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Abstract

A wide range of non-parametric classifiers have been suggested and developed in
the recent years in order to overcome the compulsion of using the classical para-
metric Maximum Likelihood Classifier (MLC) for non-normal data. The most
advanced of these classifiers being the ones based on the Artificial Neural Network
(ANN) algorithm, the Support Vector Machines (SVMs) and the Random Forests
(RFs). Although a number of researches have established the efficiency of these
distribution-free classifiers over the MLC, nothing much has been contributed in
to compare the performance of these non-parametric classifiers against each other.
With the objective of filling this gap, this study conducts an empirical study to com-
pare the performances of these three machine learning classification algorithms
while classifying asymmetric data. RF classifier was found to be best performing
among the three classifiers and robust enough to even very high levels of skewness.

AMS subject classification:
Keywords: Random forests, Support vector machines, Artificial neural networks,
skewed data.

1. Introduction

Pattern recognition or specifically classification is the problem of allocating an unknown
object based on a set of features in to one of the several possible classes (or populations).
These features can be thought of as p-dimensional vectors of measurements describing
the object. Classifiers can be broadly classified into parametric and non parametric
classifiers depending upon whether any distributional assumptions are imposed on the
underlying classes or not.
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Parametric classification techniques are most frequently used for pattern recognition
due to their easy interpretation, lesser number of underlying parameters and the fact
that no efforts are required to train them. But their performance is found to be highly
affected by the violation of normality assumption for the underlying populations. In fact
the real datasets are generally found to be asymmetric or specifically skewed in nature.
For example in complex land cover classification problem, if area under crop is one of
the several land use categories then the presence of trees along with crops as is the case
in agro forestry or the presence of stressed crops will result in the skewed spectral feature
distribution of the crop class as healthy crops, stressed crops and trees will have different
spectral signatures. This limitation of distributional assumption poses a threat to the
efficient performance of the parametric classifiers when the data is non-normal in nature.
Hence, in the presence of such non-optimal situations for the conventional MLC, the
researchers and experts suggest to look out for the alternative non-parametric classifiers
which are free of any distributional assumptions and hence are expected to perform well
with a variety of distributions as long as the class signatures are reasonably distinct.

Among the non-parametric classifiers available, parallelepiped and minimum dis-
tance classifiers fall under the statistical classifiers category. Parallelepiped classifiers
are the simplest ones of all the non parametric classifiers and require minimal informa-
tion in the form of minimum and maximum values of all the feature in each of the classes
which define the boundaries of the parallelepipeds and each observation is then checked
if it lies in any of the defined parallelepipeds. This classifier is highly affected by the
presence of overlapping parallelepipeds and inability of locating a new observation in
any of the defined parallelepipeds and hence is not considered a robust choice for most
of the classification problems. The second one i.e. the Minimum distance classifier
calculates the distance between an observation and the centroids of the different training
classes using the Mahalanobis distance measure and accordingly decides to allocate the
observation to the class which is nearer to the observation in terms of lower value of the
distance measure. This classifier is also found to be mathematically fast and does not
include any complex underlying mathematical concepts but its performance has always
been found to be inferior to the more robust parametric maximum likelihood classifier
(MLC) (Benediktsson et al. (1990)). Moreover the performance of both of the above
discussed classifiers is expected to be affected a lot by the presence of heterogeneity and
outliers in the data classes.

Thus, keeping in mind the limitations of these statistical non parametric classifiers
we turn our attention to the more advanced machine learning algorithms for classify-
ing skewed datasets. Among the class of non-parametric machine learning algorithms,
artificial neural networks, support vector machines and random forests classifiers have
gained considerable popularity among the researchers and the analysts in the field of
remote sensing, voice recognition, text classification, medical diagnosis of terminal dis-
eases etc. After a comprehensive review of the literature of classification techniques in
Section 2, we found that although a number of studies have been conducted for com-
paring the performances of the parametric MLC with its non-parametric counterparts
for particular case based studies, nothing much has been said about the performance of
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the non-parametric classifiers when the data is severely skewed. Hence, in the present
study we attempt to fill this gap by particularly focussing on the performance of the
three machine learning algorithms for classifying severley skewed data. The present
manuscript is divided in to the following section, Section 2 highlights other comparative
works carried out in past with the machine learning algorithms taken up for study in the
present chapter, Section 3 gives a brief discussion of the methods and the classifiers used
for comparison in the present work, a detailed investigation on the comparative perfor-
mances of the non-parametric classifiers for real and skewed simulated datais given in
Section 4 and the results and conclusions of the study have been discussed in Section 5.

