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Abstract

In this paper, we introduced m-quasi-N-class A(k) operators, where k and m are
positive integers for a fixed N > 0. We prove that, if T is m-quasi-N-class A(k)

operator, then T is an isoloid, T is of finite ascent, T is reguloid, Weyl’s theorems
holds T and also for f (T ) for every f ∈ H (σ (T )) . We define algebraically m-
quasi-N-class A(k) operators and prove if T is algebraically m-quasi-N-class A(k),
then Weyl’s theorem hold for T and f (T ) for every f ∈ H (σ (T )) , T is polaroid.
We discussed H property, (β) property, SVEP, Generalized Weyl’s and Weyl type
theorems.
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1. Introduction

Let T ∈ B(H) be the Banach algebra of all bounded linear operator on a non-zero
complex Hilbert space H. By an operator T , we mean an element from B(H). If T lies
in B(H), then T ∗ denoted as adjoint of T ∈ B(H). An operator T is called paranormal
if

∥∥T 2x
∥∥ ≥ ‖T x‖2 , for every unit vector x ∈ H. An operator T belongs to class A, if∣∣T 2

∣∣ ≥ |T |2 . An operator T is said to be p-hyponormal if (T ∗T )p ≥ (T T ∗)p. If p=1
then T is called hyponormal operator. An operator T is said to be class A(k) for k > 0,

if (T ∗ |T |2k T )
1

k+1 ≥ |T |2 . An operator T is called normaloid if r(T ) = ‖T ‖ , where
r(T ) = sup {|λ| : λ ∈ σ(T )} and isoloid if every isolated point of σ(T ) is an eigen
value of T. The ascent of T denoted by p (T ), is the least non-negative integer n such that
kerT n = kerT n+1. The descent of T denoted by q (T ) , is the least non-negative integer
n such that ran

(
T n

) = ran
(
T n+1) . T is said to be of finite ascent if p (T − λ) < ∞,

for all λ ∈ C. If p (T ) and q (T ) are both finite, then p (T ) = q (T ) [18]. Moreover,
0 < p (λI − T ) = q (λI − T ) < ∞ precisely when λ is a pole of the resolvent of T.

For T ∈ B(H), we write kerT and ranT for the null space and range of T, respec-
tively. An operator T ∈ B(H) is called upper semi-Fredholm if it has closed range
and finite dimensional null space (i.e., α(T ) := dimkerT < ∞), and T ∈ B(H) is
called lowe semi-Fredholm if it has closed range and finite co-dimensional null space
(i.e., β(T ) := dimkerT ∗ < ∞). If T ∈ B(H) is both upper semi-Fredholm and lower
semi-Fredholm, we call it is Fredholm. If T ∈ B(H) is semi-Fredholm, then the index
of T, is denote by ind(T ), is given by ind(T ) = α(T ) − β(T ).

We denote the spectrum of T ∈ B(H) by σ(T ), and the sets of isolated points and
accumulation points of spectrum ofσ(T )denoted by isoσ (T ) andaccσ(T ), respectively.

σ (T ) = {λ ∈ C : T − λI is not invertible} ,

The essential spectrum of T is defined as

σe(T ) = {λ ∈ C : T − λ is not F redholm} ,

The appropriate point spectrum of T is

σa (T ) = {λ ∈ C : T − λI is not bounded below} ,

The essential appropriate point spectrum of T is defined as

σea (T ) = {λ ∈ C : T − λI is not semi − Weyl operator} ,

The Weyl spectrum of T is defined as

w(T ) = {λ ∈ C : T − λ is not Weyl} ,

The Browder spectrum of T is defined as

σb (T ) = {λ ∈ C : T − λI is not Weyl} .
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It is well known that σe(T ) ⊆ w(T ). The set of isolated eigen values of finite multiplicity
denoted by π00(T ) := {λ ∈ C : λ ∈ isoσ (T )and0 < α(T − λ) < ∞} . Let T ∈ B(H)

and let λ0 be an isolated point of σ(T ). Then there exists a small enough positive number
r > 0 such that {λ ∈ C : |λ − λ0| ≤ r}∩σ(T ) = λ0.We say that a-Weyl’s theorem holds
for T [33], if T satisfies the equality

σa (T ) − σea = πa
00 (T ) .

We say that T satisfies property (w) if

σa (T ) − σea (T ) = π00 (T )

and satisfies property (b) if

σa (T ) − σea (T ) = p00 (T ) .

