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Abstract 
 

The unsteady dispersion of solutes in blood flow through (i) circular pipe and 
(ii) channel between parallel plates is analyzed mathematically, treating blood 
as Herschel-Bulkley fluid. Derivative series expansion method is applied to 
solve the resulting convective diffusion equation. It is found that the 
dispersion coefficient, relative effective diffusivity and magnitude of the 
dispersion function decrease considerably with the increase of the yield stress 
of blood, when the solute disperses in the flow through pipe/channel. The 
aforesaid flow measurements are considerably higher when the solute 
disperses in the flow through pipe than when it disperses in the flow through 
channel. Estimates of the percentage of decrease in the dispersion coefficient 
and effective axial diffusivity are significantly lower when the solute disperses 
in Herschel-Bulkley fluid than when it disperses in Casson fluid and these 
estimates are lower when the solute disperses in pipe than when it disperses in 
channel. 
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1. Introduction 
The shear augmented dispersion of solutes in fluid flow (solvent) is an important 
physical phenomena and is an upcoming research topic which attracted researchers 
from various branches of science due to its abundant applications in the fields of 
biophysics, physiological fluid dynamics, biomechanics, bio-medical engineering, 
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chemical engineering, clinical biology, environmental science etc [1-3]. Some specific 
applications of this research area are the mixing and transport of drugs in 
physiological systems, dispersion of gaseous tracer in chemical engineering, transport 
of pollutants in the environment, chromatographic separations in chemical 
engineering [4, 5]. The basic theory for this dispersion process is the spreading of the 
passive species (solute) in the flowing fluid (solvent) by the combined action of 
molecular diffusion and non-uniform velocity distribution [6, 7]. 
Taylor [8] was the first to investigate on this research topic and in his seminal 
contribution, he reported that, when a bolus of solute is injected into a solvent 
(flowing fluid) which undergoes steady motion in a straight pipe, due to the combined 
action of the lateral molecular diffusion and variation in the fluid’s velocity over the 
cross section, the solute disperses diffusively with the effective molecular diffusivity 

