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Abstract

In this paper, we prove sharp L? estimates of Marcinkiewicz integral operators
with rough kernels on product spaces. These estimates are used in an extrapolation
arguments to obtain some new improved and extended results in Marcinkiewicz
integrals.
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1. Introduction

Throughout this article, let n, m > 2, and let sh-1 (N = n or m) be the unit sphere
in R" equipped with the normalized Lebesgue surface measure do = do (-). Also, let
x' = x/|x| forx € R"\ {0}, y) = y/|y| for y € R™ \ {0}. Let p’ be denoted to the
exponent conjugate to p.

Forp = aj+iby,t = ar+ib> (a1, by, az, bh € Rwithay, ay > 0), let Kao.n(x, y) =
Q' y)x)P"y|*™h(|x|, | y|), where & is a measurable function on R* x R" and
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is a function on 8"~! x §"7! with @ e L1(S"~! x §"!) satisfying the cancellation
conditions:

/;,H Q' )do(x') = /;m_l Q(,y)do(y) =0. (1.1)

For suitable mappings ¢, ¥ : R" — R, a measurable function # on Rt x R™ and
an Q on 8"~ ! x §"~! satisfying (1.1), we define the Marcinkiewicz integral operator
Mth)wforfeS(R” x R™) by

MG ouf ¥ = (/ f ye:

FOY fx,y) = f Fx = dudie's y — (o) Kan(, vydudv.  (1.3)

lul<t J|v|<s

2 dtd 1/2
Yoy S) a2

where

Ifp(t) =1, ¥(s) = s, we denote J\/lgth 0 by /\/l 4+ Also, when p = 7 =1 and

the function & = 1, the operator M h is the classical Marc1nklew1cz integral operator
on product domains which we shall denote by Mgq .

The theory of Marcinkiewicz integral is an important part of analysis due to its
powerful role in dealing with many significant problems arising in such parts of analysis
as Poisson integrals, singular integrals and singular Radon transforms analysis. The
study of Marcinkiewicz integral operators has attracted the attention of many authors for
along time. For example, the author of [19] established the L? boundedness of Ma.c
if @ € LlogL)*>(S"' x §"~1). Subsequently, it was verified in [16] that Mgq.c is
bounded for all 1 < p < oo provided that 2 € L(log L)>(S" ! x §" 1. For more
information about the importance and the recent advances on the study of such operators,
the readers are refereed (for instance to [2], [4], [15], [17], [18], [29], [30], as well as
[31], and the references therein).

We point out, in the one parameter case, the study of parametric Marcinkiewicz
integral operator was initiated by Hormander in [23] in which he showed that M?Z,l is

bounded on LP(R") for 1 < p < cowhen p > 0and Q € Lipy(S"™") witha > 0, and
subsequently by Sakamoto and Yabuta in [24] (for the corresponding results in the one
parameter cases, see for instance [3], [6], [8], [9], [12], [13], [14], [20], [21], [26], and
[28]).

The main concern in this work is to establish L? estimates of M~ h for various
functions ¢, ¥ and h; satisfying conditions similar to that found in [5] ‘and then use
these estimates in the extrapolation argument used in [7] to obtain new improved results.
The main result of this paper is described in the following theorem.

Theorem 1.1. LetQ € LY (S”_1 X Sm_l) forsomel <q <2,h € A, (R+ X R+) for

some ¥ > 1. Suppose that ¢, 1 are CZ([O, 00)), convex and increasing functions with
¢(0) = ¥(0) = 0. Then for any f € LP(R" x R™) with p satisfying [1/p — 1/2]| <
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min{1/2, 1/y'}, there exists a constant C, (independent of €2, %, y, and ¢) such that

Ay)
MG 50 | gy = o7 Wil ek 120 1 e e
where
% ify > 2,
A(V)‘{ y-DT ifl<y <2

and A, (RJr X R+) (for y > 1) denotes the collection of all measurable functions
h:RT x RY — C satisfying

V4%

1 Ry Ry
sup < / / |h(z, s)l”dtds) < 00.
Ri.R>0 \R1, R2 Jo Jo

The power of our theorem lies in using its conclusion and the extrapolation arguments
found in [7] to obtain improved results. In particular, Theorem 1.1 and extrapolation
lead to the following theorem.

