Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 12, Number 3 (2016), pp. 1613-1627
© Research India Publications
http://www.ripublication.com/gjpam.htm

Nonexistence of global solutions for a fractional
problems with a nonlinearity of the Fisher type

Brahim Tellab

Department of Mathematics,
Ouargla University, Ouargla 30000, Algeria.

Kamel Haouam

Mathematics and Informatics Department,
Tebessa University, Tebessa 12000, Algeria.

Abstract

This paper deals with the Cauchy problem for a nonlinear hyperbolic equation
D(l);-ozu + D(ﬁt“ + (_A)Jz/u =ht,x) |ul’|1—ul?

posedinQ=R+X]RN,Wherepi,qi >1,-1l<a<1,0<B<2,0<y <2,
and B < 1 4 o with given initial position and velocity u(x, 0) = ug(x), u,;(x,0) =
u1(x), and the Cauchy problem for a nonlinear hyperbolic system with initial data

Dé;alu +Dg‘ltu + (—A)Vzlu =hi@tx)|v|P|1l—v|", (t,x) e Q
DYy 4+ Dfv+ (~A) 2o = hot, ) [ 121 1 —u |2, (1,x) € Q

u(x,0)=uo(x) >0, ux,0)=u;(x)>0, xeR"

v(x,0) = vo(x) >0, v,(x,0) =vi(x) >0, xeRY

where —1 < a; < 1,0 < B <2,0<y; <2,and B < 1+ ;. D*([i = 1,2)
denote the time-derivative of arbitrary order ¢; in the sense of Caputo.

We find a critical exponent of Fujita type in the case of the particular values of
the fractional order and the separate terms p;, ¢;(i = 1,2) and N.

AMS subject classification: 26A33, 34K30, 35R10, 47D06.
Keywords: Fractional derivatives, test-function, critical exponent.
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1. Introduction

In fractional calculus, we us derivatives and integrals of non integer order (see [9, 10]).
Initial value fractional differential equations and systems was studied in several papers
(see[3,4,5, 6,7]) where was involved Riemann-Liouville fractional differential operator
of order @ € (0, 1).

Kirane and Tatar in [6], considered the Cauchy problem for the hyperbolic fractional
equation

e + Dfju = Au+h(t,x) |u|”, (1)

where p > 1and B8 € (0, 1). This equation is used to describe anomalous diffusion fractal
media, biological phenmena etc. (see [8]). The two authors cited above established that
the conditions

28+ p
l<p<l4_—"TP 2
<P=ltaiN 28 @

on the initial data arise, then solution of the last equation (1) doses not exist globally.

A large number of searcher treated the case when § = 1, so a lot of results of
nonexistence has been proved, also global existence results has been found while using
the fractional telegraph equation D*y + DPu = Au, 0 < B < 1, or studying various
other hyperbolic fractional equations as Brownian motions for example. (see also [2])
where Fuquin and Mingxin used a critical exponent while studying a huperbolic system
of reaction-diffusion type form a point of view of existence and nonexistence of the
solutions.

In [12], Tatar studied the following fractional differential problem

DYy 4+ DPu=Au+h@,x)|ul?, (@ x)eRT xRN ;

{ u(0,x) = up(x) € L}, . (RY), u;0,x) =ui(x) € L,.RY), x e RV, ©)

where —1 <o < 1 and 0 < B8 < 2. He proved that for ug(x), u1(x) > 0,

0 < o, B < 1 and the function h satisfies h(t,x) > O, =1 e L}OC(]R+ x RY) and
h(tR?, xRP) = RPh(t, x) for some p > 0and large R > 0. then, if 1 < p < 1
28+ p
24+ BN —28°
In [11], Saoudi and Haouam considered the following fractional differential system

the problem (3) does not admit nontrivial solutions global in time.