2 2 48eff m mD a u D= , where a  is the radius of the pipe, mu is the mean velocity and mD
is the molecular diffusivity. Aris [9] used the method of moments to investigate on the 
solutes dispersion process and commented that the Taylor’s dispersion theory is valid 
only when eff mD D>>  and corrected the Taylor’s formula for effective molecular 
diffusivity as 2 2 48eff m m mD D a u D= + . Ananthakrishnan et al. [10] analyzed the 
solutes dispersion in laminar fluid flow by considering diffusion in both radial and 
axial directions and propounded that the Taylor-Aris dispersion theory is valid only 
when the time after the injection of the solute exceeds ( )20 5 m. a D . 
Gill [11] used the method of series expansion about the mean concentration (in terms 
of derivatives of mean concentrations) for solving the convective diffusion equation. 
Gill and Sankarasubramanian [12] extended this to the generalized dispersion model 
for the unsteady convective diffusion of solutes in laminar flow in circular pipe and 
obtained series solution to the problem. Sankarasubramanian and Gill [13] further 
extended this to incorporate the interphase transport effects and found out that the 
three effective transport coefficients, namely the exchange, convection and dispersion 
coefficients were all influenced by the interphase transport. Sharp [14] applied the 
Taylor-Aris dispersion theory to study the steady dispersion of solutes in Casson fluid 
flow through pipe and channel and pointed out that the relative diffusivity is strongly 
dependent on the yield stress of the solvent fluid. Phillips et al. [15] discussed the 
application of the dispersion of solutes in fluid flow to the transport of a soluble tracer 
substance through a wall layer consisting of a tube containing flowing fluid 
surrounded by a wall layer. Ramana et al. [16] analyzed the dispersion of solutes in a 
conduit, modeling the solvent as H-B fluid and used first order approximation to the 
constitutive equations of H-B fluid model for obtaining the flow quantities. Sankar et 
al. [17] mathematically analyzed the steady shear augmented dispersion of solutes in 
blood flow through pipe and channel, modeling blood as Herschel-Bulkley (H-B) 
model and mentioned that the effective axial diffusivity is higher when the solute 
disperses in pipe than in channel. 
Blood shows anomalous behavior when it flows through arteries of different 
diameters. When it flows through larger arteries (arteries diameter 300 mµ> ) at high 
shear rates, it shows Newtonian fluid’s character, but, when it flows in narrow arteries 
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(arteries diameter 300 mµ< ) at low shear rates, it exhibits remarkable non-Newtonian 
fluid’s behavior [18-21]. Normal blood flow in arteries and veins is disturbed by the 
injection of solutes (medicines) in the blood stream and the non-Newtonian behavior 
of blood in narrow arteries affects the normal shear dispersion of solutes in the blood 
stream. Thus, it is important to study the changes caused by the non-Newtonian 
rheology of blood in narrow arteries to the dispersion of the solutes in blood stream. 
Casson and H-B fluids are some of the non-Newtonian fluid models with yield stress 
which are frequently used for blood flow modeling in narrow arteries at low shear 
rates. Some advantages of using H-B fluid rather than Casson fluid model for 
modeling blood flow in narrow arteries at low shear rates are mentioned below. 
Scott Blair [22] propounded that the H-B fluid model is easier to explain in most 
cases and is more appropriate and more general for blood flow. Scott Blair and 
Spanner [23] reported that blood behaves like Casson fluid only at moderate shear 
rate in smaller diameter arteries, whereas, the behavior of blood at low shear rates 
flow in narrow arteries can be explained by H-B fluid and it can represent fairly 
closely what is occurring in blood when the yield stress is high. Chaturani and 
Ponnalagar Samy [24] pointed out that when blood flow in arteries of diameter 95 mµ
, blood behaves like H-B fluid rather than power-law and Bingham fluids. Iida [25] 
reports “the velocity profile in the arterioles having diameter less than 0.1mm are 
generally explained fairly by Casson and H-B fluid models. However, the velocity 
profiles in the arterioles whose diameters are less than 0.065mm do not conform to the 
Casson fluid model, but, can still be explained by H-B model”. Hence, it is 
appropriate to model blood as H-B fluid model rather than Casson fluid model when it 
flows through smaller diameter arteries. Dash et al. [26] investigated the unsteady 
dispersion of solutes in the steady flow of Casson fluid in a conduit. Since H-B fluid 
model has several advantages over Casson fluid model (as mentioned above), it will 
be very useful to study the unsteady dispersion of solutes in the steady flow of H-B 
fluid. To the knowledge of the authors, the unsteady dispersion of solutes in the 
steady flow of blood through conduits, modeling blood as H-B fluid, has not been 
studied by anyone so far. Hence, in this paper, we have mathematically analyzed the 
unsteady dispersion of solutes in blood flow through narrow circular arteries, 
modeling blood as H-B fluid. Since, some clinical devices uses the blood flow 
through channel between parallel flat plates [14, 26, 27], we have also extended the 
study to the dispersion of solutes in blood flow through a channel between parallel flat 
plates. The layout of this paper is as follows. 
Section 2 formulates the problem mathematically and then non-dimensionalizes the 
governing equations for flow in (i) circular pipe and (ii) channel between parallel flat 
plates and then solves them to obtain the expression for the physiologically important 
flow quantities such as normalized velocity, longitudinal diffusion coefficient, 
concentration of the fluid and the dispersion function. The effects of various 
parameters such as power-law index, time and yield stress on the aforesaid flow 
quantities are discussed through appropriate graphs in the results and discussion in 
Section 3. In Section 3, the results obtained for pipe flow analysis are compared with 
the results obtained for channel flow analysis and the results obtained for unsteady 
dispersion of solutes in H-B fluid flow are compared with the results obtained by 
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Dash et al. [26] for unsteady dispersion of solutes in Casson fluid flow. Some possible 
clinical applications of the present study are also given in Section 3. The main 
findings of this mathematical analysis are summarized in the concluding Section 4. 
 
 
2. Mathematical formulation and solution methodology 
Consider the laminar, steady, axisymmetric and fully developed unidirectional flow 
(in the axial direction) of blood (assumed as viscous incompressible fluid) through a 
(i) circular pipe and (ii) channel between parallel flat plates, treating blood as H-B 
fluid. The flow geometries in pipe and channel between parallel flat plates are 
depicted in Figs. 1a and 1b, respectively. 

 
(a) Flow in a pipe. 

 
(b) Flow in a channel. 