2. Background

Classification procedures are widely used in a variety of field due to which a large
number of studies comparing the performance of different types of classifiers have been
produced. Hence for the sake of comprehensiveness and better understanding we give
an account of some of the recent comparative works with respect to the fields in which
they were conducted.

In remote sensing, Huang and Davis Huang et al. (2002) compared the performance
of SVM with MLC, ANN and decision tree classifiers for the classification of a six band
Thematic Mapper (TM) image and found SVM to be competitive enough with the other
two methods. Erbek ef al. (2004) compared the performance of MLC with multilayer
perceptron (MLP) and Linear Vector Quantization (LVQ) ANN classifiers for classifying
a Landsat TM data. Kavzoglu & Kolkesen (2009) assessed the effect of kernel choice on
the SVM classifiers and concluded that SVM classifiers based on rbf kernels outperform
the MLC for the classification of landcover images. Otukei & Blaschke (2010) found
decision tree classifiers to be performing better in general in terms of the classification
accuracies than the SVM and the MLC classifiers for classifying Landsat TM datasets.
Apart from these, Lu ef al. (2004); Olthof et al. (2004); Pal & Mather (2004) are some
other comparative works conducted for specific case based classification problem.

In bioinformatics and diagnostics, Dudoit et al. (2002) employed three microarray
datasets for the classification of tumours and interestingly found DLDA and ANN clas-
sifiers to be performing remarkably well as compared to more sophisticated aggregated
or bagged decision tree classifiers. Diaz-Uriarte & de Andres (2006) investigated the
performance of Random Forest, Diagonal linear discriminat analysis (DLDA) technique,
KNN and SVM classifiers for classifying microarray datasets. Statnikov et al. (2008)
in his study on the microarray based cancer found SVM classifiers to be performing bet-
ter than the RF classifiers with and without adopting any feature selection procedures.
Khondoker ef al. (2013) conducted an extensive simulation study to compare the per-
formance of LDF, SVM, ANN and RF under various settings of the data characteristics.
They concluded that different classifiers performed optimally under different settings.
Apart from these works, other significant comparative assessments of the classifiers for
microarray data classification for cancer diagnosis can be found in Huang et al. (2005);
Lee et al. (2005); Pirooznia et al. (2008); Rocke et al. (2009), Yousefi et al. (2011) etc.
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Apart from these two fields a number of comparative studies in the field of text recog-
nition, speech recognition, ecology (Cutler et al. (2007)) and financial data prediction
(Zhang et al. (1999)) have been produced.

Acknowledging the case based nature of all the above discussed comparative studies,
we felt the need of conducting a comprehensive simulation based comparative assessment
on the non-parametric classifiers. Apart from the conclusions based on the simulated
datasets, we also illustrated the performances of these classifiers on some benchmark
real datasets.

3. Non-parametric classifiers used

3.1. Artificial Neural Networks (ANNS)

Artificial Neural networks comprise of a set of machine learning algorithms which use
artificial intelligence techniques for complex problem solving. ANNs have evolved over
the years as a robust pattern recognition alternative to other methods with contribution
from varied disciplines ranging from neuroengineering, financial data prediction, quality
control, modeling and prediction to pattern recognition. Detailed conceptual explana-
tion of ANNSs can be found in Haykin (1999). ANN classifiers enjoy pretty attractive
advantages over other classifiers of being data driven self adaptive or distribution free
methods capable of estimating posterior probabilities (Richard & Lippmann (1991)) and
handling multi-source data efficiently (Benediktsson ef al. (1990)). Additionally, they
are hailed as universal approximators and non linear models. In order to make them
perform efficiently ANNs should be trained with proper choice of network architecture
and optimal parameters in the form of number of nodes and the number of hidden layers
used for training the network.