Theorem 1.2. Suppose that h € A, (RT x R™) for some y > 1, and 2 satisfies (1.1).

Let ¢, ¢ be Cz([O, 00)), convex and increasing functions with ¢ (0) = ¢ (0) = 0. (i) If
Qe BL(IO’O)(S”_1 x §"~1) for some ¢ > 1, then

ME ‘ < CoA() |Ih -
H Q ¢> whf LP(R”XR’") (y) ” ”A (R+><R+) ”f”LP(R xR )

x (14 1201 500 o1 g

for |1/p —1/2| <min{1/2,1/y'};
(i) IfQ e Llog L)(S"! x §"~1), then

[ 5% v
X (14 120 Logr)sm-1 xs1-1))
for |1/p — 1/2| < min{1/2,1/y'}.

< CpAW) 11l A, R+ xrH) 1f |l Lp R xR

LP(R"xR™)

Remarks 1.3.

(1) If © belongs to the block space B;O’O) (S" !'xS" Yandh e A, (RT x RT) for
someq, y > 1,thenthe L” boundedness of Mg’fd)ﬂ/a , Was obtained in [10] for any
p satisfying |1/p — 1/2| < min{1/2, 1/y’} provided that ¢, ¥ are C?([0, 00)),
convex and increasing functions with ¢ (0) = ¢ (0) = 0.

(2) The authors of [4] established the L” (1 < p < o0) boundedness of M}zlc under

the condition € L(log L)(S"~' x $”~1). Furthermore, they proved that the
exponent 1 is the best possible.
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(3) Inthe one parameter case, it was proved in [1] thatif Q2 € B éo’_l/ 2 (S"~ 1) for some

g > landh € A, (R") forsome 1 < y <2, then Mlgz,(p’h is bounded on L? (R")

for any p satisfying |1/p—1/2| < min{1/2, 1/y'}, where ¢ is C*([0, c0)), convex
and increasing function with ¢ (0) = 0. However, Ali in [9] used the extrapolation
arguments to improve the results of [1]. In fact, he showed that if €2 belongs to the
class Q € L(log L)2(S"1) or to the class Béo’_l/z)(S”_l) for some g > 1, then
Mg,¢,h is bounded on L? (R") for any p satisfying |[1/p—1/2| < min{1/2, 1/y'}.

Here and henceforth, the letter C denotes a bounded positive constant that may vary
at each occurrence but independent of the essential variables.

2. Main Lemmas

In this section, we present and establish some lemmas used in the sequel. The first lemma
of this section can be found in [9], which has its roots in [25].

Lemma 2.1. Suppose that ¢ is Cz([O, 00)), convex and increasing function with ¢ (0) =
0. Let My ,, f be the maximal function of f in the direction u defined by

1 t
Meguf(x) = sup — /f(x —¢(Nuydr|.
/2

teR+ I

Then, there exists a constant C), such that
HM‘bs“(f)”LP(RN) = Cp “f”LP(RN)
forany f € LP(RY) with | < p < oo.

Lemma 2.2. Suppose that ¢, 1 are Cz([O, o0)), convex and increasing functions with
$(0) =¥ (0) = 0. Let My y 4,0 f be the maximal function of f defined by

t

1 N
Mg yupf(x,y) = sup — //f(x—fb(r)u,y—w(k)v)drdk -

1/25/)2
Then, there exists a constant C), such that
”M¢,¢,u,u(f)”Lp(Ranm) < Cp I flLr®r xrm)
forany f € LP(R" x R™) with 1 < p < oc.

