Weyl and Weyl type theorems for *m*-quasi-n-class *A*(*k*) and algebraically *m*-quasi-n-class *A*(*k*) operators

D. Senthilkumar

Department of mathematics, Government Arts College, Coimbatore 641018, Tamilnadu, India.

S. Shylaja¹

Department of mathematics, Government Arts College, Coimbatore 641018, Tamilnadu, India.

Abstract

In this paper, we introduced m-quasi-N-class A(k) operators, where k and m are positive integers for a fixed N > 0. We prove that, if T is m-quasi-N-class A(k)operator, then T is an isoloid, T is of finite ascent, T is reguloid, Weyl's theorems holds T and also for f(T) for every $f \in H(\sigma(T))$. We define algebraically mquasi-N-class A(k) operators and prove if T is algebraically m-quasi-N-class A(k), then Weyl's theorem hold for T and f(T) for every $f \in H(\sigma(T))$, T is polaroid. We discussed H property, (β) property, SVEP, Generalized Weyl's and Weyl type theorems.

AMS subject classification: Primary 47A10; Secondary 47A53, 47A63, 47B20, 47B48.

Keywords: N-class A(k) operators, *m*-quasi-N-class A(k) operators, algebraically *m*-quasi-N-class A(k) operators, Weyl's theorem.

¹Corresponding author.

1. Introduction

Let $T \in B(H)$ be the Banach algebra of all bounded linear operator on a non-zero complex Hilbert space H. By an operator T, we mean an element from B(H). If T lies in B(H), then T^* denoted as adjoint of $T \in B(H)$. An operator T is called paranormal if $||T^2x|| \ge ||Tx||^2$, for every unit vector $x \in H$. An operator T belongs to class A, if $|T^2| \ge |T|^2$. An operator T is said to be p-hyponormal if $(T^*T)^p \ge (TT^*)^p$. If p=1 then T is called hyponormal operator. An operator T is said to be class A(k) for k > 0, if $(T^*|T|^{2k}T)^{\frac{1}{k+1}} \ge |T|^2$. An operator T is called normaloid if r(T) = ||T||, where $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ and isoloid if every isolated point of $\sigma(T)$ is an eigen value of T. The ascent of T denoted by p(T), is the least non-negative integer n such that $kerT^n = kerT^{n+1}$. The descent of T denoted by q(T), is the least non-negative integer n such that $ran(T^n) = ran(T^{n+1})$. T is said to be of finite ascent if $p(T - \lambda) < \infty$, for all $\lambda \in C$. If p(T) and q(T) are both finite, then p(T) = q(T) [18]. Moreover, $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$ precisely when λ is a pole of the resolvent of T.

For $T \in B(H)$, we write kerT and ranT for the null space and range of T, respectively. An operator $T \in B(H)$ is called upper semi-Fredholm if it has closed range and finite dimensional null space $(i.e., \alpha(T) := dimkerT < \infty)$, and $T \in B(H)$ is called lowe semi-Fredholm if it has closed range and finite co-dimensional null space $(i.e., \beta(T) := dimkerT^* < \infty)$. If $T \in B(H)$ is both upper semi-Fredholm and lower semi-Fredholm, we call it is Fredholm. If $T \in B(H)$ is semi-Fredholm, then the index of T, is denote by ind(T), is given by $ind(T) = \alpha(T) - \beta(T)$.

We denote the spectrum of $T \in B(H)$ by $\sigma(T)$, and the sets of isolated points and accumulation points of spectrum of $\sigma(T)$ denoted by $iso\sigma(T)$ and $acc\sigma(T)$, respectively.

$$\sigma(T) = \{\lambda \in C : T - \lambda I \text{ is not invertible} \},\$$

The essential spectrum of T is defined as

$$\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\},\$$

The appropriate point spectrum of T is

$$\sigma_a(T) = \{\lambda \in C : T - \lambda I \text{ is not bounded below}\},\$$

The essential appropriate point spectrum of T is defined as

$$\sigma_{ea}(T) = \{\lambda \in C : T - \lambda I \text{ is not semi} - Weyl \text{ operator}\},\$$