DY+ P+ (=& Fu=[v P, (1,0 e RT xRV
DY+ DPv+ (—m)Fu=lulf, (1 x) e RY x RY
u(x,0) =up(x) >0, u;(x,0) =ui(x) >0, xeRY

v(x,0) = vo(x) =0, v,(x,0)=v;(x) >0, xeRY

“4)
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Where p,g > 1, -1 <o < 1,0 < i <2and0 < B < 1 +«a; (i =1,2). They
proved thatfor p,g > 1,0 <a; <1,0< B <1 ( =1,2).If

N
2

l+pg(Bo—1)+Bip 1+ pg(Br—1) + Bag
Bi(p— 1+ B2(g—Dp Balg— 1+ Bi(p— g

the problem (4) does not admit nontrivial global weak solutions.
In this paper, we consider two problems. The first problem is

Smax{ } for N > 1,

{ Doy “u + Dgn” + (=M u=h. ) |ulP|1—ul?, (t.x) eRt xRV )

u(0,x) = ug(x) € Ljpe(RY), u,(0,x) =u;(x) € Lj,,(RY), x e RV

with given initial data and where p,g > 1, -1 <a < 1,0 < 8 < 2,y < 2 and
B < 1+ a. D% DP denote respectively the time-derivatives of arbitrary order o and

B in the sens of Caputo, (—A)% is the fractional power of the Laplacien —Ay in the x
variable defined by

(—A)Zu(t,x) = FH & 7 Fu) ()1, x),
where F is the Fourier transform and F ! its inverse. And the second one is
Dyt + Diju+ (=M Tu = by, x) v P T=v |?,  (1,x) e RT x RN
Dyi**0 + Do+ (=A) Tv = ha(t,x) [u 1P| T—u |2, (t,x) e RF x RY
u(0,x) = uo(x) € L},,(RY), u,(0,x) = u;(x) € L},,(RY), x e RY
v(0, x) = vo(x) € L, (RY), v,(0,x) = vi(x) € L}, (RY), x e RY))

(6)

where —1 <«o; <1,0< B <2,0<y; <2,and B; < 1 + «;.

2. Organization and Aim
Our paper is organized as follows:

* In section 3, we present the definitions of the fractional derivative in the sens
of Riemann-Liouville and the fractional derivative in the sens of Caputo and the
relationship between these two definitions.

* We also give the definition of a week solution of the cited problems.

* section 4, is devoted to a result of nonexistence of solutions for the fractional
system (5)

* In section 5, we establish a result of nonexistence of solutions for the fractional
system (6).
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Remark 2.1. Especially the second term in equation (5) and in the system (6) are taken
in a Fisher type form (see [1]), which interpret a mathematical model for the simulation
growth and spread of a particular bacterial population in an unbounded domain R.

Remark 2.2. In the case ¢ = 0 and y = 2, the problem (5) reduces to the Cauchy
problem (3) studied in [12].

Remark 2.3. In the case h (¢, x) = ha(t,x) = 1,91 = g2 = 0and y; = y» = 2 the
system (6) reduces to the system (4) studied in [11].
3. Preliminaries

In this section, we present two different definitions of fractional derivatives, some of
their properties and the definition of weak solutions to our problem (5).

We define the left-handed derivative and the right-handed derivative in the Riemann-
Liouville sense respectively as follows:

[_;<i)nf[t_ n—y—l1 d =[y]+1 0
0|;f() Fn—y) \a1 A (t—1) f()dr, n=|[y , y > 0.
I'(n dt ’ :

the Caputo derivative, ina general case, is given by

,|Tf(l) =

D’ f(1) = F(n;_y)/o t—0)" 77 W (ydr, n=[yl+1, y>0.

Therefore the Caputo derivative is related to the left-handed Riemann-Liouville derivative
(see [9]) as follows:

®) (Qyrk—v
D] f@t) = Z rfa i]zt + D f(1).

We have also the following formula of integration by parts,(see [10])

T T
/O fODY,g(t)dt :/O gDl f(dt, 0<y <1

Remark 3.1. The above defined integrals are assumed to be convergent and the solution
is called global if T = +o0.