Supervised classification in an ANN classifier is administered through exposure to
a known set of input and corresponding output data i.e training data. The training
algorithm used trains the network by adjusting the interconnection weights between
the neurons through an iterative procedure such that the overall error is minimized and
then this trained network is used to determine the classification of unknown set of data.
Multilayer perceptron with back-error propagation neural network considered here for
classification is the most widely used supervised ANN architecture design (Tso & Mather
(2009)).

A Multilayer perceptron (MLP) network can consist of three basic types of layers,
first is the input layer, whose nodes take the elements of the external feature vector as
inputs, the second type of layer is the hidden layer (which can be more than one) and the
third is the output layer in which the number of nodes is equal to the number of classes
in the classification problem. These three types of layers are completely connected to
each other with weighted interconnections between the processing elements as shown in
Figure 1. The value held by each node is called its activity (a;).

For training or learning the interconnection weights (w;) between the layers and the
activities of the nodes the back-propagation algorithm is used which consists of forward
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Figure 1: Basic architecture of a multilayer perceptron network.

as well as backward propagation. During forward propagation input signals are supplied
to the network through the input layer and the updated activities of the nodes using the
interconnection weights, are passed on from layer to layer starting from the input layer
to the output layer. Formally the input that a single node say j receives is calculated as
the weighted sum of the activities of the sending nodes in the preceeding layer defined
as,

xj=Zaiwji (1)
i

where, a; is the activity of the ith node and w; is the weight of the connection from
the ith node to the jth node. And the output from each node to the nodes in the next
consecutive layer is calculated by converting the input in equation (1) using a mapping
function, sigmoid mapping function being the common choice. This transfer of updated
signal continues from one layer to another until the output layer is reached. After which
the error between the network output and the desired output is computed using the least
squared error criterion. This error is then back-propagated through the network and
the interconnection weights (w;;) are updated according to the generalized delta rule
described in Rumelhart ef al. (1986).

This process of forward propagation of signals and back propagation of errors is
repeated for training samples until the error is minimized or reaches the desired threshold.
In the present work we used MATLAB’s neural network toolbox for training artificial
neural networks for simulated as well as real datasets.
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3.2. Support Vector Machines

Support vector machines (SVMs) form a group of one of the most recent and theoreti-
cally robust machine learning algorithms (Vapnik & Vapnik (1998)). SVMs are aimed at
locating an optimal separating hyper-plane between the two data classes in the multidi-
mensional feature space using some optimization algorithms. Under supervised learning,
SVMs use training datasets to locate optimal boundaries or hyper-planes between classes
and the unseen test datasets are used to verify their generalizing ability of minimizing
the confusion between classes with these optimal boundaries (Mountrakis et al. (2011)).
SVMs which are binary classifiers can be applied to multiclass classsification problems
using one-against-one (Knerr et al. (1990)) and one-against-others (Vapnik & Vap-
nik (1998)) techniques. For a classification problem involving two p-dimensional data
classes, there may be p — 1 separating hyper-planes but SVMs aim at finding that sin-
gle optimal hyperplane which minimizes the structural risk by maximizing the distance
between the plane and the closest data instances lying on either side of the plane.
Depending upon the type of separability between the training data classes, SVM
algorithms can be divided in to two categories. The first one corresponds to the theoreti-
cally lesser complex form of SVM and is used when the training data classes are linearly
separable and the other one based on non-linear kernel functions comes in to the picture
when the data is found to be linearly inseparable. The simplest way of training an SVM
is by using linearly separating cases. If we assume p-dimensional linearly separable
training datasets represented as {x;, y;},i = 1,...,n,y; € {1, —1},x; € R?, where x;
represents the p-dimensional set of training vectors and y; represent the labels of the
corresponding classes which is coded as 41 for class 1 and —1 for class 2, then the
optimum separating hyperplane between the two classes in binary classification problem
is found in terms of two parallel separating hyperplanes, one for each class, defined as

wixi+b>+1, V y =+1 2
wixi +b<—1, Vy=-1 3)

Where, w is a vector perpendicular to the linear hyperplane and b is the bias representing
the offset of the discriminating hyper-plane from the origin. The training points which
lie on these two separating parallel hyper-planes are called support vectors (Mathur &
Foody (2008)) and have a key role in the establishment of the optimal hyper-plane as they
constrain the margin between the training data instances of a class and the separating
hyper-plane.