The Weyl spectrum of T is defined as

$$w(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } Weyl\},\$$

The Browder spectrum of T is defined as

$$\sigma_b(T) = \{\lambda \in C : T - \lambda I \text{ is not } Weyl\}.$$

It is well known that $\sigma_e(T) \subseteq w(T)$. The set of isolated eigen values of finite multiplicity denoted by $\pi_{00}(T) := \{\lambda \in \mathbb{C} : \lambda \in iso\sigma(T) and 0 < \alpha(T - \lambda) < \infty\}$. Let $T \in B(H)$ and let λ_0 be an isolated point of $\sigma(T)$. Then there exists a small enough positive number r > 0 such that $\{\lambda \in C : |\lambda - \lambda_0| \le r\} \cap \sigma(T) = \lambda_0$. We say that a-Weyl's theorem holds for T [33], if T satisfies the equality

$$\sigma_a(T) - \sigma_{ea} = \pi^a_{00}(T) \,.$$

We say that T satisfies property (w) if

$$\sigma_a(T) - \sigma_{ea}(T) = \pi_{00}(T)$$

and satisfies property (b) if

$$\sigma_a(T) - \sigma_{ea}(T) = p_{00}(T)$$

For an operator T and a non-negative integer n, define $T_{[n]}$ to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$. In particular, $T_{[0]} = T$. If for some integer n, $R(T^n)$ is closed and $T_{[n]}$ is an upper (*resp.alower*) semi-Fredholm operator, then T is called upper (*resp.lower*) semi-B-Fredholm operator. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called B-Fredholm operator. A semi-B-Fredholm operator is an upper or lower semi-B-Fredholm operator. The index of a semi-B-Fredholm operator T is the index of semi-Fredholm operator $T_{[d]}$, where d is the degree of the stable iteration of T and defined as

$$d = \inf \left\{ n \in N; \forall m \in N, m \ge n \Rightarrow (R(T^n) \cap N(T)) \subset (R(T^m) \cap N(T)) \right\}.$$

Then B-Weyl spectrum $\sigma_{BW}(T) = \{\lambda \in C : T - \lambda I \text{ is not } a B - Weyl operator\}$. We say that T satisfies generalized Weyl's theorem [6], if $\sigma(T) - \sigma_{BW}(T) = E(T)$, by [8], if Generalized Weyl's theorem holds for T, then Weyl's theorem holds for T.

2. weyl's theorem for *m*-quasi-N-class A(k) operators

In this section, we introduced m-quasi-N-class A(k) operator and prove that Weyl's theorem holds for them. We prove that T is m-quasi-N-class A(k) operator, then T is isoloid, finite ascent, property H, property (β) and the Riesz idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies

$$E_{\lambda}H = ker (T - \lambda I) = ker (T - \lambda I)^*$$

Definition 2.1. An operator $T \in B(H)$ is defined to be m-quasi-N-class A(k), if $T^{*m}\left(N\left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}}-|T|^2\right)T^m \ge 0$, where k and m are positive integers for a fixed N > 0.

Theorem 2.2. [35] If T is p-hyponormal or log-hyponormal operator, then T is N-class A(k) operator for each positive integer k.

Theorem 2.3. [35] Let T be an invertible and class A operator. Then

- 1. T is of N-class A(k) operator for every positive integer k
- 2. N-class $A(1) \subseteq N class A(2) \subseteq N class A(3)$
- 3. For all positive integer n, T^n is of N-class A(k) operator for every positive integer k
- 4. T^{-1} is of N-class A(k) operator for every positive integer k.

Theorem 2.4. [35] If T is of N-class A(k) for some positive integer k, then T is k-paranormal.

Theorem 2.5. If T belongs to N-class A(k) for some $k \ge 1$, then T belongs to m-quasi-N-class A(k).

Theorem 2.6. Let T be an invertible and class A operator. Then for each positive integer m,

- 1. T is of m-quasi-N-class A(k) for every positive integer k.
- 2. m-quasi-N-class $A(1) \subseteq$ m-quasi-N-class $A(2) \subseteq$ m-quasi-N-class $A(3) \subseteq$...
- 3. For all positive integers n, T^n is of m-quasi-N-class A(k).
- 4. T^{-1} is of m-quasi-N-class A(k) operator.

Matrix representation of an operator is used to study various properties of an operator. N-class A(k) operator have the matrix representation [35], $T = \begin{bmatrix} A & S \\ 0 & 0 \end{bmatrix}$ with respect to direct sum of closure of range of T and ker T^* .