Denoting by Q7 theset Q7 = (0, T) x RY and by LlOC(QT, hdtdx) the space of all

functions v : RT™ x RY — R such that/ | v |? h(t, x)dtdx < +oo for any compact
K
K inRt x RV,
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Definition 3.1. Let 0 < @ < 1 and 0 < B < 1. A weak solution of (5) is a locally
integrable function u such that u € Lﬁ) (Or, hdtdx) and

/ oh |u |P| 1 —u |9 didx

or

= / u(t,x)Df‘l’TLI(pdtdx—f ul(x)ijTgodtdx
Or or

_ A;{N uo(x)Df‘IT(p(O)dx -I—/Q [u(t, x) — uo(x)]Dfngodtdx

+ / u(t, x)(—A) T pdtdx
or

holds for any ¢ € CS(QT), ¢ > 0 and satisfying ¢(T, x) = ijTqJ(T, x) =0.

Definition 3.2. Supposethat0 <o < 1,1 < 8 <2and < 1 4+ «. A weak solution
of (5) is a locally integrable function u such that u € Lfo (Or, hdtdx) and

/ oh |u|P|1—ul|?dtdx = / u(t,x)Dﬁ“Tngodtdx —/ u1(x) Dyjrpdtdx
or or or

- / uo(x)D;jTgp(O)der/ u(t, x) D ppdtdx
RN or

_ f m(x)Dfl;lgadtdx—f uo )DLy p(0)dx
or RN

- / u(t, x)(—A) T pdtdx
or

holds for any ¢ € C(Z)(QT), ¢ > 0 and satisfying
-1
o(T.x) = Dpo(T, x) = D}y (T, x) = 0.

Remark 3.2. In order to get weak formulation in the above definitions, we used some
added properties as:

Dy f = D.D,f and D;t*f=—D.Di,f
and the exponent property

D" () =D'D*f(t), O<a<l1, n=12,...

4. Nonexistence result

Here we consider only the case 0 < ¢ < 1 and 0 < B < 1. The other cases can be
treated similarly using the appropriate definition.
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We announce our first result as a theorem.

Theorem 4.1. Suppose that ug(x), u;(x) > 0,0 < «, 8 < 1, u # 1 and the function
h satisfies (¢, x) > 0 and h(tRZ, xR’B) = R”h(t, x) for some p > 0 and large R > 0.
By +p

Then,ifl < p<14+ ————
P 2+ BN — By

, the problem (5) does not admit nontrivial global

solutions in time.

Proof. Proceed by contradiction that a solution exists for all time t > 0. and let us
consider the solution u on (0, 7,) and let 7 and R be two positive constants such that
0<TR? < T,. As a test function, we consider

(t )— M
(p ’-x _§00 R4'B

such that <p(TR2, x) = DﬁTRz(p(t, x) - = 0. The function ¢q € Cg(RJF) is nonnega-
tive, nonincreasing and satisfying

_J1if0=<z=<1,
(pO(Z)_ O lf Zzz,

and 0 < g < 1.
From definition 3.1, the weak formulation of solution to our problem is

‘/'QTRZ
g/
QTR2

= f u(t, x)Dfi;;Qcpdtdx
0

TR2

oh | u|P|1—ul?dtdx —|—/ ul(x)Dt“'TRzgodtdx
QTR2

uo(x)DflT vdtdx + /R _uo(0) Dfjr(0)dx

+ / u(t,x)D" . pdidx +f u(t, x)(—A) 2 pdtdx. (7)

ITR
QTR2 QTR2

Itis clear from the definitions of the test function and the derivative function that D;’jT(p >

0 and Dchp > (0, then

J

oh|u|P|1—u|9didx < / u(t, x)DH L pdtdx
0 ITR

TR2 TR2

+/ u(t, X)Dl popdidx
0

TR2

+ / u(t, x)(—A) 2 pdtdx. (8)
0

TR2
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Now, to follow the proof, the test function ¢ is chosen so that