Mostly the real data encountered in various classification fields is much more com-
plex in nature and is usually found to be linearly inseparable. In such cases of linear
inseparability between the classes, a non-linear mapping function say @ is used to map
the original training data classes in to higher dimensional feature space where they can
be linearly separated. And linear optimal hyper-plane is then fitted between the classes in
the new higher dimensional transformed feature space. An appropriately chosen trans-
formed feature space of sufficient dimensionality is found to be capable of discriminating
between the data classes (Kotsiantis (2007)). The linear optimal hyper-plane in the trans-
formed space corresponds to the non-linear one in the original feature space. Vladimir
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& Vapnik (1995) proposes the computationally efficient kernel function approach to
map the input data in to the transformed feature space. A kernel function is denoted as
K (x, y) such that K(x, y) = ®(x) x ®(y) so that the classification decision function
for non-linear SVM is defined as

fo) =sign( ) aiyiK(x,x}) +b) )

Studies suggest that out of the three major types of kernel functions used for training
SVM classifiers, i.e. the polynomial kernel function, the radial basis function (rbf) and
the sigmoid kernel function, the sigmoid kernel usually does not perform ideally for
classification problems. Whereas the performance of polynomial kernels and the rbf
kernel is found to be comparable with gaussian rbf kernel usually being the preferable
choice (Tso & Mather (2009)). Hence, in the present study gaussian rbf has been used
for training the SVM classifier and its parameters are learned using the gradient search
method. The gaussian rbf kernel is defined as,

K(x;,x;) = exp(— | xi —x; |I* /207) (5)

where X;, X; are the feature vectors, o is the so called free parameter which along with
the error penalty parameter C need to be fixed by the user.

The major advantages of SVM classifiers over others is their ability to minimize the
misclassification rates for unseen samples, structural risk minimization (SRM) concept
based training which always finds a global minimum (Tso & Mather (2009)), higher
generalization capabilities as compared to ANNs and lesser efforts required for training
the model parameters (Joachims (1998)) and fair performance even with the scarcity of
training data. But the extent of success of SVMs in discriminating between the classes
depends largely upon how well they are trained in terms of the method used to generate
SVM model, choice of kernel parameters and the choice of parameters for the chosen
kernel as well (Huang et al. (2002)). Also SVM based classifiers are asupposed to be
sensitive to the outliers (Shao & S. (2012)).

3.3. Random Forests

In the recent years ensemble learning that generates many classifiers and aggregate their
results for making final decisions has gained a lot of research interest as they give better
classification accuracies theoretically as well as empirically than an individual classi-
fier. The ensemble of classifiers is generated using re-sampling techniques. Bagging
(Breiman (1996)) and boosting are the two well-known re-sampling techniques that are
often used to generate the ensembles. In boosting, successive trees give extra weights
to points incorrectly predicted by earlier predictors and in the end a weighted vote is
taken for prediction. Bagging is a re-sampling technique which works on the concept of
aggregated bootstrap samples. In bagging of decision trees, successive m independent
fully grown trees are generated using N bootstrap samples of the training dataset of size
say N, each of the m fully grown trees without pruning cast a vote in favour of one of
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the possible k classes and in the end a simple majority vote decides the final prediction
of the input feature vector.

Random forest (RF) classifiers originally developed by Breiman (Breiman (2001))
correspond to the relatively latest classification algorithms which attracted wide scale
interests of the researchers in a relatively smaller duration since their development.
Random forest algorithms belong to the class of ensemble learning algorithms which
have been shown to be effectively useful in although not numerous due to its most
recent discovery but still in a considerable number of significant researches. As its
name suggests, an RF classifier’s architecture is based on the concept of generating a
forest or an ensemble of a large number of bagged classification trees which are grown
on random subset of input vectors and splitting nodes on a random subset of features
(Prinzie & den Poel (2008)). The main difference between the construction of trees in
RFs and in bagging of trees is that in bagging each node is split using the best split
among all variables, while in a random forest, each node is split using the best variable
among a subset of predictors randomly chosen at that node. This strategy increases the
randomness in bagging the trees and hence turns out to perform pretty well as compared
to other advanced machine learning algorithms like ANNs and SVMs (Breiman (2001)).