For an operator T and a non-negative integer n, define T[n] to be the restriction of T
to R

(
T n

)
viewed as a map from R

(
T n

)
into R

(
T n

)
. In particular, T[0] = T . If for some

integer n, R
(
T n

)
is closed and T[n] is an upper (resp.alower) semi-Fredholm operator,

then T is called upper (resp.lower) semi-B-Fredholm operator. Moreover, if T[n] is a
Fredholm operator, then T is called B-Fredholm operator. A semi-B-Fredholm operator is
an upper or lower semi-B-Fredholm operator. The index of a semi-B-Fredholm operator
T is the index of semi-Fredholm operator T[d], where d is the degree of the stable iteration
of T and defined as

d = inf
{
n ∈ N; ∀m ∈ N, m ≥ n ⇒ (R(T n) ∩ N(T )) ⊂ (R(T m) ∩ N(T ))

}
.

Then B-Weyl spectrum σBW (T ) = {λ ∈ C : T − λI is not a B − Weyloperator} . We
say that T satisfies generalized Weyl’s theorem [6], if σ (T ) − σBW (T ) = E (T ) , by
[8], if Generalized Weyl’s theorem holds for T, then Weyl’s theorem holds for T.

2. weyl’s theorem for m-quasi-N-class A(k) operators

In this section, we introduced m-quasi-N-class A(k) operator and prove that Weyl’s
theorem holds for them. We prove that T is m-quasi-N-class A(k) operator, then T is
isoloid, finite ascent, property H, property (β) and the Riesz idempotent operator Eλ

with respect to λ is self-adjoint and satisfies

EλH = ker (T − λI) = ker (T − λI)∗ .

Definition 2.1. An operator T ∈ B(H) is defined to be m-quasi-N-class A(k), if

T ∗m

(
N

(
T ∗ |T |2k T

) 1
k+1 − |T |2

)
T m ≥ 0, where k and m are positive integers for a

fixed N > 0.

Theorem 2.2. [35] If T is p-hyponormal or log-hyponormal operator, then T is N-class
A(k) operator for each positive integer k.

Theorem 2.3. [35] Let T be an invertible and class A operator. Then
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1. T is of N-class A(k) operator for every positive integer k

2. N-class A (1) ⊆ N − classA (2) ⊆ N − classA (3).....

3. For all positive integer n, T n is of N-class A(k) operator for every positive integer
k

4. T −1 is of N-class A(k) operator for every positive integer k.

Theorem 2.4. [35] If T is of N-class A(k) for some positive integer k, then T is k-
paranormal.

Theorem 2.5. If T belongs to N-class A(k) for some k ≥ 1, then T belongs to m-quasi-
N-class A(k).

Theorem 2.6. Let T be an invertible and class A operator. Then for each positive integer
m,

1. T is of m-quasi-N-class A(k) for every positive integer k.

2. m-quasi-N-class A(1) ⊆ m-quasi-N-class A(2) ⊆ m-quasi-N-class A(3) ⊆...

3. For all positive integers n, T n is of m-quasi-N-class A(k).

4. T −1 is of m-quasi-N-class A(k) operator.

Matrix representation of an operator is used to study various properties of an operator.

N-class A(k) operator have the matrix representation [35], T =
[
A S

0 0

]
with respect to

direct sum of closure of range of T and ker T ∗.

Proposition 2.7. [HansenInequality] [15] If A, B ∈ B(H) satisfy A ≥ 0 and ‖B‖ ≤
1, then

(
B∗AB

)δ ≥ B∗AδB for all δ ∈ (0, 1].
Theorem 2.8. Assume that T ∈ B(H) is m-quasi-N-class A(k) operator for some
positive integer k and m, T has no dense and T has the following representation T =[
T1 T2

0 T3

]
on H = ran (T m)⊕ker

(
T m∗) . Then T1 is N-class A(k) operator on ran (T m)

and T3 is nilpotent. Furthermore, σ (T ) = σ (T1) ∪ {0} .

Proof. Let P be the orthogonal projection onto ran (T m). Then

[
T1 0
0 0

]
= T P = PT P.

Since T is m-quasi-N-class A(k) operator, P

(
N

(
T ∗ |T |2k T

) 1
k+1 − |T |2

)
P ≥ 0. By
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Hansen’s inequality,

PN
(
T ∗ |T |2k T

) 1
k+1 P = PN

(
T ∗k+1T k+1) 1

k+1 P

≤ (
PNT ∗k+1T k+1P

) 1
k+1

=
[
N

(
T ∗

1 |T1|2k T1
) 1

k+1 0
0 0

]

and

P |T |2 P = PT ∗T P =
[|T1|2 0

0 0

]
.