Proposition 2.7. [*HansenInequality*] [15] If $A, B \in B(H)$ satisfy $A \ge 0$ and $||B|| \le 1$, then $(B^*AB)^{\delta} \ge B^*A^{\delta}B$ for all $\delta \in (0, 1]$.

Theorem 2.8. Assume that $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integer k and m, T has no dense and T has the following representation $T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix}$ on $H = \overline{ran(T^m)} \oplus ker(T^{m*})$. Then T_1 is N-class A(k) operator on $\overline{ran(T^m)}$ and T_3 is nilpotent. Furthermore, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Let P be the orthogonal projection onto $\overline{ran(T^m)}$. Then $\begin{bmatrix} T_1 & 0\\ 0 & 0 \end{bmatrix} = TP = PTP$. Since T is m-quasi-N-class A(k) operator, $P\left(N\left(T^*|T|^{2k}T\right)^{\frac{1}{k+1}} - |T|^2\right)P \ge 0$. By Hansen's inequality,

$$PN\left(T^* |T|^{2k} T\right)^{\frac{1}{k+1}} P = PN\left(T^{*k+1}T^{k+1}\right)^{\frac{1}{k+1}} P$$
$$\leq \left(PNT^{*k+1}T^{k+1}P\right)^{\frac{1}{k+1}}$$
$$= \begin{bmatrix} N\left(T_1^* |T_1|^{2k} T_1\right)^{\frac{1}{k+1}} & 0\\ 0 & 0 \end{bmatrix}$$

and

$$P |T|^2 P = PT^*TP = \begin{bmatrix} |T_1|^2 & 0\\ 0 & 0 \end{bmatrix}.$$

Therefore,

$$\begin{bmatrix} N \left(T_1^* |T_1|^{2k} T_1 \right)^{\frac{1}{k+1}} & 0\\ 0 & 0 \end{bmatrix} \ge P N \left(T^* |T|^{2k} T \right)^{\frac{1}{k+1}} P$$
$$\ge P |T|^2 P = \begin{bmatrix} |T_1|^2 & 0\\ 0 & 0 \end{bmatrix}.$$

Hence

$$N\left(T_1^* |T_1|^{2k} T_1\right)^{\frac{1}{k+1}} \ge |T_1|^2.$$

Hence T_1 is N-class A(k) operatoor on $\overline{ran(T^m)}$. For any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in H$,

$$\langle T_3^m x_2, x_2 \rangle = \langle T^m (I - P) x, (I - P) x \rangle$$

= $\langle (I - P) x, T^{m*} (I - P) x \rangle = 0$

Hence $T_3^m = 0$. By [16], Corollary 2.9,

$$\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup \tau,$$

where τ is the union of certain of the holes in $\sigma(T)$ which happens to be a subset of $\sigma(T_1) \cap \sigma(T_3)$, and $\sigma(T_1) \cap \sigma(T_3)$ has no interior points. Therefore,

$$\sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\}.$$

Since N-class A(k) operators are isoloid [35], we immediately have the following corollary.

Corollary 2.9. Assume that $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integer k and m, T has no dense range and T has the following representation

 $T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix} \text{ on } H = \overline{ran(T^m)} \oplus ker(T^{m*}) \text{ . Then } T_1 \text{ is isoloid and } T_3 \text{ is nilpotent.}$ Further, $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Theorem 2.10. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m, then T is isoloid.

Theorem 2.11. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m, $0 \neq \lambda \in \sigma_p(T)$ and T is of the form $T = \begin{bmatrix} \lambda & T_2 \\ 0 & T_3 \end{bmatrix}$ on ker $(T - \lambda I) \oplus ker (T - \lambda I)^{\perp}$, then

- 1. $T_2 = 0$ and
- 2. T_3 is m-quasi-N-class A(k).

Corollary 2.12. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m and $(T - \lambda I) x = 0$ for $\lambda \neq 0$ and $x \in H$, then $(T - \lambda I)^* x = 0$.

Theorem 2.13. Let $T \in B(H)$ be a m-quasi-N-class A(k) operator for some positive integers k and m, then T satisfies

$$N \| T^{k+m+1} x \|^{\frac{2}{k+1}} \| T^m x \|^{\frac{2}{k+1}} \ge \| T^{m+1} x \|^{2}.$$

Theorem 2.14. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m, then T is of finite ascent.