The RF classifiers possess various attractive advantages over other classifiers. They
do not need extensive parameter training like SVM and ANN and are required to be
provided with only two parameter values i.e. the number of trees to be grown and
the number of predictors to be considered for best split at each node. Moreover, the
parameters do not need much fine-tuning and often the default parameter values give
desirable results. Out-of-bag samples at each boostrapping step can be used to calculate
an unbiased error rate and variable importance which eliminates the need for a separate
test set for cross validation (Breiman (2001)). It performs embedded feature selection
and is found to be relatively insensitive to large number of irrelevant features, and hence
spares the user of some pre-processing load of feature selection. Classification by random
forest tehniques results in very limited generalization error due to the construction of a
large number of trees and hence leaves no or very little scope for overfitting. In contrast
to all these appealing advantages, RFs do not have many disadvantages except that it
unables the examination of individual trees separately and are relatively slow as compared
to SVMs due to the construction of a large number of trees. Apart from all the above
discussed advantages, RFs are found to be relatively more robust to outliers and noise
and this characteristic of RF classifiers might prove to be beneficial for the classification
of highly skewed datasets.

4. Numerical Experiments and Results

4.1. Simulation and data generation

With a purpose to zero in the optimal non-parametric machine learning algorithm in terms
of the lesser misclassification error rates for classification of skewed data, an extensive
simulation study has been carried out in this section with a variety of simulation settings
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generating highly skewed datasets. The study in the present manuscript has been limited
to the study of bi-variate two-group classification problem. Training as well as the
test datasets are generated for diverse combinations of various data characteristics such
as variability, training data size, separability between the groups, feature set size etc.,
which can affect a classifier’s performance apart from the skewness of the data. The
first population was simulated from standard bivariate normal distribution and was kept
fixed over all replications while several configurations of the population parameters
were considered for simulating the other bivaraite normal population. An account of
the configurations of factors which were considered for simulations is given in Table 1.
After simulating the normal populations using the parameter values given in Table 1,
the transformations in equation (6) were used to generate higly skewed data from the
simulated bivariate normal data. Each of the three classification algorithms namely ANN,
SVM and RF was trained using the simulated training datasets. A separately generated
skewed index sample of size 1000 was classified by the trained classifier and the resulting
misclassification error rates were calculated. This process of training and validating a
classifier was repeated over 30 replications for training and index datasets simulated for
each of the factor combinations given in Table 1 and the observed misclassification error
rates were averaged over all the replications to get an unbiased estimate of the the actual
error (AE) rates and the apparent error (APE) rates (Clarke et al. (1979)). Averaged
kappa measures for each of the index sample were also calculated and compared. This
computation was repeated for each of the 3 classifiers under investigation in this study
and the results are summarized in Table 3. If X ~ N (u, X) then transformations for
generating multivariate skewed data Yj are given as

Yi = exp (X/4) (6)

where § i1s used to generate high levels of skewness. The classification process was
carried out in MATLAB. The ANN classifier was trained with back propagated multilayer
perceptron algorithm for different settings of the hidden layer sizes and was found to
be performing the best for a value of 15. The non-linear SVM classifier was trained
with gaussian rbf kernel and the values of the parameters were fixed using grid search
method. The number of optimal trees for RF was determined hueristically and it was fixed
at 500 over all the simulations. The skewness of the second population was measured
by Mardia’s multivariate coefficient (S;) (Mardia (1970)) of skewness and is reported in
table 3.

4.2. Real datasets used for comparison

We also evaluated and compared the performance of ANN, SVM and RF classifiers for
classifying positively skewed data on some benchmark real life datasets. An account of
them is given below.

Dataset 1 is the Landsat database (Bache & Lichman (2013)) which consists of 6435
instances on 6 landuse classes namely the red soil, cotton crop, grey soil, damp grey soil
with vegetation stubble and very damp grey soil which are present in a (tiny) sub-area
of a scene captured by Landsat satellite. Each of the 6435 rows of the data corresponds
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Table 1: Factor combinations for simulation from second population.