--L a+1 L
(ph) r=1 | DI, |P~T dtdx < o0,
0

tITR
TR2
__1 B _P_
0 (ph) r-1| DHTRZ(p |7~ dtdx < oo,
TR2

1 P
/ (ph) 71| (—A)%(p |7-T dtdx < oo.
QTR2

By the ¢-Young inequality, we have

a+1
/;2 thlTRzgodtdx

TR2

= fQ u(l =) (ph)7 (1 — )3 (DEF L) (oh) 7 drdx

TR2

58/ oh lul?| 1 —ul|?dxdt
0

TR2

+Co | 11— u || Dk 7T (ph) 7T drdx.
QTR2
Similarly,
/ uD? pdtdx
t|T R?
QTR2
q 1 _4q B =1
= | u—wreh)r (1 —u) 7 (D 0)(ph) 7 drdx
QTR2
fef oh |ul|?|1—ul?dxdt
QTRz
_ 9 B _P_ __1
+C5/ |1 —u| P71 Dz|TR2('0 |P=T (ph) r-'dtdx.
Orgp2
and

/ u(—A)%gpdtdx
0

TR2

- fQ (1 — )7 ()7 (1 — u) "5 (—A) E @) (gh) P didx

TR2

58/ oh |u |P| 1 —u |9 dxdt
0

TR2

1
+C5/ |1 —u |_%| (—A)%q) |% (ph) r-Tdtdx.
0

TR2

1619

€))

(10)

(1)
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1
Taking into account (9)-(11) in (8) we infer, for ¢ < 3 that

/ oh |ulP|1—ul dxdths[A1+A2+A3]. (12)
QTR2
Where
A I at1 P
A = 1= 777 (@) 7T | DYt 771 drdx (13)
QTR2
_ 49 L
Ay = / 1= u 77T (ph) 7T | DF o |77 didx (14)
QTR2
1
Az = / |1—M|_ﬁ(<ﬂ)ﬁ|(ﬁ)<ﬂ|f’ldld?€- (15)
QTR2

Now, we estimate the right hand of (12). Foru > 1, (u # 1) we distingue two cases.

e First case: If 0 < u < 1,thendr > 0: 0 < u < r < 1 and we have
2
1—u | 7T<Cpy.

2
» Second case: If u > 1, then3r > 0: u > r > 1 thatis | | —u | 7T< Cp.

So, we have

2

Vu>0,(u#) | 1—u | 7T<Cpy. (16)

Using (16) and (12), we can write

/ oh|u|P|1—ul|?dtdx <
0

TR2
- a+1 L
c / (oh) 71 | DEFL o |77 didx
{|TR
QTR2
_ 1 L
+f (ph) »-T |Dt|TR2g0 |P~T dtdx
QTR2
+/ (h) 7T | (=A) ¢ |71 drdx]. 17)
QTR2

For some generic positive constant C.

Next, we introduce the scaled variables t = R’ and x = RPy, we define the set Q
and the function x by

Q={(t,y) e Rt xRV : 2P+ | y |*< 2}
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and
x(t,y) = p(R’t, RPy) = ¢(1, x).
Clearly, we have
dtdx = R**PNdzdy,
Da+1 —2(ot+1)Doe

I|TR2(p =R t|T X
B 28 B
Dy rge¥ =R "Dy,

and ) ,
(=Ap)? = RV (A0

Substitution gives:

| T Djphe 177 dra
0

TR2

_ RPN+2- 2(a+1)p /(Xh L} | DalT X |pfl drdy (18)
/sz(gah) P Do |77 didx
_ RﬁN“—Z(ﬁ?”—/(Xh T DP oy 17T dedy (19)
fQ (o) 7T | (—A)bg [T drdx

TR2
= RV 5 /(xh) T (—A) s x |77 drdy. (20)

These relations (18)-(20) together with (17) imply that

/ oh | u|P|1—ul?dtdx
0

TR2
< CR/SN-FZ—@_% (21)
L1 0‘+1 1 B —1 5 L
(Xh T|TX|p +|D|TX|’ + [ (=A)2x |»~1 |dtdy
< RﬂN“‘M‘ﬁ. (22)
Observe that BN + 2 — ,3yp1 N 7 < 0 is equivalent to our assumption p <
p— p—
1 + ﬂ
24+ BN — By
First case: By +
fp<l+—"L  then Iim hlu|P|1—u|?= 0. This implies that

2+IBN — ,B)/ R—+o00 QT R?



1622 B. Tellab and K. Haouam

u =0, Since h(t,x) > 0on RT x RY and u # 1. This is a contradiction.