Proposition 2.15. [*Theorem* 2.13] [27] For given operators $A, B, C \in B(H)$, there is an equality $w(A) \cup w(B) = w(M_C) \cup \tau$, where $M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$ and τ is the union of certain holes in $w(M_C)$ which happens to be a subset of $w(A) \cap w(B)$.

Proposition 2.16. [*Corollary* 2.12] **[27]** Suppose $A \in B(H)$ and $B \in B(K)$ are isoloids. If Weyl's theorem holds for A and B, and if $w(A) \cap w(B)$ has no interior points, then Weyl's theorem holds for $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$.

Proposition 2.17. [28] If either SP(A) or SP(B) has no pseudoholes and if A is an isoloid operator for which Weyl's theorem holds, then for every $C \in B(K, H)$, Weyl's theorem holds for $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \Rightarrow$ Weyl's theorem holds for $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$.

Proposition 2.18. [35] If T is N-class A(k) operator for some positive integer k, then f(w(T)) = w(f(T)) for every $f \in H(\sigma(T))$.

Proposition 2.19. [*Theorem5*] [17] If $T \in B(H)$ then the following are equivalent

Weyl's theorem

- 1. *ind* $(T \lambda I)$ *ind* $(T \mu I) \ge 0$ for each pair $\lambda, \mu \in C \sigma_e(T)$
- 2. f(w(T)) = w(f(T)) for every $f \in H(\sigma(T))$.

Proposition 2.20. [29] If $T \in B(H)$ is isoloid, then

$$f(\sigma(T) - \pi_{00}(T)) = \sigma(f(T)) - \pi_{00}(f(T)),$$

for ever $f \in H(\sigma(T))$.

Lemma 2.21. If T is m-quasi-N-class A(k) operator then $ind(T - \lambda I) \leq 0$ for all $\lambda \in C$.

Lemma 2.22. If T is m-quasi-N-class A(k) operator then

$$f(\sigma(T) - \pi_{00}(T)) = \sigma(f(T)) - \pi_{00}(f(T))$$

for ever $f \in H(\sigma(T))$.

By Lemma 2.21 and Proposition 2.19, the following result is trivial.

Lemma 2.23. If T is m-quasi-N-class A(k) operator then f(w(T)) = w(f(T)) for ever $f \in H(\sigma(T))$.

Theorem 2.24. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m, then Weyl's theorem holds for T.

Proof. By Theorem 2.8, if $T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix}$ on $H = \overline{ran(T^m)} \oplus ker(T^{m*})$, then T_1 is N-class A(k) operator on $\overline{ran(T^m)}$ and T_3 is nilpotent. Also b [35], T_1 is isoloid and Weyl's theorem holds for T_1 , since $0 \notin w(T_1)$. Hence by Proposition 2.16, Weyl's theorem holds for $\begin{bmatrix} T_1 & 0 \\ 0 & T_3 \end{bmatrix}$. Therefore by Proposition 2.17, Weyl's theorem holds for $T = \begin{bmatrix} T_1 & T_2 \\ 0 & T_3 \end{bmatrix}$.

Theorem 2.25. If $T \in B(H)$ is m-quasi-N-class A(k) operator for some positive integers k and m, then Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Proof. By Lemma 2.22, Theorem 2.24 and Lemma 2.23, for every $f \in H(\sigma(T))$,

$$\sigma (f (T)) - \pi_{00} (f (T))$$

= f (\sigma (T) - \pi_{00} (T))
= f (w (T)) = w (f (T))

Hence Weyl's theorem holds for f(T), for all $f \in H(\sigma(T))$.

In Theorem 2.5, the converse is true, if T is invertible. Duggal [25], has shown that k-paranormal operators are heriditarily normaloid. Since N-class A(k) operators are k-paranormal, it follows that N-class A(k) are normaloid.

Theorem 2.26. If T is N-class A(k) operator for some positive integer k and for $\lambda \in C$, $\sigma(T) = \lambda$ then $T = \lambda$.

Theorem 2.27. If T is m-quasi-N-class A(k) operator for positive integer k and for all $\lambda \in C$, $\sigma(T) = \lambda$ then $T = \lambda$, if $\lambda \neq 0$ and $T - \lambda I$ is nilpotent.