Mean Vector of second population p2 = (a', 0)
a=1(0,2,4)
Covariance Matrix of second population | £, = o%1
o2 =(1.5,3,8)
Skewness Parameter 8=.5
Size of Training sample from each class | n = (25, 50, 100, 400, 600, 1000)

to a (3 x 3) square neighbourhood of pixels completely contained within the (82 x 100)
sub-area and a number indicating the classification label of the central pixel. Hence,
we have used only the central pixels of each of the (3 x 3) neighbourhood of pixels
ignoring the other pixels. It implies that each row contains the pixel values in the four
spectral bands on 9 pixels. After considering only the central pixels for classification the
sizes of the training and the test datasets reduce to 4435 x 4 and (2000 x 4) respectively
where rows correspond to each of the 6435 pixels and columns correspond to their
spectral values in the four spectral bands. All the 6 classes in this dataset were found to
be significantly skewed with values of Mardia’s multivariate coefficient of skewness at
2.52,6.12,2.12, 1.414, 4 and 2.046 respectively.

Dataset 2 is the New Thyroid Dataset (Bache & Lichman (2013)) whichisa (215 x 5)
data array containing the measurements of 5 attributes ( which are 5 Lab tests) on each
of the 215 patients in order to predict a patient’s thyroid state as normal, hypothyroidism
or hyperthyroidism. On the basis of the lab tests, out of 215 instances in the dataset
150 of them were found to be in the normal thyroid range, 35 in the hypothyroid and
30 in the range of hyperthyroidism. All 3 of the classes in the dataset tested positive for
significant multivariate skewness with the coefficient of multivariate skewness values
5.14, 6.69 and 11.753 respectively.

Dataset 3 is the Indian Liver Patient Database (ILPD) (Bache & Lichman (2013))
which is a (583 x 10) array containing a total of 583 patient records on 10 attributes.
Out of 583 cases, 416 are attributed to the liver patient category and the remaining 167 to
normal liver functioning patients category. For this dataset too the multivariate skewness
coefficient for the two classes were found to be significant at values 543.38 and 97.96
respectively.

Dataset 1 has already been given with separate training and test dataset at Bache &
Lichman (2013). Hence the actual error rates (AER) for this dataset was evaluated by
training the classifier using the training dataset and validating it with the separate test
dataset. While the actual misclassification error rates for datasets 3 and 4 were obtained
using Lachenbruch’s leave one out method (Lachenbruch (1975)) of cross-validation.
ANN, SVM and RF classifiers were used to classify each of the three real datasets
independently and the APER, AER and learning times of each of the three classifiers
were calculated and are reported in Table 3.
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4.3. Results

4.3.1 Results on simulated data

An extensive simulation study was performed in this chapter with an objective to com-
pare the classification performance in terms of misclassification error rates of the non
parametric classifiers based on ANN, SVM and Random forest techniques while han-
dling positively skewed datasets. The Actual error rates (AERs) of the simulated index
samples and the Apparent error rates (APERs) over the 30 replications of the simulated
training datasets for the three classifiers ANN, SVM and RF are tabulated in Table 3.
And the plots of the AER against the training sample size and the variability in data are
shown in figures 2 and 3. Also the following findings were observed for various levels
of the data characteristics.

* Among the three classifiers the RF classifier was found to be the best performer
for all the simulated datasets which vary over a number of data characteristics
except for the data simulated with (¢ = 0, 0 = 1.5) i.e. when the means of the
two populations were same and the variability of the second population (which
affects the skewness of the data) was less where SVM outperformed RF by a small
margin. While the ANN classifier’s performance was found to be worst in terms
of the misclassification error rates produced by the three classifiers.

* Effect of training sample size: It is evident from Table 3 that the misclassification
error rates decreased with an increase in the training sample size for all the three
classifiers under study in general. It can be observed from the plots in figure 2
that for RF classifiers the error rates continuously decrease as the training sample
sizes are increased from 25 to 50. SVMs depict same trends for moderately
skewed datsets i.e. for (o = 1.5) but rather showcased the tendency of producing
larger error rates for larger sample sizes as the variability of the datasets increase
with o. It can be observed from these plots that for all the three classifiers the
most considerable decrease in the error rates was observed as the sample sizes are
increased from 25 to 50 and a very small improvement afterwards. Hence, we
have plotted the error rates against variability only for (n = 25) and (n = 100).

» Effect of variability: As the variability of the second population was increased by
increasing values of o, the within class skewness increased and the performance
of ANN and SVM was found to be deteriorating while that of RF was found to
be improving as shown in Figure 3. This implies that RF classifiers are highly
resistant to the variability or the hetrogeneity of the classes.

