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Abstract

Block methods as an approach for solving higher order ordinary differential
equations (ODEs) have been seen to be very useful in recent literature.
However, the development of the block methods for higher order, such as
fourth order ODEs is seen to include a lot of steps and transformations. This
is irrespective of the approach adopted; be it interpolation, numerical
integration or Taylor series. Hence, this study investigates into producing an
algorithm that can produce the desired block method directly for any value of
the stepnumber k, whose computational complexity is also shown.
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Introduction
The numerical solutions of fourth order ordinary differential equations have been
vastly explored in literature. Numerous approaches have been adopted such as
numerical integration (Waeleh et al, 2011; Yap & Ismail, 2015) and interpolation
approaches (Mohammed, 2010; Olabode & Alabi, 2013). Likewise, Li (2008) spoke
of splines being considered to construct finite difference schemes for solving higher
order boundary value problems of ordinary differential equations and this area has
been researched well into over time (Ramadan, Lashien & Zahra, 2009; Akram, &
Amin, 2012; Pervaiz & Ahmad, 2015).
However, one challenge faced when developing block methods of the form
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for solving fourth order ordinary differential equations is the computational burden
associated with the step by step process of developing the schemes and corresponding
derivatives of the desired k-step block method as seen in the work of authors such as
Adesanya et al (2012) and Omar and Kuboye (2015) who have adopted block
methods of this form to solve fourth order ordinary differential equations. Hence, the
introduction of an algorithm that will directly produce the required coefficients of any
k-step block method under consideration for solving

v = flruy. vy
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is very expedient and timely.
Hence, this article as described in the sections following will state the generalized
algorithm for developing block methods of the form (1) above and this algorithm will
be verified by recovering one of such block methods previously existing in literature.

Generalized Algorithm for k-step Block Methods for y" = /' (x,y,»»" »")

In a bid to develop block methods of the form (1) above where
Yo :(yn+l’yn+2"”’yn+k) and Yn(-:—)k :(yi(l?l’yi(l?z’.“’yr(z?k)’ the following generalized
algorithm is given
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Note the following proposition

Proposition 2.1:

There exists only one block form for every k-step block method.
This proposition is seen evident in the next section as the generalized algorithm will
be adopted to develop a sample 5-step block method for solving fourth order ordinary
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differential equations and the coefficients obtained correspond with the coefficients of
the block method in the similar 5-step block method of Adesanya et al (2012).

5-Step Block Method Derived From the Generalized Algorithm
To verify this algorithm, we develop the 5-step block method using the generalized
algorithm and then compare the output to the k = 5 block method derived in literature.

A, = A, + BY! , + D'YY 4 BV, 4 B (COY®, + CY™,), k=5,

First, the generalized algorithm (3) is expanded together with the expression for the
derivatives (4)
Unt1 = Un + Byl + Bl + By 4 (dufa + Sifart + Gafasa + @sfars + Gafarat fafass),
Ynt2 = tn + 20y, + CoEyr o+ CEE (G0 fo b 1 fais + dafarz + Bofars + Bufara + Bofais),
Ynta = Yn + byl 4 'm;'!:'!yﬁ LS—;'.ES'I'; Fldofa+ d1farn + dafriz + dafnra + dafara + d5fnss)

{4h)? (4R)® ¢ ) ,
Unta = Yn + 4Ry, 4 12! o “3,] Yo + (Gofa+ 1 forr + d2fass + @3 fnis + Qafatra + D5 fass)

Unis = Un + SRy, 4 -rsg!:-’yr; } %ﬁyﬂ’ Fldofa+ @1 fars + dofnsz + dsfars + Gafaia + Dsfnis). (5)
with derivatives
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Yni1 = Yn + hyp + (wofa +wiafar +wafrss + wazfrss + wiz fasa + wsa fris) |
Yniz = ¥n + 2Ry + (woefn +wizfasr + waafare + winfors + wazfura + wazfars) s
Ynes = ¥n + 3Ry + (woefr +wizfasr + waafare + winfors + wazfara + wazfars) s
Yha =i+ Ayl 4 (woefn Fwiafon Y wefors +wssfais + ez fare +wsafais),
ynis = uh + 5kl + (wWoefn + wizfasr + wee fare + winfors + Wz fora + Wz fars)
Ynr = Yn + (Woafa + s faa + waafare + waafaias + wWas frsa + wssfres)

Yy o = v + (wosfn + wiafar + wafore + wasfats + wasfasa + wasfass)

yns = yn + (wosfa + wisfarn +wosfaps +wss fars + wasfres +wssfass)
Y = 4 (woafa +wiafarr +wasfaie +waafars +wasfase + wssfass),
Ynis = Yn + (woafn + wisforr + wesfare +wasfars + was frasa + wsafnes) (6)

For y,..
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On substituting these coefficients back in (5) and (6) above gives the same block
method derived by Adesanya et al (2012). Hence, the validity of the algorithm is

verified.

Computational Complexity of Generalized Algorithm for Developing 5-Step

Block Method

The development of the 5-step block method using the new generalized algorithm
involved obtaining the coefficients for the block corrector schemes and its

corresponding derivatives at grid points x,,,,x,.,,X,.5,X,,, and x,,
Algorithm
Step 1: Evaluate
Ly h k
Unie = 3y + Y difars, E=1,2,..k
=i '?- =0
with derivatives
A—(a+1)
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¢.=A"B and w, = A"D, where
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Step 2: STOP

The computational complexity of taking the inverse of an nxn matrix is O(n3),

while the computational complexity of the matrix multiplication of one nxs matrix
with one nx p matrix is O(nsp). Hence, the computational complexity of developing
the 5-step block method using the generalized algorithm is obtained from,

ke { [0 ((k+1)*) + O ((k+ 1)%)]}

as O((k+1)3).

Conclusion

A new generalized algorithm for developing any k-step block method for solving
fourth order ordinary differential equations is presented in this paper. The algorithm
has been validated by verifying the resulting coefficients with previously developed
block methods (k = 5) in literature. Hence, the suitability of this algorithm when
developing block methods of this kind is grounded. New improvements on the work
can be compared to this present algorithm in terms of its computational complexity. A
major advantage of this new algorithm is that it bypasses the rigour attached to the
step by step approach used by previous studies. Hence, future research will look into
developing an algorithm that will be suitable for developing block methods of any
order and any steplength.
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