Proof. If $\lambda = 0$, then by Theorem 2.8, $T = \begin{bmatrix} T_1 & T_2 \\ 0 & 0 \end{bmatrix}$ on on $H = \overline{ran(T^m)} \oplus ker(T^{m*})$, where T_1 is N-class A(k) operator and $\sigma(T) = \sigma(T_1) \cup \{0\}$. Hence $\sigma(T_1) = 0$. Hence by Theorem 2.26, $T_1 = 0$. Hence $T^m = 0$. Therefore $T - \lambda I$ is nilpotent. Assume that $\lambda \neq 0$. Then T is an invertible quasi-N-class A(k) operator and hence N-class A(k) with $\sigma(T) = \lambda$. Then again by Theorem 2.26, $T = \lambda$.

Theorem 2.28. If T is m-quasi-N-class A(k) operator for positive integers m and k and M is an invariant subspace of T, then the restriction $T_{|M}$ is N-class A(k).

Corollary 2.29. If T is m-quasi-N-class A(k) operator for positive integers m and k, and $0 \neq \lambda \in \sigma_p(T)$, then T is of the form $T = \begin{bmatrix} \lambda & 0 \\ 0 & T_3 \end{bmatrix}$ on $ker(T - \lambda) \oplus \overline{(T - \lambda)^*}$, where T_3 is m-quasi-N-class A(k) operator and $ker(T_3 - \lambda) = \{0\}$.

Theorem 2.30. If T is m-quasi-N-class A(k) operator for positive integers m and k and $\lambda \in \sigma(T)$ is an isolated point, then the Riesz idempotent operator E_{λ} with respect to λ satisfies $E_{\lambda}H = ker(T - \lambda I)$, hence λ is an eigenvalue of T.

Theorem 2.31. If T is m-quasi-N-class A(k) operator for positive integers m and k, then T has SVEP and $p(\lambda I - T) \le 1$ for all $\lambda \in C$. Furthermore, both T and T^* are reguloid.

Theorem 2.32. If T is m-quasi-N-class A(k) operator for positive integers m and k, then Weyl's theorem holds for T and T^* . If in addition, T^* has SVEP, then a-Weyl's theorem holds for both T and T^* .

Theorem 2.33. If T is m-quasi-N-class A(k) operator for positive integers m and k and T^* has SVEP, then a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Theorem 2.34. Let T be m-quasi-N-class A(k) operator for positive integers m and k and $\lambda \neq 0$ be an isolated point in $\sigma(T)$. Then the Riesz idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda}H = ker(T - \lambda I) = ker(T - \lambda I)^*$.

Theorem 2.35. If T is m-quasi-N-class A(k) operator for positive integers m and k, then T satisfies property (β).

3. weyl's theorem for algebraically m-quasi-N-class A(k) operators

In this section, we define algebraically m-quasi-N-class A(k) operators and we prove that Weyl's theorem hold for them. We also prove that T is algebraically m-quasi-N-class A(k) operators, then T is polaroid and other Weyl type theorems are discussed.

Definition 3.1. An operator T is defined to be of algebraically m-quasi-N-class A(k) for positive integers m and k, if there exists a non-constant complex ploynomial p(t) such that p(T) is of m-quasi-N-class A(k) operator.

Theorem 3.2. If T is algebraically m-quasi-N-class A(k) operators for positive integers k and m and $\sigma(T) = \mu_0$, then $T - \mu_0$ is nilpotent.

Theorem 3.3. If T is algebraically m-quasi-N-class A(k) operators for positive integer k, then Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T) - w(T)$, then $T - \lambda$ is Weyl and not invertible. Claim: $\lambda \in \partial_{\sigma}(T)$. Assume the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood \cup of λ such that $\dim N(T - \mu) > 0$ for all $\mu \in \cup$. Hence by ([13], *Theorem* 10) T does not have SVEP which is a contradiction. Hence $\lambda \in \partial_{\sigma}(T) - w(T)$. Therefore by punctured neighborhood theorem, $\lambda \in \pi_{00}(T)$. Conversely suppose that $\lambda \in \pi_{00}(T)$. Using the Riesz idempotent E_{λ} with respect to λ , we can represent T as the direct sum $T = \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix}$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$. Then by Theorem 3.2, $T_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T)$, $T_1 - \lambda$ is a finite dimensional operator, so $T_1 - \lambda$ is Weyl. But since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl. Hence $\lambda \in \sigma(T) - w(T)$, therefore $\sigma(T) - w(T) = \pi_{00}(T)$.

