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Abstract 

 

In This Paper we examine upper limits on the estimation of k (G) the base 

cardinality of a vertex K-Path Cover in G and give a few estimation and 

precise estimations of k (G). We additionally demonstrate that k  

(G)
2 ( 1)( 2)

kn m
k k k


    

for every graph G with n vertices and m edges. The 

base cardinality of vertex K-Path cover concepts widely used in secure 

communication in wireless sensor networks (WSNs). 

 

Keywords: Graph, Base cardinality of a vertex K-Path Cover, WSN. 

 

 

Introduction and motivation 

In this paper, A subset S of vertices of a graph G is called a K-path vertex cover if 

every path of order kin G contains at least one vertex from S. Denote by k (G) the 

minimum cardinality of a K-path vertex cover in G. It is shown that the problem of 
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determining k (G) is NP-hard for each k ≥ 2, while for trees the problem can be 

solved in linear time. We investigate upper bounds on the value of k (G) and provide 

several estimations and exact values of k (G). We also prove that 3 (G) ≤ (2n + 

m)/6, for every graph G with n vertices and m edges we consider finite graphs without 

loops and multiple edges and use standard graph theory notations [3]. In particular, by 

the order of a path P we understand the number of vertices on P while the length of a 

path is the number of edges of P. 

We introduce a new graph invariant that generalizes the intensively studied concept of 

vertex cover. Our research is motivated by the following problem [2] related to secure 

communication in wireless sensor networks (WSNs). The topology of WSN can be 

represented by a graph, in which vertices represent sensor devices and edges represent 

communication channels between pairs of sensor devices. Traditional security 

techniques cannot be applied directly to WSN, because sensor devices are limited in 

their computation, energy, communication capabilities. Moreover, they are often 

deployed inaccessible areas, where they can be captured by an attacker. In general, a 

standard sensor device is not considered as tamper resistant and it is undesirable to 

make all devices of a sensor network tamper-proof due to increasing cost. Therefore, 

the design of WSN security protocols has become a challenge in security research. 

We focus on the Canvas scheme [1, 3] which should provide data integrity in a sensor 

network. The k-generalized Canvas scheme [5] guarantees data integrity under the 

assumption that at least one node which is not captured exists on each path of the 

length k−1 in the communication graph. The scheme combines the properties of 

cryptographic primitives and the network topology. The model distinguishes between 

two kinds of sensor devices—protected and unprotected. The attacker is unable to 

copy secrets from a protected device. This property can be realized by making the 

protected device tamper-resistant or placing the protected device at a safe location, 

where capture is problematic. On the other hand, an unprotected device can be 

captured by the attacker, who can also copy secrets from the device and gain control 

over it. During the deployment and initialization of a sensor network, it should be 

ensured, that at least one protected node exists on each path of the length k − 1 in the 

communication graph [15]. The problem to minimize the cost of the network by 

minimizing the number of protected vertices is formulated in [15]. 

Formally, let G be a graph and let k be a positive integer. A subset of vertices S ⊆ 

V(G) is called a t-path vertex cover if every path of order k in G contains at least one 

vertex from S. We denote by k  (G) the minimum cardinality of a t-path vertex cover 

in G. 

Clearly, 2-path vertex cover corresponds to the well-known vertex cover (a subset of 

vertices such that each edge of the graph is incident to at least one vertex of the set). 

Therefore 2 (G) is equal to the size of the minimum vertex cover of a graph G. 

Moreover, the value of 3 (G) corresponds to the so-called dissociation number of a 

graph [8, 14] defined as follows. 

A subset of vertices in a graph G is called a dissociation set if it induces a sub graph 

with maximum degree 1. The number of vertices in a maximum cardinality 
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dissociation set in G is called the dissociation number of G and is denoted by diss (G). 

Clearly, 3  (G) = |V(G)| − diss(G). 

A related coloring is the t-path chromatic number, which is the minimum number of 

colors that are necessary for coloring the vertices of G in such a way that each color 

class forms a kp
-free set [1, 12] and it is easy to see that 

 

( ) 1
( ) | ( ) |

( )

k
k

k

G V GG
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Since the minimum vertex cover problem is NP-hard [5], it is not surprising that so is 

the problem of determining k for each k  3. We provide details in Section 2—

actually; we reduce the minimum vertex cover problem to the minimum t-path vertex 

cover problem. 