Therefore, [
N

(
T ∗

1 |T1|2k T1
) 1

k+1 0
0 0

]
≥ PN

(
T ∗ |T |2k T

) 1
k+1 P

≥ P |T |2 P =
[|T1|2 0

0 0

]
.

Hence

N
(
T ∗

1 |T1|2k T1
) 1

k+1 ≥ |T1|2 .

Hence T1 is N-class A(k) operatoor on ran (T m). For any x =
[
x1

x2

]
∈ H,

〈
T m

3 x2, x2
〉 = 〈

T m (I − P) x, (I − P) x
〉

= 〈
(I − P) x, T m∗ (I − P) x

〉 = 0

Hence T m
3 = 0. By [16], Corollary 2.9,

σ (T1) ∪ σ (T3) = σ (T ) ∪ τ,

where τ is the union of certain of the holes in σ (T ) which happens to be a subset of
σ (T1) ∩ σ (T3) , and σ (T1) ∩ σ (T3) has no interior points. Therefore,

σ (T ) = σ (T1) ∪ σ (T3) = σ (T1) ∪ {0} .

�

Since N-class A(k) operators are isoloid [35], we immediately have the following
corollary.

Corollary 2.9. Assume that T ∈ B(H) is m-quasi-N-class A(k) operator for some
positive integer k and m, T has no dense range and T has the following representation
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T =
[
T1 T2

0 T3

]
on H = ran (T m) ⊕ ker

(
T m∗) . Then T1 is isoloid and T3 is nilpotent.

Further, σ (T ) = σ (T1) ∪ {0} .

Theorem 2.10. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive integers
k and m, then T is isoloid.

Theorem 2.11. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive integers

k and m, 0 �= λ ∈ σp (T ) and T is of the form T =
[
λ T2

0 T3

]
on ker (T − λI) ⊕

ker (T − λI)⊥ , then

1. T2 = 0 and

2. T3 is m-quasi-N-class A(k).

Corollary 2.12. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive inte-
gers k and m and (T − λI) x = 0 for λ �= 0 and x ∈ H, then (T − λI)∗ x = 0.

Theorem 2.13. Let T ∈ B(H) be a m-quasi-N-class A(k) operator for some positive
integers k and m, then T satisfies

N
∥∥T k+m+1x

∥∥ 2
k+1

∥∥T mx
∥∥ 2

k+1 ≥ ∥∥T m+1x
∥∥2

.

Theorem 2.14. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive integers
k and m, then T is of finite ascent.

Proposition 2.15. [T heorem 2.13] [27] For given operators A, B, C ∈ B(H), there is

an equality w (A) ∪ w (B) = w (MC) ∪ τ, where MC =
[
A C

0 B

]
and τ is the union of

certain holes in w (MC) which happens to be a subset of w (A) ∩ w (B) .

Proposition 2.16. [Corollary 2.12] [27] Suppose A ∈ B(H) and B ∈ B(K) are
isoloids. If Weyl’s theorem holds for A and B, and if w (A) ∩ w (B) has no interior

points, then Weyl’s theorem holds for

[
A 0
0 B

]
.

Proposition 2.17. [28] If either SP (A) or SP (B) has no pseudoholes and if A is an
isoloid operator for which Weyl’s theorem holds, then for every C ∈ B (K, H) , Weyl’s

theorem holds for

[
A 0
0 B

]
⇒ Weyl’s theorem holds for

[
A C

0 B

]
.

Proposition 2.18. [35] If T is N-class A(k) operator for some positive integer k, then
f (w (T )) = w (f (T )) for every f ∈ H (σ (T )) .

Proposition 2.19. [T heorem5] [17] If T ∈ B(H) then the following are equivalent
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1. ind (T − λI) ind (T − µI) ≥ 0 for each pair λ, µ ∈ C − σe (T )

2. f (w (T )) = w (f (T )) for every f ∈ H (σ (T )) .

Proposition 2.20. [29] If T ∈ B(H) is isoloid, then

f (σ (T ) − π00 (T )) = σ (f (T )) − π00 (f (T )) ,

for ever f ∈ H (σ (T )) .

Lemma 2.21. If T is m-quasi-N-class A(k) operator then ind (T − λI) ≤ 0 for all
λ ∈ C.

Lemma 2.22. If T is m-quasi-N-class A(k) operator then

f (σ (T ) − π00 (T )) = σ (f (T )) − π00 (f (T ))

for ever f ∈ H (σ (T )) .

By Lemma 2.21 and Proposition 2.19, the following result is trivial.

Lemma 2.23. If T is m-quasi-N-class A(k) operator then f (w (T )) = w (f (T )) for
ever f ∈ H (σ (T )) .