* Kappa measures: The values of average kappa coefficients for SVM were observed
to be lying in the range (0.5, 0.7) implying fair to moderate levels of agreement with
kappa measure improving over the separabiltiy between the two classes. For RF
classifiers the average values of the kappa measure lied in the range (.5, .8) which
reports a fair to good level of agreement. The kappa measure for RF classifiers
improved with the increasing separability between the two classes as well as with
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Figure 2: Plots of expected actual error rates of SVM, RF and ANN over simulated index
sample for § = .5 depicting the effect of training sample size on error rates.

the increased skewness of the datasets. The level of agreement for ANN classifiers
was not found to be improving at all with a constant value of average kappa measure
at .5.

It was observed from the results of the simulation study that the RF classifier per-
formed fairly better than the classifiers based on SVM and ANN for heavily skewed
simulated data over all the data characteristics that were considered in this study. Al-
though RF classifier performed comparably well for the skewed datasets for all the
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Figure 2: Continued.

combinations of the different levels of various data characteristics but its tendency of
overfitting the training data and the very large amount of computational time it takes as
compared to SVM makes it a not so attractive and feasible option for classification of
very large datasets.

4.3.2 Results on real datasets

Athough the real datasets considered in the present study were found significantly skewed
by Mardia’s test for some of the classes but none of the classes in any of the dataset was
found to be highly skewed which is the main assumption of the study carried out in this
study. Misclassification errors of ANN (MLP-BP), SVM (with gaussian rbf kernel) and
RF classification algorithm for the three datasets are reported in Table 2. The values
reported in bracket with the AER denote the optimal parameter values which were used
for training each of the three classifiers. For ANN the parameter is the size of the hidden
layer, for SVM its the kernel parameter and for RF it is the number of trees used for
generating the forest. While ANN and RF were found to be performing quite fairly for
all the datasets SVM reported maximum classification errors among the three classifier
for all the datasets.

5. Conclusion

This work acknowledged the lack of a comprehensive comparative study between the
three most widely used machine learning algorithms in the literature of classification
algorithms specifically for classifying highly skwed data. Hence, in the present article
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Figure 3: Plots of expected actual error rates of SVM, RF and ANN over simulated index
sample for n = (25, 100) and § = .5 depicting the effect of variability on error rates.

an attempt was made using the simulated datasets to select the most robust non-parametric
alternative to the maximum likelihood classifier from a group of three most advanced non-
parametric classification algorithms which are support vector machines, artificial neural
networks and the random forest for classifying highly skewed datasets. Results of the
investigations carried out on simulated data provide empirical evidences that the random
forest algorithm is highly robust even to the very large levels of positive skewness in the
datasets. In the light of other advantages discussed in this article such as lesser learning
effort, that random forest classifiers enjoy over its counterparts support vector machines
and artificial neural network classifiers, we conclude that random forest classifiers should
be preferred over the SVM and ANN while dealing with severely positively skewed data.
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Figure 3: Continued.

Table 2: Apparent error rate (APER) and Actual error rate (AER) of ANN, SVM and RF
with their respective training parameter values for the real datasets.

ANN SVM RF
APE AE APE AER | APE AE
Dataset 1 | 12.41 | 13.81 (15) | 6.95 | 16.40 (1) | 4.13 | 16.35 (100)
Dataset 2 | .10 A7(@15) | 323 | 977 (2) 0 4.65 (50)
Dataset 3 | 25.77 | 2991 (15) | 29.71 | 37.82(1) | 0O | 29.02 (100)

