{align*}
$$

From (24) and (25), while $D_{t \mid T R^{2}}^{\alpha_{i}} \varphi_{i} \geq 0$ and $D_{t \mid T R^{2}}^{\beta_{i}} \varphi_{i} \geq 0, i, j=1,2$ then we obtain
the following estimates

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1}}|1-v|^{q_{1}} d t d x \\
\leq & \int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1} d t d x+\int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1} d t d x \\
+ & \int_{Q_{T R^{2}}} u(t, x)(-\Delta)^{\frac{\gamma_{1}}{2}} \varphi_{1} d t d x . \tag{26}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}} d t d x \\
\leq & \int_{Q_{T R^{2}}} v(t, x) D_{t \mid T R^{2}}^{\alpha_{2}+1} \varphi_{2} d t d x+\int_{Q_{T R^{2}}} v(t, x) D_{t \mid T R^{2}}^{\beta_{2}} \varphi_{2} d t d x \\
+ & \int_{Q_{T R^{2}}} v(t, x)(-\Delta)^{\frac{\gamma_{2}}{2}} \varphi_{2} d t d x \tag{27}
\end{align*}
$$

Now, we estimate the quantities which are in the second parts from (26) and (27). By using the Hölder inequality we get

$$
\begin{align*}
\int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1} \leq & \left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{\frac{1}{p_{2}}} \\
& \cdot\left(\int_{Q_{T R^{2}}}|1-u|^{-\frac{q_{2} p_{2}^{\prime}}{p_{2}}}\left|D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \\
\leq & C\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{\frac{1}{p_{2}}} \\
& \left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \tag{28}
\end{align*}
$$

and

$$
\begin{align*}
\int_{Q_{T R^{2}}} u(t, x) D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1} \leq & C\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2} \mid}|1-u|^{q_{2}}\right)^{\frac{1}{p_{2}}} \\
& \cdot\left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \tag{29}
\end{align*}
$$

we also have:

$$
\begin{align*}
\int_{Q_{T R^{2}}} u(t, x)(-\Delta)^{\frac{\gamma_{1}}{2}} \varphi_{1} \leq & C\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{\frac{1}{p_{2}}} \\
& \cdot\left(\int_{Q_{T R^{2}}}\left|(-\Delta)^{\frac{\gamma_{1}}{2}} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \tag{30}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1}}|1-v|^{q_{1}} \leq C\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{\frac{1}{p_{2}}} \cdot \mathcal{A} \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{A}= & \left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\alpha_{1}+1} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \\
& +\left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\beta_{1}} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} \\
& +\left(\int_{Q_{T R^{2}}}\left|(-\Delta)^{\frac{\gamma_{1}}{2}} \varphi_{1}\right|^{p_{2}^{\prime}}\left(\varphi_{2} h\right)^{-\frac{p_{2}^{\prime}}{p_{2}}}\right)^{\frac{1}{p_{2}^{\prime}}} .
\end{aligned}
$$

Similarly, we have the estimate

$$
\begin{equation*}
\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}} \leq C\left(\int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1}}|1-v|^{q_{1}}\right)^{\frac{1}{p_{1}}} \cdot \mathcal{B} \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{B}= & \left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\alpha_{2}+1} \varphi_{2}\right|^{p_{1}^{\prime}}\left(\varphi_{1} h\right)^{-\frac{p_{1}^{\prime}}{p_{1}}}\right)^{\frac{1}{p_{1}^{\prime}}} \\
& +\left(\int_{Q_{T R^{2}}}\left|D_{t \mid T R^{2}}^{\beta_{2}} \varphi_{2}\right|^{p_{1}^{\prime}}\left(\varphi_{1} h\right)^{-\frac{p_{1}^{\prime}}{p_{1}}}\right)^{\frac{1}{p_{1}^{\prime}}} \\
& +\left(\int_{Q_{T R^{2}}}\left|(-\Delta)^{\frac{\gamma_{2}}{2}} \varphi_{2}\right|^{p_{1}^{\prime}}\left(\varphi_{1} h\right)^{-\frac{p_{1}^{\prime}}{p_{1}}}\right)^{\frac{1}{p_{1}^{\prime}}} .
\end{aligned}
$$

Inequalities (31) and (32) imply that

$$
\left(\int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1}}|1-v|^{q_{1}}\right)^{1-\frac{1}{p_{1} p_{2}}} \leq C \mathcal{B}^{\frac{1}{p_{2}}} \cdot \mathcal{A}
$$

and

$$
\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{1-\frac{1}{p_{1} p_{2}}} \leq C \mathcal{A}^{\frac{1}{p_{1}}} \cdot \mathcal{B}
$$

In \mathcal{A} and \mathcal{B}, we use the scaled variables $t=R^{2} \tau$ and $x=R^{\beta_{i}} y, i=1,2$ we obtain

$$
\left(\int_{Q_{T R^{2}}} \varphi_{1} h|v|^{p_{1}}|1-v|^{q_{1}}\right)^{1-\frac{1}{p_{1} p_{2}}} \leq C_{1}\left(R^{k_{1}}\right)^{\frac{1}{p_{2}}} R^{k_{2}}
$$

and

$$
\left(\int_{Q_{T R^{2}}} \varphi_{2} h|u|^{p_{2}}|1-u|^{q_{2}}\right)^{1-\frac{1}{p_{1} p_{2}}} \leq C_{1}\left(R^{k_{2}}\right)^{\frac{1}{p_{1}}} R^{k_{1}}
$$