However, since the question whether there is a t-path vertex cover of size at most t 

can be expressed in the monadic second order logic, by famous Courcelle s’ theorem 

[8], the minimum t-path vertex cover problem can be solved in linear time on graphs 

with bounded tree width, e. g. trees, series–parallel graphs, outer planar graphs, etc. In 

Section 3, we determine the exact value of k  for trees and present a linear time 

algorithm which returns an optimal solution for trees. Then Section 4is devoted to 

outer planar graphs. We present a tight upper bound for k (G). 

In Section 5, we provide several estimations for the size of minimum k-path vertex 

cover on degree of its vertices. Finally, we prove that 3  (G)   (2n + m)/6, for every 

graph G with n vertices and m edges. 

 

Theorem 1. For every graph G without isolated vertices: 

 

( )

1 1
( ) ( )

1 ( )
k
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Proof. Let us arbitrarily order the vertices of G, and let us start with S being the 

empty set. One by one let us add vertex iv  to S unless at least two of its neigh bounds 

are already there. The probability that iv  will eventually land in S, is 2

(1 ( )id v
, 

because it is the probability that in random ordering of vertices of G, iv  precedes each 

of its neigh bounds except for one. From this one can deduce that the expected size of 

the set S is at least
( )

2

(1 ( ))iv v G i
id v 

  Since S is a 1degenerated graph, S is a forest. 

Using Theorem 2 we get 
1

( ) ( )k s V s
k

  . Finally, to construct a t-path vertex cover 
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for G we put into solution ( ) \V G S  and all the vertices forming the minimum t-path 

vertex cover of S. 

 

Theorem 2. For every positive rational number 
a
b

>1, a, bG, and the smallest 

positive integer k, such that
a
b
2k+2 there exists a graph G with average degree 

d(G)= 
a
b

and 

k  (G)
2 ( 1)( 2)

kn m
k k k


  

 

 

Proof. Denote by Hn a complete graph on n vertices without edges of one perfect 

matching (assume n is even). Clearly |V (Hn)| = n and 

( 1) ( 2)
( )

2 2 2
n

n n n n nE H  
    

Clearly diss ( )nH ) = 2, because any arbitrary three vertices of Hn form a path of order 

three. Therefore 3  ( ( )nH  n − 2, for n ≥ 2. 

We construct the graph G as the disjoint union of 

• x components 2 2kH   

• y components H2k+4. 

 

We let x = (2b − a + 2kb) (k + 2) and y = (a − 2kb)(k + 1). 

First, we verify the average degree of the graph G. There are x(2k + 2) vertices of 

degree 2k and y(2k + 4) vertices of degree 2k + 2; hence we get 

d (G) 
(2 2)(2 ) (2 4)(2 2)

(2 2) (2 4)

x k k y k k
x k y k
   


  

 

(2 2 )( 2)(2 2)(2 ) ( 2 )( 1)(2 4)(2 2)

(2 2 )( 2)(2 2) ( 2 )( 1)(2 4)

b a kb k k k a kb k k k
b a kb k k a kb k k

        


       
 

(2 2 )(2 ) ( 2 ) (2 2)

(2 2 ) ( 2 )

b a kb k a kb k
b a kb a kb

     


   
 

4 ( 2 )(2 ) ( 2 )(2 ) 2( 2 )

2

kb a kb k a kb k a kb
b

     
  

= 
a
b

. 
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Regular graphs 
In the main theorem of this section we shall use the following result of Erdős and 

Gallai [ 5]. 

 

Theorem 2. 1 ([ 5]). If G is a graph on n vertices that does not contain a path of 

order k, then it cannot have more than ( 2)

2

n k 
 edges. Moreover, the bound is 

achieved when the graph consists of disjoint cliques on k −1 vertices. 
 

Theorem 2. 2. Let k ≥ 2 and d ≥ k −1 be positive integers. Then, for any d-regular 

graph G, the following holds: 

k
2

( )
2 2

d kG
d k
 

 
 

| ( ) |V G
 

 

Proof. Let S   V G be a vertex K-path cover and T=   V G \ S. Let sE , TE be the set 

of edges with both end vertices is S and T, respectively. Let STE be the set of edges 

with one end vertex in S and the second vertex in T. Then obviously 

( )E G 
1

( )
2

S ST Td V G E E E   . 

Since G is d-regular, d S 2 S STE E  . therefore S 
1

d STE . similarly 

STE 2 TE = d T . since the graph induced on the set TE does not contain a path of 

order k. according to theorem 3. 1 we have TE 
( 2)

2

T k 
. Combining all the 

previous formulas, we immediately have 

S 
1

d STE  
1 2

( 2 ) ( 2)T
d kd T E d T T k T

d d
 

       

Then 

( ) 2 2
1 1

2 2

S T T d d k
S S d k d k
  

    
   

 

and 

S 
2

2 2

d k
d k
 

 
| ( ) |V G

. 