However, for moderate levels of skewness one can also choose computationally much
faster SVM classifier as it was found to be performing comparably well. Moreover, on
the basis of the empirical results obtained in this study we keep ANN classifiers at bottom
in the list of feasible non-parametric options for classifying highly skewed datasets on
account of their poor performance.
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Table 3: Misclassification error rates (in %) of SVM, RF and ANN for simulated skewed data

p=2 §=.5
Sample Size
o? Sk D.F. 25 50 100 400 600 1000
APE AE | APE | AE APE | AE | APE AE | APE | AE | APE AE
SVM 40.80 | 47.24 | 42.50 | 47.62 | 45.53 | 47.52 | 45.15 | 45.95 | 46.20 | 45.62 | 46.07 | 45.63
477.43 RF 0 49.20 0 51.22 0 47.51 0 47.73 0 47.37 0 47.15
ANN 4475 | 49.16 | 4575 | 48.13 | 47.54 | 48.50 | 47.71 | 47.60 | 47.45 | 47.32 | 48.05 | 47.61
SVM 33.73 | 38.34 | 36.50 | 38.17 | 36.76 | 39.32 | 38.20 38 37.84 | 37.60 | 37.97 | 37.65
1.5 478.92 RF 0 37.25 0 37.62 0 37.52 0 36.72 0 35.72 0 35.79
ANN 46.08 | 44.85 | 42.42 | 42.65 | 40.73 | 41.45 | 41.44 | 41.49 | 41.85 | 41.22 | 42.55 | 42.16
SVM 33.06 | 37.05 | 34.60 | 36.92 | 35.25 | 37.23 | 35.00 | 35.96 | 34.10 | 34.86 | 33.63 | 34.19
288.42 RF 0 22.65 0 21.63 0 22.58 0 21.11 0 21.11 0 21
ANN 39.17 | 39.57 | 40.08 | 40.84 | 39.90 | 40.63 | 36.89 | 37.21 | 39.56 | 39.78 | 38.55 | 38.77
SVM 26.53 | 42.23 | 33.53 | 42.04 | 37.33 | 41.07 | 39.75 | 41.82 | 40.40 | 41.85 | 40.52 | 42.21
458.24 RF 0 38.21 0 38.05 0 36.60 0 35.70 0 35.35 0 36.08
ANN 44.83 | 48.34 | 45.58 | 47.37 | 4533 | 45.58 | 45.41 | 45.79 | 46.24 | 46.55 | 47.27 | 47.54
SVM 27.26 | 34.32 | 30.46 | 33.97 | 25.31 | 32.62 | 30.23 | 31.63 | 30.93 | 31.42 | 31.92 | 31.87
3 607.63 RF 0 34.66 0 33.25 0 32.97 0 32.40 0 32.20 0 32.20
ANN 4294 | 44.44 | 42.29 | 42.68 | 44.75 | 45.27 | 44.40 | 44.30 | 44.84 | 44.77 | 43.13 | 43.14
SVM 13.33 | 28.23 | 18.20 | 26.57 | 21.50 | 24.84 | 25.50 | 26.30 | 24.53 | 24.76 | 25.92 | 26.13
453.63 RF 0 23.80 0 23.29 0 22.03 0 21.07 0 20.94 0 20.20
ANN 40.75 | 42.79 | 40.42 | 41.55 | 42.77 | 42.38 | 43.56 | 43.67 | 41.85 | 41.56 | 43.20 | 43.16
SVM 19.73 | 33.86 | 26.70 | 32.13 | 30.70 | 32.66 | 36.60 | 36.60 | 35.48 | 35.14 | 39.54 | 39.47
713.55 RF 0 24.07 0 21.86 0 21.17 0 20.63 0 20.39 0 20.01
ANN 47.50 | 47.13 | 4558 | 46 | 47.75 | 47.66 | 48.73 | 48.65 | 48.30 | 48.64 | 48.93 | 49.29
SVM 18.20 | 31.01 | 24.03 | 28.74 | 28.45 | 30.75 | 34.69 | 34.69 | 37.25 | 36.86 | 38.35 | 38.21
8 516.40 RF 0 23.72 0 20.94 0 20.44 0 19.31 0 18.93 0 19.09
ANN 43.50 | 43.54 | 44.92 | 45.83 | 46.67 | 46.83 | 48.39 | 48.51 | 47.71 | 47.99 | 48.97 | 49.20
SVM 18.46 | 28.17 | 25.33 | 28.45 | 28.41 | 29.85 | 32.39 | 32.70 | 37.12 | 37.37 | 41.47 | 41.23
666.76 RF 0 21.15 0 19 0 19.12 0 17.68 0 17.88 0 17.56
ANN 18.46 | 28.17 | 25.33 | 28.45 | 28.41 | 29.85 | 32.39 | 32.70 | 37.12 | 37.37 | 41.47 | 41.23
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