Figure 1: The geometry of the fluid flow in (a) pipe and (b) channel. 
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2.1 Flow in pipe 
2.1.1 Governing equations 
Consider the unsteady dispersion of a bolus of solute of initial length sz units in a 
straight circular pipe of radius a . Cylindrical polar coordinate system ( )r , ,zψ  is 
used to analyze the flow in a pipe as shown in Fig. 1(a), where r  and z  are the 
coordinates in the radial and axial directions respectively, and ψ  is the azimuthal 
angle. For the steady slow flow of viscous incompressible fluid, the axial and radial 
components of the momentum equations simplify to the following equations. 

( )1dp d r
dz r dr

τ= −         (1) 

0dp
dr

=         (2) 

where p  is the pressure and τ  is the shear stress. From Eq. (2), it is clear that 
pressure varies only in the axial direction. The constitutive equation of H-B fluid 
model is given by 

( )1 if

0 if

n

y y

y

du
dr

τ τ τ τ
η

τ τ

 − >− = 
 ≤

        (3) 

where u  is the axial velocity of the fluid; η  is the coefficient of viscosity of H-B 

fluid with dimension ( )1 2 n
ML T T− − , n the is power-law index, τ  and yτ  are the shear 

stress and yield stress, respectively. Eq. (3) implies that normal shear flow occurs in 
the region where the shear stress exceeds the yield stress and unshear flow (plug flow 
or solid-like flow) occurs in the region where the shear stress does not exceed the 
yield stress. Eqs. (1) and (2) can be solved for the unknowns shear stress τ  and 
velocity u  with to the following boundary conditions. 

is finite at 0rτ =        (4a) 
0 atu r a= =       (4b) 

For the unsteady dispersion of solutes in the steady flow of blood (represented by H-B 
fluid model), the simplified form of the species transport equation is given below. 

2
2

2m
C Cu D L C
t z z

 ∂ ∂ ∂
+ = + ∂ ∂ ∂ 

        (5) 

where ( ) ( )( )2 1L r r r r= ∂ ∂ ∂ ∂ , ( ), ,C r z t  is the concentration of the solute, t  is 

the time variable and mD  is the coefficient of molecular diffusivity. The initial and 
boundary conditions of the solute concentration ( ), ,C r z t are 

( )
0 if 

20
0 if 

2

s

s

zC , z
C r ,z ,

z, z

 ≤= 
 >


        (6) 
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( ) 0C r , ,t∞ =         (7) 
and 

( ) ( )0 0C C,z ,t a,z ,t
r r

∂ ∂
= =

∂ ∂
        (8) 

where 0C  is the reference concentration. 
 
2.1.2 Non-dimensional variables 
Let us introduce the following non-dimensional variables. 

( ) ( )2 2
0 0 0

mp ym
p y

ru r
u u

D z D tCC , u , r , r , z , t , ,
C a a a a a dp dz a dp dz

τττ τ= = = = = = = =
− −

      
 

(9) 

where 

( )
1

0
1

1 2

nna dpu
n dzη

+  = − +  
     (10) 

is the characteristic velocity. Integrating Eq. (1) with respect to r and then using the 
non-dimensional variables, trivially we get the expression for the shear stress in non-
dimensional form as 2 rτ = . From this shear stress expression, one can easily get the 
expression for the yield stress in non-dimensional form as 2y prτ = . Using the non-
dimensional variables in Eq. (3), we get the following non-dimensional form of the 
constitutive equation of H-B fluid model. 

( ) if

0 if

n

y y

y

du
dr

τ τ τ τ

τ τ

 − >− = 
≤

      (11) 

Non-dimensionalizing the boundary condition (4), we get 
0 atu r a= =       (12) 

Applying the non-dimensional variables in Eq. (5), we obtain the non-dimensional 
form of the unsteady convective diffusion equation as below. 