By [2], Theorem 2.16, we get the following result.

Corollary 3.4. If T is algebraically N-class A(k) for some positive integer k, and T^* has SVEP then a-Weyl's theorem and property (w) hold for T.

Thorem 3.5. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then w(f(T)) = f(w(T)) for every $f \in H(\sigma(T))$.

Theorem 3.6. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then Weyl's theorem holds for f(T), for every $f \in H(\sigma(T))$.

Theorem 3.7. If T or T^* is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then $\sigma_{ea} (f(T)) = f (\sigma_{ea} (T))$.

Theorem 3.8. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then T is polaroid.

Corollary 3.9. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then T is reguloid.

Corollary 3.10. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0, then T is isoloid.

Corollary 3.11. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m for a fixed N > 0 and if in addition T^* has SVEP, then a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Corollary 3.12. If T^* is algebraically m-quasi-N-class A(k) for some positive integers k and m, then w(f(T)) = f(w(T)).

By [3], Theorem 2.17, we get the following results.

Corollary 3.13. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m, and T^* has SVEP then property (b) hold for T.

Corollary 3.14. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m, Weyl's theorem, a-Weyl's theorem, property (w) and property (b) hold for T^* .

In the following theorem, we prove generalized Weyl's theorem for algebraically m-quasi-N-class A(k) operators.

Theorem 3.15. If T is algebraically m-quasi-N-class A(k) for some positive integers k and m, then generalized Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T) - \sigma_{BW}(T)$ then $T - \lambda$ is B-Weyl and not invertible. Then as in the necessary part of the proof of Theorem 3.3, we get $\lambda \in E(T)$. Conversely suppose that $\lambda \in E(T)$. Then λ is isolated in $\sigma(T)$. Using the Riesz idempotent E_{λ} with respect to λ , we can represent $T = \begin{bmatrix} T_1 & 0 \\ 0 & T_2 \end{bmatrix}$ where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$. Then by Theorem 3.2, $T_1 - \lambda$ is nilpotent. Since $\lambda \notin \sigma(T_2)$, $T_2 - \lambda$ is invertible. Hence both $T_1 - \lambda$ and $T_2 - \lambda$ have both finite ascent and descent. Hence $T - \lambda$ has both finite ascent and descent. Hence $T - \lambda$ is Drazin invertible. Therefore by [7], Lemma 4.1, $T - \lambda$ is B-Fredholm of index 0. Hence $\lambda \in \sigma(T) - \sigma_{BW}(T)$. Therefore $\sigma(T) - \sigma_{BW}(T) = E(T)$.

References

- [1] P. Aiena, *Fredholm and local spectral theory with application to multipliers*, Kluwer Academic Publishers, Dordrecht (2004).
- [2] P. Aiena and P. Pena, *Variations on Weyl's theorem*, J. Math. Anal. Appl., **324** (2006), 566–579.
- [3] P. Aiena and T. Biondi, *Weyl type theorems for polaroid operators*, Extracta Mathematicae, **23** (2008), no. 2, 103–118.
- [4] P. Aiena and F. Villafane, *Weyl's theorem for some classes of operators*, Integral Equations and Operator Theory, Published online July **21** (2011).