The proof of Lemma 2.2 follows immediately by using Lemma 2.1 and the inequality
Mo yuvf(x,y) < My yoMygy , f(x,y), where o denotes the composition of operators
and Mg o f(x, y) = Mg u f (-, y)(x), My o f(x, y) = My o f(x, ) ().
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For suitable functions ¢, ¥ on R*, 6 > 2, ameasurable functions : RT xRt — C,
and Q : $"7! x §"7! — R, we define the family of measures {og 4 y.4,s : f,5 € RT}
and the corresponding maximal operators oy o Ad Mg gy p o ON R" x R" by

/ fdoggynes = t_ps_t/ /
R xR™ 1/2t<|u|<t J1/2s<|v|<s

 f(p(lul)u', ¥ ()Y Ko (u, v)dudv,
oGyt (X Y) = SUp 1109.9.y.1151 % £ .Yl
t,s€

91+1

dtds

gJi+1
Mg g ynof(x,y) = sup / / loQ.¢,v.hesl* | f(x, y)l
0i

i,jez

where |0q ¢ 1| 1s defined in the same way as oq ¢,5,;, but with replacing €2, i by [€2],
|h|, respectively. [

Our method in proving Theorem 1.1 relies heavily on certain maximal functions and
certain Fourier transform estimates. So, in order to establish our results, we need to
prove the following lemmas.

Lemma 2.3. Let Q € LY (S”_1 X Sm_l) forsome1 <g <2andh € A, (RT x RY)
for some y > 1. Assume that and ¢, y are given as in Theorem 1.1. Then for any
f e LP(R" x R™) with ¥’ < p < o0, there exists a constant C, such that

1066y n (D llLr@ixrmy < Cp IRl a, @+ xr+) 1820 Lan-1xsm=1y 1 f | Lr @7 Rm).
Proof. It is clear that, by using Holder’s inequality, we get

1
lloQ,,ynl % f(x, )| = Clhlla,®+xR*) ”Q”L/l)ES}qflxsmfl)

ts// [ 1o

L £ gn— IXSm 1

X

/

1)y

X

1f(x—d(ru,y — xp(k)v)v’do(u)da(v)drdk)

By using Minkowski’s inequality for integrals, we have

1
1689 f Ir@icrmy < Cllalla, @k 120 g1 ooy

/ €2 (u, v)|

Sn—lxsm—l

X

/!

< (Mg (1117) Do o) do @do @)
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Hence, we finish the proof of lemma 2.3 by using the las inequality and Lemma 2.2. B

Lemma2d4. Letd >2,Q e LY (S" ! x Sm_l)forsomeq > landh € A, (R x RT)
for some y > 1. Suppose that ¢, ¥ are given as in Lemma 2.2. Then there are constants

C and o with 0 < ¢ < — such that
2q’

loq.gwnes| = Clhlla, ®+xr+) 12l Lg@n-15sm-1y:  (2.1)
9i+19}+1
zdtds 2 2 5
| [ lessnestn] < CIO) I3 e rry 19001 n )
LY

(¢(91—1>|5|) (o' 1)|n|) zE
o] werhe)t (W(G’“)Inl)"‘”za; 2.2)
(¢(ef'+1>|5|)w (we’ Yinl) 7
(G qw(we’“nm)w

hold for all i, j € Z, where @ = max{2, y’}. The constant C is independent of i, j, &,
n,q,and 6.

Proof. Since LY (8"~ ' x §™7") € L*(S"~! x §"7!) for ¢ > 2, it is enough to prove
this lemma for 1 < g < 2. By using the definition of 0 ¢,y 5.s,s, it 18 trivial to establish
the inequality (2.1). By a simple change of variables and Holder’s inequality, we get
that

11
SappnisEn| = C / f | (tr, ks)] f e PN ERY sy}
1/21/2 g1 5 gm—1
drdk
X Q(x,y)do (x)do (y)|
11 17y’
y drdk
< Cllhlla,® xr) |Grsr O — :
1/21/2
where
Gis(r k) = f e HPNTERVEN QG (x, y) do (x) do ().
Sn—lXSm—l
When y € (2, 00), then by using Holder’s inequality, we reach
L 1/2
2drdk

6.6 vnisE M| < IA1lA, R+ xR+) // |Gy 5(r, k)|
172172
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and when y € (1, 2], we conclude

606y 1.sE )|

{1 1y’
< 1Al @ vy 1205 g g, f / (Gr ([ d:zk
1/21/2
Thus, in either case we deduce that
60,6 v.h1,5E. 1]
1/max {2,y'}