2
2

2 2

1C Cu L C
t z Pe z

 ∂ ∂ ∂
+ = + ∂ ∂ ∂ 

      (13) 

where 
2 1L r

r r r
∂ ∂ =  ∂ ∂ 

      (14) 

and the Peclet number for the flow in pipe is defined as below [25]: 
0

m

a uPe .
D

=       (15) 

The non-dimensional form of the initial and boundary conditions for the concentration 
of the solute are 
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( )
1 if 

20
0 if 

2

s

s

z, z
C r,z,

z, z

 ≤= 
 >


 (17) 

( ) 0C r, ,t∞ =  (18) 

( ) ( )0 0 1C C,z,t ,z,t
r r

∂ ∂
= =

∂ ∂
 (19) 

 
2.1.3 Solution method 
Using two term binomial series approximation in Eq. (11) and then using Eq. (12), 
one can obtain the expression for the velocity of H-B fluid in the shear flow region as 

( ) ( ) ( ) ( ) ( ) ( )1 2 11
1 1 1 1      if 1

2
n n n

p p p

n n
u r r n r r r r r r+ −
+

+
= − − + − + − ≤ ≤       (20) 

The velocity of H-B fluid in the plug flow (unshear flow) region is obtained from Eq. 
(20) by evaluating it at pr r=  and is given below: 

( ) ( ) ( ) ( )2 11 1
1 1               if 0

2 2
n

p p p p p

n n n n
u r n r r r r r+
−

+ −
= − + + − ≤ ≤       (21) 

where 2p yr τ= . Using Eqs. (20) and (21), we get the expression for mean velocity 
as 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( ) ( )

4 3 2
2 32 5 6 41 3 3 1

1
3 2 2 1 2 1 2

n
m p p p p

n n n nn n n n n n
u r r r r

n n n n n
+

 + − − ++ + + −
= − + − 

+ + + + +         (22) 
Let us consider the convection of the solute across a plane which moves with the 
average velocity mu  of the fluid so that the axis moves with the mean speed of the 
fluid. For this moving coordinate, we define a new coordinate system ( )1r, z , t  with 
the new axial coordinate 1z  which is defined as below. 

1 mz z u t= −       (23) 
Using the generalized dispersion model of Gill and Sankarasubramanian [12], let us 
assume the solution of Eq. (18) in a series expansion involving 1

j j
mC z∂ ∂ , as below. 

( ) ( ) ( ) ( )
1 1

j
m

m j j
j

C z,t
C r,z,t = C z,t f r ,t

z

∞

=

∂
+

∂∑       (24) 

where 

( ) ( )
1

0
2mC z,t C r,z,t r dr= ∫       (25) 

is the mean concentration of the solute over a cross section and jf  is the dispersion 
function associated with 1

j j
mC z∂ ∂ . Substituting Eq. (24) in Eq. (13), one can obtain 

( ) ( )
2 1

2
2 2 1

11 1 1 1

1 j j
jm m m m m

m j m jj j
j

fC C C C Cu u L f u u f
t z Pe z t z z

+∞

+
=

 ∂ ∂ ∂ ∂ ∂ ∂
+ − − + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

∑  
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2 1

2 2
1 1

1 0
j j

m m
j jj j

C Cf f .
Pe z t z

+ +

+

∂ ∂
− + =∂ ∂ ∂ 

      (26) 

As pointed out by Dash et al. [26], we can assume that the process of distributing 
( )mC z,t  is diffusive in nature right from the initial time and thus, one can write the 

generalized dispersion model for ( )mC z,t as below with the dispersion coefficients 

( )iK t as suitable functions of time t. 

( )
1 1

i
m m

i i
i

C CK t
t z

∞

=

∂ ∂
=

∂ ∂∑                                                                                       (27)

 
 

with the dispersion coefficients ( )1K t as suitable functions of time t, where ( )1K t is 

the coefficient of longitudinal convection and ( )2K t is the coefficient of longitudinal 

diffusion. Since, the coefficient ( )2K t expresses the whole dispersion process in 
terms of simple diffusion process; it is also called as the effective longitudinal 
diffusivity. Using Eq. (19) in Eq. (18) and grouping the coefficients of 

1 1 2j j
mC z , j , ,....∂ ∂ =  together, one can obtain 

( ) ( ) ( ) ( ) ( )
2

2 21 2
1 1 2 1 1 1 2 2 2

1 1

1m m
m m

C Cf fL f u u K t L f u u f K t f K t
t z t Pe z

∂ ∂∂ ∂   − + − + + − + − + + −   ∂ ∂ ∂ ∂     

( ) ( ) ( )
21

2 2
2 1 2 22 2

1 1 1

1 0
jj

j m
j m j j i j i j j

j i

f CL f u u f f K t f K t
t Pe z

++∞
+

+ + + − + +
= =

∂  ∂
+ − + − − + + = ∂ ∂ 
∑ ∑       (28) 

In Eq.(20), equating the coefficients of 1
j j

mC z∂ ∂  to zero for 1 2 3j , , ,...= , we get the 
following infinite system of partial differential equations. 