Second case:

Ifp=1+ ﬂ, then from (21), we have

2+ PN — By

f hlulP|1—uli<C. (23)
O

Applying Holder inequality to all three terms in the right-hand side of (8), we find
[ enturii-ur
OTR?

1
< (f ¢h|u|p|1—u|q>p
Cr
’ 1
_ 49 _pr ’ ’ Y ’ p’
(f T—u [ (ph) p[|D$|+T1x P 1 DB P |~y 1P D ,
Cr

where
1 1
—+—=1and Cgp={(tx)eR" xRY:0=<r*+|x*<2RY)
p P

passing to the limit as R — oo, and using the convergence of the integral in (22), we get
/ hlul’|1—ul|?=0,i.e u=0 (since h(t,x) > 0,u # 1).

We conclude that there cannot exist nontrivial global solutions. [

28+ p

Remark 4.1. If y = 2, g = 0, we obtain the critical exponent p <1 4+ ——————
yeEsa=nw ticalexponent p = 1+ 5 gN 25

of the problem (3) treated by Nasser-eddine Tatar in [12].

5. System of fractional equations

In this section we consider the Cauchy problem (6) for a nonlinear hyperbolic fractional
system with initial data, so we are able now to give our second result.

Theorem 5.1. LetN > 1,p>1,g>1,0<a; <1,0< g; <1, fori =1,2, then if

242p1p2(B2— 1) +2B1p1 +p(p1+ 1)
Bi(p1 — 1)+ Bopi(p2—1)
242pipa(Bi— D) +2B2p2 + p(p2 + 1)}
Ba(p2 — 1) + Bip2(p1 — 1)

b

N < max {
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for N > 1. Then the system (6) does not admit nontrivial global weak solutions.

Proof. We proceed always by contradiction. Suppose that the nontrivial nonnegative
solution u # 1 exists for all time ¢ > 0 in (0, T*), with arbitrary 7* > 0.
Let T and R be two positive constants such that 0 < TR? < T*. We consider the

test function
2B; 4
t°Pi4+ | x | .
(pj(t,x)—§00< R4'3j )? ]—192

=0.
TR?
The function ¢y € Cg(RJr) is nonnegative, nonincreasing and satisfying

such that <p_,-(TR2, x) = Dyrreg;(t, x)

_J1if0=z=1,

and 0 < g < 1.
From the definition 3.1 the weak formulation of solution to our problem is

J
“l,

oth | v [P 1 —v |9 dtdx —I—/ ur(x)D® oidtdx

t|T R?
TR2 Org2

uo(x) Dl poprdidx + / () Dy o1 (0)dx
R

TR2

= / u(t, x) Db prdrd
QTR2

+ / u(t,x)Dtﬂ"TRzgoldtdx—l—/ u(t,x)(—A)%l(pldtdx 24)
QTR2 QTR2

and

A
“
QTR2

— f v(t, x)DjfT;g@drdx
)

TR2
+ f
Q

From (24) and (25), while D;X|’T g2¢i = 0and Dtﬁ"'T % = 0,4, j = 1,2 then we obtain

ooh | u P2 1 —u |? dtdx +f vl(x)Df‘ZTR2(p2dtdx
QTR2 |

W) Dy g p2(0)dx

TR2

vo(x)DleT ovadtdx + /
R

v(t,x)DlﬁIzTRzgozdtdx—i— f u(t, X)(—A) % prdtdsx. (25)
0

TR2 TR2
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the following estimates

/ orth v |1 —v|? dtdx
0

TR2
< / u(t,x)Dﬁthelz(pldtdx—{—/ u(t,x)DfllTRz(pldtdx
QTR2 QTR2
+ / u(t, x)(—A) T gidtdx. (26)
QTR2
and
/ @h | u |P*| 1 —u | dtdx
QTR2
< / v(t,x)Dfiszlzwzdtdx—l—f v(t,x)Dtﬁ'zTRz(pzdtdx
QTR2 QTR2
+ f u(t, X)(=A) T podidsx. 27)
QTR2

Now, we estimate the quantities which are in the second parts from (26) and (27). By

using the Holder inequality we get

1

P2
/ u(t, D aer < (f <ozh|u|"2|1—u|q2)
0 )