 

 

Path vertex cover for trees 

We begin our investigation with the class of trees, that present an important 

underlying communication topology for WSN. Courcelle’s theorem [8] guarantees the 

existence of a linear time algorithm, basically using dynamic programming. In this 

section, we describe such an algorithm in detail, and we use it then to derive a sharp 

upper bound k  (T ) ( ) /v T k  for an arbitrary tree T. 
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In order to simplify our consideration, consider that the input tree is rooted at a vertex 

u. By properly rooted sub tree we denote a sub tree vT , induced by a vertex v and its 

descendants (with respect to u as the root) and satisfies the following properties: 

1.  vT  contains a path on k vertices; 

2.  \vT v  does not contain a path on k vertices. 

 

The algorithm PVCP Tree systematically searches for a properly rooted tree vT , puts v 

into a solution and removes vT  from the input tree T. 

Function PVCP Tree (T, k) 

Input: A tree T on n vertices and a positive integer k; 

Output: A k-path vertex cover S of T ; 

Form an arbitrary vertex u ∈  T, make T rooted in u; 

S := ;  

while T contains a properly rooted sub tree vT  do 

S := S v  

T := \ ;vT T  

return S; 

 

Theorem 3. 1. 

Let T be a tree and k be a positive integer. The algorithm PVCP Tree (T, k) returns an 

optimal k-path vertex cover of T of size at most 
( )v T
k

. Therefore, 
( )

( )k

v T
T

k
   

 

Proof. 

First, we shall argue that PVCP Tree returns an optimal solution. We prove this by 

induction on the number of vertices in the tree T. If T does not contain any path on k 

vertices, the empty set is the optimal solution. Suppose T contains a path on k 

vertices. Let vT  be a properly rooted sub tree of T. Since any k-path cover of T 

contains a vertex of vT  it follows that ( ) ( \ ) 1k k VT T T    and hence the result 

follows by induction. 

To prove that the returning set S contains at most 
( )v T
k

 vertices, we argue that each 

loop of the algorithm inserts one vertex into S and removes from T one properly 

rooted sub tree having at least k vertices. _ 

Concerning the time complexity of the algorithm, it is straightforward to implement 

the algorithm PVCP Tree such that the returning set S in computed in linear time. 

 

Outerplanar graphs 

In this section we study the 3-path vertex cover of outerplanar graphs. 

Theorem 3. Let G be an outerplanar graph of order n. Then
3( )

2

nG   
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Proof. We prove the statement by induction on the number of vertices of G. Let H be 

a maximal outerplanar graph such that G is its sub graph satisfying V(H) = V(G). 

(Recall that H is maximal outerplanar if H is outerplanar, but adding any edge 

destroys that property. ) It is easy to see that H is 2-connected and all its inner faces 

are triangles. Observe that every t-path vertex cover in H is a k-path vertex cover in 

G, since G is a sub graph of H. Therefore, it suffices to find a 3-path vertex cover in H 

of size at most 
2

n
 Obviously, if H consists of a single triangle, then 

3

3
( ) 1

2 2

nH     

Assume H has at least four vertices. Since H is a 2-connected outerplanar graph, the 

closed trail bounding the outer face contains each vertex of H precisely once, hence H 

is Hamiltonian. Let 1 2, ,.... nv v v  be the cyclic ordering of vertices of H along the 

Hamiltonian cycle. Colour a vertex vi white, if the degree of vi in H is 2, otherwise 

colour it black. Since all the 

inner faces of H are triangles, there are no two consecutive white vertices, unless H 

consists of a single triangle, which is excluded. Hence, the white vertices induce an 

independent set. The edge 1i iv v  is called good, if it has a white end vertex, otherwise it 

is bad. If all the edges incident with the outer faces are good, it implies that n is even, 

and half of the vertices are white. Then the set of all black vertices is a 3-path vertex 

cover of size 
2

n
since the white vertices form an independent set. 

Assume there is a bad edge, i. e. there is at least one pair of consecutive black 

vertices, say 1,i iv v  We claim that there is an edge i iv v  of H such that 1,i iv v  and iv  

form a triangular face adjacent to the outer face, all the three vertices 1,i iv v  , and iv  

are black and all the edges 1 2 3 1, ,..., ,i i i i iv v v v v    (indices taken modulo n) are good 

For the sake of contradiction, suppose that this is not the case. Let e = 1,i iv v   be a bad 

edge. There is a unique triangular face of H incident both with iv  and 1iv  ; let iv  be 

the third vertex incident with the face. It is easy to see that iv  must be black. The 

vertices 1,i iv v   and 1,i iv v   cut the Hamiltonian cycle into the edge 1,i iv v   and two 

paths; let  (e) be the smaller of their lengths. 