1 1
2,9} -2) /v 2 drdk
< Il s, e xrey 1N 5 ) / f |Grstr ] —

1/21/2

(w=2)/y’

= C ||h||Ay(R+XR+) “Q“Ll(Sn—lXSm—l)

1/w

| [| [ verweenausiaewdow]daon|
Smfl Snflxsnfl
1
where @ = max{2,y’} and J(&,x,u) = /e_i‘p(tr)é'(x_”)i—r. Write J (&, x,u) =

1/2
1

/ Yt’(r)a;—r, where
1/2
-
Y, (r) = /e—"¢<’2>5'(x—">dz, 1)2<z<r<l.
1/2
By the assumptions on ¢ and the mean value theorem we have that

(12) _ $t/2)
z r

di (p(t2)) =td'(tz) > for1/2<z<r<1.
Z

Hence, by Van der Corput’s lemma we get |Y;(r)| < r |¢(t/2)§|_] ‘S’ c(x = u)|_1, and
then by integration by parts, we conclude

I x,w)] < Clgp/el ™ & @ —w)| ™"

Combine the last estimate with the trivial estimate |J (&, x, y)| < C, and choose 0 <
2aq’ < 1, we get

[T, x, DI < Clp/DEI & - (x = |7,
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which leads to

A == -2)/y'
696,005 E M| < CleE/DEIT [R5, @ xry 120 G o,

1/q'®
2 _ ’
X Q1 et e f 6" (@ — )| do()do(y)
Sn—lxsn—l
By the assumption of ¢, and since the last integral is finite, we reach
gi+l gi+l
N 2 dtds 2 j—1 _,720‘
60.0..h.1.5E. 1) = Cln*(9) |&(p@®7~1))| 7 (2.3)
oi 9
X “h” (R+XR+) ”Q“Lq(sn 1y S§m— 1)
Similarly, we derive
9i+1 0]+l
7 dtds . =2
f f 162.6,y.1.5 )| < Cl*@) [n(w© )| 2.4)
o 0J
x |IAll [[o] P
Ay(R+><R+) Lq(S" 1><S’" 1)

The other estimates in (2.2) can be reached by using the cancelation property of €2.
By a change of variable, we have that

1 1
6Q.p.phrsE M| < / //|e—i¢m>s-x

Sn—1x8§m—11/21/2

drdk
— 182G, Iaer, ks)l—

do (x)do (y)

A

drdk
1ET11€21| L1 (gn-1 x5m-1) |h(tr, ks)||@(tr)] v
7 2
) 1 .. ) )
Since y > 1, 3 <r < 1 and ¢ (¢) is increasing, we achieve that
160.6.umesE M| = CIQ Lo xsn-1) 1Al A, R+ xR+) Ep©71h],

which when combined with the trivial estimate |&Q7¢,¢-, nis(&, n)| < C, we derive

9i+l gJ/+1
> dtds .
/ / 1652.6ps 62 )] < ClO) s ©7 2.5)
gt 9J
X “h” (R+XR+) ||Q||Lq(sn 1y Sm— 1)
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In the same manner, we obtain that

9i+1 9j+1
5 > drds In(8) |n(y (0+1))[75 2.6
[60.6.p.h0sEm|” — CIn*(@) [n(¥(0'") (2.6)
oi 9
x|l 19202 4 gt gty -
Ay (RTxRY) L4 (81 x8§m=1)
Therefore, by (2.3)-(2.6), the proof of this lemma is complete. [ |

The following lemma can be obtained by applying the same arguments (with only
minor modifications) used in the proof of [Lemma 8, [6]], which have their roots in [7]
and [10].