- [5] T. Ando, *Operator with a norm condition*, Acta Sci. Math(Szeged), **33** (1972), 169–178.
- [6] M. Berkani, *Index of B-Fredholm operators and generalization of a Weyl theorem*, Proc. Amer. Math. Sco., **130** (2002), 1717–1723.
- [7] M. Berkani, *Index of B-Fredholm operators and poles of the resolvent*, J. Math. Anal. Appl., **272** (2002), 596–603.
- [8] M. Berkani and A. Arroud, *Generalized Wey; l's theorem and hyponormal operators*, Journal of the Australian Mathematical Society, **76** (2004), 291–302.
- [9] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. Journal, 13 (1966), 285–288.
- [10] B. P. Duggal, *Weyl's theorem for totally hereditarily normaloid operators*, Rendi. Cirolo Mat. Palermo., (2004).
- [11] B. P. Duggal and C. S. Kubrusly, *Quasi-similar k-paranormal operators*, Operators and Matrices, 3 (2011), 417–423.
- [12] T. Furuta, Masatoshi Ito and Takeaki Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), no. 3, 389–403.
- [13] J. K. Finch, *The single valued extension property on a Banach space*, Pacific J. Math., **58** (1975), 61–69.
- [14] P. R. Halmos, *Hilber space problem book*, Springer-Verlag, New York, (1974).
- [15] F. Hansen, An operator inequality, Math. Ann., **246** (1980), 249–250.
- [16] J. K. Han, H. Y. Lee and W. Y. Lee, *Invertible completions of upper triangular operator matrices*, Proc. Amer. Math. Soc., **128** (1999), 119–123.
- [17] R.E. Harte and W.Y. Lee, Another notes on Weyl's theorem, Trans. Amer. Math. Soc., 349 (1997), no. 2, 2115–2124.
- [18] H. Heuser, Functional Analysis, Marcel Dekker, New York (1982).
- [19] M. Ito, *Several properties on class A including p-hyponormal and log-hyponormal operators*, Mathematical inequalities and Applications, **12** (1999), no. 2, 569–578.
- [20] I. H. Jeon and B. P. Duggal, On operator with absolute value condition, Journal of Korean Math. Soc., 41 (2004), 617–627.
- [21] I. H. Jeon and I. H. Kim, An operators satisfying $T^* |T^2| T \ge T^* |T|^2 T$, Lin. Alg. Appl., **418** (2006), 854–862.
- [22] I.H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{*k} |T^2| T^k \ge T^{*k} |T|^2 T^k$, J. Korean Math. Soc., 47 (2010), 351–361.
- [23] D. Koehler and P. Rosenthal, *On isometrices of normed linear spaces*, Studia Mathematica, **35** (1970), 213–216.
- [24] J. J. Koliha, *Isolated spectral points*, Proceedings of the American Math. Society, Vol. **124** (1996).

- [25] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Operators and Matrices, 4 (2010), 213–223.
- [26] K. B. Laursen and M. M. Neumann, *An introduction to local spectral theory*, London Mathematical Society Monographs, New Series **20** (2000).
- [27] W. Y. Lee, *Weyl spectra of operator matrices*, Proc. Amer. Math. Soc., **129** (2001), 131–138.
- [28] W. Y. Lee, *Weyl's theorem for operator matrices*, Integr. Equation Operator Theory, 32 (1998), 319–331.
- [29] W.Y. Lee and S.H. Lee, *A spectral mapping theorem for the Weyl spectrum*, Glass-gow Math. Journal, **38** (1996), no. 1, 61–64.
- [30] C.A. McCarthy, *c*_p, Israel. J. Math., **5** (1967), 249–271.
- [31] C. M. Pearcy, Some recent developments in operator theory, CBMS, 36 (1978).
- [32] V. Rakocevic, *Approximate point spectrum and computing compact perturbations*, Glasgow Math. Journal, **28** (1986), 193–198.
- [33] V. Rakocevic, *Operators obeying a-Weyl's theorem*, Rev. Roumaine Math. Pure Appl., **34** (1989), 915–919.
- [34] T. saito, *Hyponormal operators and related topics*, Lecture notes in Mathematics, Springer-Verlag, **247** (1971).
- [35] D. Senthilkumar and Shylaja. S, *Weyl's theorem for N-claass A(k) operators and algebraically N-class A(k) operators*, Communicated in Journal of Nonlinear Sciences and Applications.
- [36] D. Senthilkumar and Shylaja. S, *Weyl's theorem for quasi-N-class A(k) operators*, to appear in International Journal of Applied Engineering Research.
- [37] D. Senthilkumar and Shylaja. S, *Weyl and Weyl type theorem for algebraically quasi-N-class A(k) operators*, Communicated in International Journal of Mathematical Analysis.
- [38] A. Uchiyama, *Weyl's theorems for class A operators*, Mathematical inequalities and Applications, **4** (2003), no. 1, 143–150.
- [39] T. Yamazaki, *Extension of the results on p-hyponormal and log-hyponormal operators by Aluthge and Wang*, SUT Journal of Mathematicy, **35** (1999), no. 1, 139–148.