Let 0 0 0 1i ie v v  be the bad edge with  (e) minimal; let 0iv  be the corresponding black 

vertex such that together with 0iv  and 0 1iv   they form a triangular face of H. Without 

loss of generality assume that P = 0 1iv  ,..., 0iv  is the path of length  (e). Observe that 

P contains at least one white vertex, thus, it contains good edges. If all the edges 

0 1 0 2 0 1 0,....,i i i iv v v v    are good, we are done. Otherwise, we find a bad edge 1e  = 1 1i iv v   

of P. Again, there is a unique triangular face of H incident both with vi1 and 1 1iv  ; let 

1iv  be the third (black) vertex incident with the face. Since  0 1 0,i iv v  is a 2-cut of 

H separating the vertices 0 2 0 1,....i iv v   from the rest of the graph, we have 

1iv  0 1 0,i iv v  But then 1 0( ) ( )e e  , a contradiction with the choice of 0e  
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Therefore, there is an edge e = i iv v  of H such that 1,i iv v  , and iv  form a triangular 

face adjacent to the outer face, all the three vertices 1,i iv v   and iv are black, and all the 

edges 1 2 1,....,i i i iv v v v    are good. It means that on the 1,....,i ip v v black and white 

vertices alternate, thus,   (e) = 2s for some integer S 

Let W be the set of white vertices on P, let B be the set of black vertices on P, 

including 1iv   and iv . Obviously |W| = Sand |B| = s + 1; vertices from W induce an 

independent set in H and 1iv   is adjacent to precisely one of them. Let S’ be a 3-path 

vertex cover in the graph  1' \ , ,....,i i iH H v v v of size at most 
( ')

2

V G
= 

2 2

2

n s 
2given by induction. Then    1' ( \ )i iS s v B v     is a 3-path vertex 

cover in H of size at most 
2 2

1
2 2

n s nS 
    

The bound 
2

n
in Theorem 3 is the best possible, since it is easy to find outerplanar 

graphs with. 
3

2

n
  Consider an arbitrary 2-connected outerplanar graph G. Let 

1 2, ,....., nv v v be the ordering of its vertices along the Hamiltonian cycle (the boundary 

of the outer face). For each edge v 1,i iv v  incident with the outer face 1 1( )nv v  , add a 

new vertex iu  and two new edges i iu v  and 1,i iv v   Let the resulting graph be H. It is 

easy to see that H is a 2-connected outerplanar graph on 2nvertices. We claim that 

3( )H n  . Let S be a 3-path vertex cover in H. Divide the vertices of H into n pairs 

of the form i iv u Observe that if iu S  and, iv S  then 1iu S   and 1 \iv S   

(otherwise there is a path on 3 vertices in H not covered by S). Therefore, the average 

number of vertices in S is either at least 
1

2
(if at least one vertex of a pair is in S), or 

2

4
(if no vertex is . in S, then in the previous pair both are). Altogether, S n  

 

 

Upper bounds on degree of vertices 

In this section we provide several upper bounds on path vertex cover based on degrees 

of a graph. First, recall theorem of Caro [6] and Wei [29], which states 

2

( )

1
( ) ( )

1 ( )u v G
G V G

d U




 


  

for every graph G. Since the only graphs for which this is best possible are the disjoint 

unions of cliques, additional structural assumptions allow improvements (see e. g. 

[15–18, 23]). 

The problem of dissociation number of graph was also studied in [14], where Göring 

et al. proved 
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Theorem 5. 1. Let G be a graph on n vertices and m edges. Then 
3

2
( )

6

n mG


  

 

Theorem 5. 2. Let a, b are integers such that 2b a b   There is a graph on n vertices 

and m edges such that 
m a
n b
 and 

3

2
( )

6

n mG


  

 

Proof. Let x = 3(2b − a) and y = 2(a − b). We construct the graph G having two types 

of components: 

x components 4c  (a cycle on 4 vertices) with 4 edges, 3 4( ) 2C  . 

y components 6H  ( 6k  with a perfect matching removed) with 12 edges, 3 6( ) 4C   

It is easy to see that n = 4x + 6y and m = 4x + 12y. 

Then. 

3

2 12 24
2 4 ( )

6 6

n m x y x y G
 

     

Moreover, 

2 6 6(2 ) 12( ) 6

2 3 6(2 ) 6( ) 6

m x y b a a b a a
n x y b a a b b b
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