Theorem 2.24. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive integers
k and m, then Weyl’s theorem holds for T.

Proof. By Theorem 2.8, if T =
[
T1 T2

0 T3

]
on H = ran (T m) ⊕ ker

(
T m∗) , then T1

is N-class A(k) operator on ran (T m) and T3 is nilpotent. Also b [35], T1 is isoloid
and Weyl’s theorem holds for T1, since 0 /∈ w (T1) . Hence by Proposition 2.16, Weyl’s

theorem holds for

[
T1 0
0 T3

]
. Therefore by Proposition 2.17, Weyl’s theorem holds for

T =
[
T1 T2

0 T3

]
. �

Theorem 2.25. If T ∈ B(H) is m-quasi-N-class A(k) operator for some positive integers
k and m, then Weyl’s theorem holds for f (T ) for every f ∈ H (σ (T )) .

Proof. By Lemma 2.22, Theorem 2.24 and Lemma 2.23, for every f ∈ H (σ (T )),

σ (f (T )) − π00 (f (T ))

= f (σ (T ) − π00 (T ))

= f (w (T )) = w (f (T )) .

Hence Weyl’s theorem holds for f (T ) , for all f ∈ H (σ (T )) . �
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In Theorem 2.5, the converse is true, if T is invertible. Duggal [25], has shown that
k-paranormal operators are heriditarily normaloid. Since N-class A(k) operators are
k-paranormal, it follows that N-class A(k) are normaloid.

Theorem 2.26. If T is N-class A(k) operator for some positive integer k and for λ ∈ C,

σ (T ) = λ then T = λ.

Theorem 2.27. If T is m-quasi-N-class A(k) operator for positive integer k and for all
λ ∈ C, σ (T ) = λ then T = λ, if λ �= 0 and T − λI is nilpotent.

Proof. If λ = 0, then by Theorem 2.8, T =
[
T1 T2

0 0

]
on on H = ran (T m)⊕ker

(
T m∗),

where T1 is N-class A(k) operator and σ (T ) = σ (T1) ∪ {0} . Hence σ (T1) = 0. Hence
by Theorem 2.26, T1 = 0. Hence T m = 0. Therefore T − λI is nilpotent. Assume that
λ �= 0. Then T is an invertible quasi-N-class A(k) operator and hence N-class A(k) with
σ (T ) = λ. Then again by Theorem 2.26, T = λ. �

Theorem 2.28. If T is m-quasi-N-class A(k) operator for positive integers m and k and
M is an invariant subspace of T, then the restriction T|M is N-class A(k).

Corollary 2.29. If T is m-quasi-N-class A(k) operator for positive integers m and k, and

0 �= λ ∈ σp (T ) , then T is of the form T =
[
λ 0
0 T3

]
on ker (T − λ)⊕ (T − λ)∗, where

T3 is m-quasi-N-class A(k) operator and ker (T3 − λ) = {0} .

Theorem 2.30. If T is m-quasi-N-class A(k) operator for positive integers m and k and
λ ∈ σ (T ) is an isolated point, then the Riesz idempotent operator Eλ with respect to λ

satisfies EλH = ker (T − λI) , hence λ is an eigenvalue of T.

Theorem 2.31. If T is m-quasi-N-class A(k) operator for positive integers m and k, then
T has SVEP and p (λI − T ) ≤ 1 for all λ ∈ C. Furthermore, both T and T ∗ are reguloid.

Theorem 2.32. If T is m-quasi-N-class A(k) operator for positive integers m and k, then
Weyl’s theorem holds for T and T ∗. If in addition, T ∗ has SVEP, then a-Weyl’s theorem
holds for both T and T ∗.

Theorem 2.33. If T is m-quasi-N-class A(k) operator for positive integers m and k and
T ∗ has SVEP, then a-Weyl’s theorem holds for f (T ) for every f ∈ H (σ (T )) .

Theorem 2.34. Let T be m-quasi-N-class A(k) operator for positive integers m and k
and λ �= 0 be an isolated point in σ (T ) . Then the Riesz idempotent operator Eλ with
respect to λ is self-adjoint and satisfies EλH = ker (T − λI) = ker (T − λI)∗ .

Theorem 2.35. If T is m-quasi-N-class A(k) operator for positive integers m and k, then
T satisfies property (β).
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3. weyl’s theorem for algebraically m-quasi-N-class A(k) operators

In this section, we define algebraically m-quasi-N-class A(k) operators and we prove
that Weyl’s theorem hold for them. We also prove that T is algebraically m-quasi-N-class
A(k) operators, then T is polaroid and other Weyl type theorems are discussed.