TR2

TR2

e AV

(/ [T—u ™7 | D 17 (pah) )
QTR2

%

C(/ cozh|u|f’2|1—u|q2>”
0

TR2

2
] / —_——
( / | DI 172 (pah) )
0

TR2

IA

l\)\"—

p

(28)

and

1
A1 P2 q2 2
M(I,X)D”TRZqJI = C ¢2h | u | | I —u |
0 0

TR2 TR2

ry L
, _Pa\ !
( / | D) a1 172 (@2h) ) ’ (29)
2

TR
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we also have:

J

€1

YL P2
u(t, x)(=A)2¢; < C(/ <p2h|u|”2|1—u|"2)
0

(!,
Consequently,

/ wlhlvlp‘ll—vlme(/
0 0

TR2 TR2

;o L
Y1 / _ILZ .
| (=A)Z @y P2 (poh) ) (30)

TR2

1

V4
¢2hlulp2|1—ulq2)2-A 31)
TR?2 TR2
where
P 1
’ _P\ pl
A = ( / | D aer 172 (pah) ) ’

QTRZ

L
7

Bi ’ _’L/Z P
([ 1D 1 R
2

+<me

Similarly, we have the estimate

f (p2h|u|p2|1—u|q2§C<f
o) 0

S

Y1 / _é
| (=8)Z @1 |72 (92h) 7

TR2

1

¢1h|v|f"|1—v|ql>”.6 (32)
TR2 TR2
where
y 1
’ _P\ p
B = ( / | Dhgn I (gih) )
2

TR
’

1

/ _Pi\

+( / | DI o2 |4 (@1h) ) ‘
)

+</Qm

Inequalities (31) and (32) imply that

(s

|~

p

—_]

» ’ _ﬁ
| (=A)Z ¢ |71 (@1h) 7

TR2

I
1
oih | v P 1—v D ) "o cBm.A

TR2
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and

=i 1
</ (p2h|u|p2|1—u|qz) <CAPn .B.
9]

TR2

In A and B, we use the scaled variables t = R*7 and x = R’giy, i = 1,2 we obtain

1

——1
12¥2 1
(/ oth | v [P 1—v|? ) " < ¢ (RMy RR2
0

TR2
and
1
Nz 1
(/ o2k | u |21 —u |‘12) " Cy(RRy I RR,
QTR2
Where
2+ BN Yy 24 BN 0
ki =————-281——and ky=—7F—-2——.
Py p1 1 4)) P2

Noting that

k 242 —1)+2 + +1
—l-l-kz N < pip2(Bo—1)+281p1 +p(p1+1)

P2 Bi(pr — 1)+ Bapi(p2 — 1)

and
k 242 —1H)+2 1
LIRS N <2t pip2(B1 — 1) +2B2p2 + p(p2 + )’
P2 Ba(p2 — 1) + Bipa(p1 — 1)

| 1 1 . . .
while — + — = 1 and — + — = 1. We obtain from a sufficient assumption as a
P1 P p2 Pr

critical exponent:

242pip2(Bo— D) +2Bip1+p(p1 + 1)
Bi(p1 — 1) + api(p2 — 1)

24+ 2p1p2(Br — 1) +2B2p2 + p(p2 + 1)}
Bo(p2 — 1)+ Bip2(p1 — 1)

b

N < max {

for N > 1.
Letting R — oo in

and with the convergence of certain integrals, we conclude that this brings us to

/ h|u|p2|l—u|q2=0i.e. / |u|p2=(),
R+ xRN R+ xRN
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so this leads to u = 0. Then the nontrivial global solutions cannot exist. This completes

the proof. [

Remark 5.1. When p = 0, and g1 = g» = 0 we recover the system studied by Saoudi
and Haouam [11], consequently we get the same estimate found by them, i.e.

N < max{ L+pippBo—D+Bipt 1+ pip2(Bi— 1)+ Bap2 }
2 - Bi(pi — D+ Bopi(p2— 1) Ba(p2 — D)+ Bipa(pr — D |
for N > 1.
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