Where

$$
k_{1}=\frac{2+\beta_{1} N}{p_{1}^{\prime}}-2 \beta_{1}-\frac{\rho}{p_{1}} \text { and } \quad k_{2}=\frac{2+\beta_{2} N}{p_{2}^{\prime}}-2 \beta_{2}-\frac{\rho}{p_{2}} .
$$

Noting that

$$
\frac{k_{1}}{p_{2}}+k_{2} \Longleftrightarrow \quad N \leq \frac{2+2 p_{1} p_{2}\left(\beta_{2}-1\right)+2 \beta_{1} p_{1}+\rho\left(p_{1}+1\right)}{\beta_{1}\left(p_{1}-1\right)+\beta_{2} p_{1}\left(p_{2}-1\right)}
$$

and

$$
\frac{k_{1}}{p_{2}}+k_{2} \Longleftrightarrow \quad N \leq \frac{2+2 p_{1} p_{2}\left(\beta_{1}-1\right)+2 \beta_{2} p_{2}+\rho\left(p_{2}+1\right)}{\beta_{2}\left(p_{2}-1\right)+\beta_{1} p_{2}\left(p_{1}-1\right)}
$$

while $\frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=1$ and $\frac{1}{p_{2}}+\frac{1}{p_{2}^{\prime}}=1$. We obtain from a sufficient assumption as a critical exponent:

$$
N \leq \max \left\{\begin{array}{l}
\frac{2+2 p_{1} p_{2}\left(\beta_{2}-1\right)+2 \beta_{1} p_{1}+\rho\left(p_{1}+1\right)}{\beta_{1}\left(p_{1}-1\right)+\beta_{2} p_{1}\left(p_{2}-1\right)}, \\
\\
\left.\frac{2+2 p_{1} p_{2}\left(\beta_{1}-1\right)+2 \beta_{2} p_{2}+\rho\left(p_{2}+1\right)}{\beta_{2}\left(p_{2}-1\right)+\beta_{1} p_{2}\left(p_{1}-1\right)}\right\}
\end{array}\right.
$$

for $N \geq 1$.
Letting $R \rightarrow \infty$ in

$$
\Omega_{i}=\left\{(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{N}: 0 \leq t^{2 \beta_{i}}+|x|^{4} \leq 2 R^{4 \beta_{i}}\right\}
$$

and with the convergence of certain integrals, we conclude that this brings us to

$$
\int_{\mathbb{R}^{+} \times \mathbb{R}^{N}} h|u|^{p_{2}}|1-u|^{q_{2}}=0 \text { i.e. } \int_{\mathbb{R}^{+} \times \mathbb{R}^{N}}|u|^{p_{2}}=0
$$

so this leads to $u=0$. Then the nontrivial global solutions cannot exist. This completes the proof.

Remark 5.1. When $\rho=0$, and $q_{1}=q_{2}=0$ we recover the system studied by Saoudi and Haouam [11], consequently we get the same estimate found by them, i.e.

$$
\frac{N}{2} \leq \max \left\{\frac{1+p_{1} p_{2}\left(\beta_{2}-1\right)+\beta_{1} p_{1}}{\beta_{1}\left(p_{1}-1\right)+\beta_{2} p_{1}\left(p_{2}-1\right)}, \frac{1+p_{1} p_{2}\left(\beta_{1}-1\right)+\beta_{2} p_{2}}{\beta_{2}\left(p_{2}-1\right)+\beta_{1} p_{2}\left(p_{1}-1\right)}\right\},
$$

for $N \geq 1$.

References

[1] R. A. Fisher. The advantageous genes, Ann of Eugencs. 7(1937), 355-369.
[2] S. Fuquin and W. Mingxin. Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping, Nonlinear Analysis. 66(2007), 28892910.
[3] K. Hayakawa. On nonexistence of global solutions of some semilinear parabolic differential equations. Proc Japan Acad 49(1973), 503-505.
[4] R.Ikehata and K.Tanizawa. Global existence of solution for semilinear damped wave equation in \mathbb{R}^{N} with noncompactly supported initial data. Nonlinear Anal TMA. 61(2005), 1189-1208.
[5] M. Kirane, Y. Laskri and N-E. Tatar. Critical exponents of Fujita type for certain evolution equations and systems withspatio-temporal fractional derivatives. J Math Anal Appl. 312(2005), 488-501.
[6] M. Kirane and N-E. Tatar. Nonexistence of solutions to a hyperbolic equation with a time fractional damping. Z Anal Anwend. J Anal Appl. 25(2006), 131-142.
[7] T. F. Nonnenmacher and R. Metzler. On the Riemann-Liouville fractional calculus and some recent applications. Fractals. 3 (1995), 557-666.
[8] H. E. Roman and M. Giona. Fractional diffusion equation on fractals, J Phys A. 25(1992), 2107-2117.
[9] I. Podlubny. Fractional differential equations, Mathematics in science and engineering, vol. 198, Springer New York/London, 1999.
[10] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional integrals and derivatives: theory and applications. Amesterdam: Gordon and Breach. 1993.
[11] K. Saoudi and K. Haouam. Critical exponent for nonlinear hyperbolic system with spatio-temporal fractional derivatives. Int J Appl. Math. 24(6), (2011), 861-871.
[12] N-E. Tatar. Nonexistence results for a fractional problem arising in the thermal diffusion in fractal media. Chaos, Solitons and Fractals. 36(2008), 1205-1214.