Definition 3.1. An operator T is defined to be of algebraically m-quasi-N-class A(k) for
positive integers m and k, if there exists a non-constant complex ploynomial p (t) such
that p (T ) is of m-quasi-N-class A(k) operator.

Theorem 3.2. If T is algebraically m-quasi-N-class A(k) operators for positive integers
k and m and σ (T ) = µ0, then T − µ0 is nilpotent.

Theorem 3.3. If T is algebraically m-quasi-N-class A(k) operators for positive integer
k, then Weyl’s theorem holds for T.

Proof. Assume that λ ∈ σ (T ) − w (T ) , then T − λ is Weyl and not invertible. Claim:
λ ∈ ∂σ (T ) . Assume the contrary that λ is an interior point of σ (T ). Then there
exists a neighborhood ∪ of λ such that dimN (T − µ) > 0 for all µ ∈ ∪. Hence
by ([13], T heorem 10) T does not have SVEP which is a contradiction. Hence λ ∈
∂σ (T ) − w (T ) . Therefore by punctured neighborhood theorem, λ ∈ π00 (T ) . Con-
versely suppose that λ ∈ π00 (T ) . Using the Riesz idempotent Eλ with respect to

λ, we can represent T as the direct sum T =
[
T1 0
0 T2

]
where σ (T1) = {λ} and

σ (T2) = σ (T ) − {λ} . Then by Theorem 3.2, T1 − λ is nilpotent. Since λ ∈ π00 (T ) ,

T1 − λ is a finite dimensional operator, so T1 − λ is Weyl. But since T2 − λ is invertible,
T − λ is Weyl. Hence λ ∈ σ (T ) − w (T ) , therefore σ (T ) − w (T ) = π00 (T ) . �

By [2], Theorem 2.16, we get the following result.

Corollary 3.4. If T is algebraically N-class A(k) for some positive integer k, and T ∗
has SVEP then a-Weyl’s theorem and propeerty (w) hold for T.

Thorem 3.5. If T is algebraically m-quasi-N-class A(k) for some positive integers k and
m for a fixed N > 0, then w (f (T )) = f (w (T )) for every f ∈ H (σ (T )) .

Theorem 3.6. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m for a fixed N > 0, then Weyl’s theorem holds for f (T ) , for every f ∈ H (σ (T )) .

Theorem 3.7. If T or T ∗ is algebraically m-quasi-N-class A(k) for some positive integers
k and m for a fixed N > 0, then σea (f (T )) = f (σea (T )) .

Theorem 3.8. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m for a fixed N > 0, then T is polaroid.

Corollary 3.9. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m for a fixed N > 0, then T is reguloid.
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Corollary 3.10. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m for a fixed N > 0, then T is isoloid.

Corollary 3.11. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m for a fixed N > 0 and if in addition T ∗ has SVEP, then a-Weyl’s theorem holds
for f (T ) for every f ∈ H (σ (T )) .

Corollary 3.12. If T ∗ is algebraically m-quasi-N-class A(k) for some positive integers
k and m, then w (f (T )) = f (w (T )) .

By [3], Theorem 2.17, we get the following results.

Corollary 3.13. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m, and T ∗ has SVEP then property (b) hold for T.

Corollary 3.14. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m, Weyl’s theorem, a-Weyl’s theorem, property (w) and property (b) hold for T ∗.

In the following theorem, we prove generalized Weyl’s theorem for algebraically
m-quasi-N-class A(k) operators.

Theorem 3.15. If T is algebraically m-quasi-N-class A(k) for some positive integers k
and m, then generalized Weyl’s theorem holds for T.

Proof. Assume thatλ ∈ σ (T )−σBW (T ) thenT −λ is B-Weyl and not invertible. Then as
in the necessary part of the proof of Theorem 3.3, we get λ ∈ E (T ) . Conversely suppose
that λ ∈ E (T ) . Then λ is isolated in σ (T ) . Using the Riesz idempotent Eλ with respect

to λ, we can represent T =
[
T1 0
0 T2

]
where σ (T1) = {λ} and σ (T2) = σ (T ) − {λ} .

Then by Theorem 3.2, T1 − λ is nilpotent. Since λ /∈ σ (T2) , T2 − λ is invertible.
Hence both T1 − λ and T2 − λ have both finite ascent and descent. Hence T − λ has
both finite ascent and descent. Hence T − λ is Drazin invertible. Therefore by [7],
Lemma 4.1, T − λ is B-Fredholm of index 0. Hence λ ∈ σ (T ) − σBW (T ) . Therefore
σ (T ) − σBW (T ) = E (T ) .
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