Lemma2.5. Leth € A, (R x R") forsomey > 1,2 € L9 (S"_1 X Sm_l) for some

1 <g <2and6 =297". Assume that ¢, ¥ are given as in Lemma 2.2. Then for any p
satisfying |1/p — 1/2| < min{1/2, 1/y'}, there exists a positive constant C,, such that

BI—

9j+1 9i+l
2 dsdt
Z 00,6,y h15 * 8i.j
2 st
i,jel 0j o
LP(R" xR™)
1/2
A(y) 2
< Cp ol o, w12 acs1esnn || 2 L]
q i,jeZ
LP(R" xR™)

holds for arbitrary functions {g; ;(-,-), i, j € Z} on R" x R™.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by following the same approaches that the authors of [9] and [11]
used, and have their roots in [3] as well as [22]. Assume that & € A,/(RJr x R™) for

some y > 1; and ¢, ¢ are Cz([O, 00)), convex and increasing functions with ¢ (0) =
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¥ (0) = 0. Thanks to Minkowski’s inequality, we get that

o0
MGl @) = fRR ,Z_

0 tPst 2-i=li<|u|<2-it /211s<|v|§2/s

1/2
< FGe—dubusy — w (o) Ke . v)dudv\zdtds)
s 1
= i,jz:o </l;+><R+ tPst Lilt<|u|§2it /;fls<|v|§2fs
1/2
X FGc—dubusy — w(ohv) Ken . v)dudv\zdt‘”)

2a1—|—a2

= 241 — 1)(2%2 — 1) </R+><R 0.6 yhes * [(x, )]

) dtds)”z

(3.1)

Let9 =297 andfori € Z, let {Fi,¢}iooo be a smooth partition of unity in (0,00)

adapted to the interval Z; y = [¢ (9i+1)_1, ¢(9i_1)_1]. More precisely, we require the
following:

F,',¢ S Coo’ 0< Fi,¢ <1, Zri,({) (t) =1,
i
d*T; 4 (1) _ G

supp Fi,qu - I,"q), and ik < t—k,

where Cy is independent of the lacunary sequence {¢(8') : i € Z}. Define the multiplier
operators M; j on R" x R"™ by (M;,; f)(£. 1) = T (1€DT .y (In]) £ (¢, n). Then for any

feSR"xR™ andi, j € Z, wehave f(x,y) = Z Mita, j+1(f)(x,y). Therefore,

d,leZ
by Minkowski’s inequality we obtain

Mg:;vwshf(x’ y) E C Z Sd,lf(-x’ )’), (32)
d,leZ

0 (oo > dtds\'?
Saqf(x,y) = / / |Yai(x, y.t,9)] :
0 0 ts

Yai(x,y,6,8) = ) 0a.¢yhis * Mita ji f(x, Y Xgi git1) 07 git1, (E5)-
i.jez

where

On one hand, we compute the L?-normof S; ; (f) forthe any p satisfying [1/p — 1/2| <
min{1/y’, 1/2} with p # 2. By applying the Littlewood-Paley theory and Theorem 1.2
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along with the remark that follows its statement in [[27], p. 96], plus using Lemma 2.5,
we have

Aly)

S0P womoceny = Co = Villa sy 1920 a1 csny 1 Doy (3.3

On the other hand, by Plancherel’s theorem, Fubinis theorem, Lemma 2.4, and the
approaches used [10]-[11], there is 0 < & < 1 such that

2
H Sd,l(f) ” L2(R" xR™)

pit+l gj+l

Z / / /|59,¢,1//,h,r,s($,77)|2dtds )f(é 77)‘ dédn

z+d JH i 9

Cp @2 D RIL jirry 19207t wsmty D f

i,jeZ z+s,j+d

A

[A

~ 2
fe.m| ddn

AN ,-
cp(— 27 D IR e serery 1920 gty 1L 172 e ey

qg—1
(3.4)
where A; j = {(5.1) € R" x R" : (. In]) € Tip x Ty}
Interpolation between (3.3) and (3.4), we conclude
H Sa1(f) HLP(R"me) 3.5)

AWY) k(1141
Cpq — —12 5 (L1+1d]) ||h||Ay(R+><R+) “Q”LCI(Sn—Ixsm—I) ”f”Lp(RnXRm)

holds for any p with|1/p — 1/2| < min{1/y’, 1/2} forsome 0 < k < 1. Consequently,
by (3.1), (3.2) and (3.5), we finish the proof of Theorem 1.1. |
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