( ) ( )21
1 1 0m

f L f u u K t
t

∂
− + − + =

∂
      (29) 

( ) ( ) ( )22
2 1 1 2 2

1 0m
f L f u u K t f K t
t Pe

∂
− + − + + − =  ∂

      (30) 

( ) ( ) ( ) ( )
2

2 2
2 1 1 2 22

2

1 0
j

j
j m j j i j i

i

f
L f u u K t f K t f K t f

t Pe

+
+

+ + + −
=

∂  − + − + + − + =    ∂  
∑

 
for 1 2j , ,...,=  with 0 1f .=       (31) 
Since ( )C r,z,t is expressed in terms of ( )mC z,t in Eq. (24), ( )mC z,t can be chosen to 

satisfy the initial and boundary conditions of ( )C r,z,t . The initial condition and 
boundary conditions for jf  can be obtained from Eqs. (17) – (19) and (24) and are 
given below. 

( )0 0jf r , =       (32) 

( ) ( )0 0 1j jf f
,t ,t

r r
∂ ∂

= =
∂ ∂

      (33) 
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From Eqs. (24) and (25), one can obtain the solvability condition as given below. 
1

0
0jf r dr .=∫       (34) 

Multiplying Eq. (29) by r and integrating between 0 and 1 and then making use of the 
solvability condition (34), one can get 

( ) ( )
1

1 0
2 0mK t u u r dr= − − =∫       (35) 

Similarly, applying the same procedure in Eqs. (30) and (31), we obtain 

( )
1

2 12 0

1 2K t f u r dr
Pe

= − ∫       (36) 

( )
1

2 10
2 1 2j jK t f u r dr, j , ,...+ += − =∫       (37) 

 
2.1.3.1 Solution of 1f  
In Eq.(24), the function ( )1f r ,t known as dispersion function, is the coefficient of 

1mC z∂ ∂ which plays a vital role in measuring the deviation of the local concentration 

( )C r,z,t from the mean concentration ( )mC z,t . The solution of Eq. (29) satisfying 
the boundary conditions (32) and (33) can be expressed in the following form. 
( ) ( ) ( )1 1 1s tf r ,t f r f r ,t= +       (38) 

where ( )1sf r  is the dispersion function in the steady state and ( )1tf r ,t is the 
dispersion function in the transient state which describes the time-dependent nature of 
the dispersion of the solute in the H-B fluid. Using Eq. (38) in Eq. (29), one can 
obtain the following equation. 

( )2 21 1
1 1 0s t

s t m
f f L f L f u u
t t

∂ ∂
+ − − + − =

∂ ∂
      (39) 

Since, 1 0sf
t

∂
=

∂
 for steady flow, grouping the ( )1tf r ,t terms together and rest of the 

terms together and equating each of these to zero, we obtain the following simplified 
differential equations for the unknowns ( )1sf r  and ( )1tf r ,t . 

( )2
1 0s mL f u u− − =       (40) 

21
1

t
t

f L f
t

∂
=

∂
      (41) 

Substituting Eq. (38) in Eqs. (32) and (33) and then applying the same procedure, we 
get the following simplified boundary conditions for ( )1sf r and ( )1tf r ,t . 

( ) ( )1 10t sf r , f r= −       (42) 

( ) ( )1 10 0 1s sdf dfr r
dr dr

= = = =
      

(43) 

( ) ( )1 10 0 1t tf f,t ,t
r r

∂ ∂
= =

∂ ∂       
(44) 
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Similarly, using Eq. (38) in the solvability condition (34), one can obtain the 
following useful condition. 

1 1

1 10 0
0t sf r dr f r dr= − =∫ ∫       (45) 

Solving Eq. (40) subject to the condition (43), we get the steady state solution of the 
dispersion function ( )1sf r , where ( )1sf r

−
 is defined in the plug core region and 

( )1sf r+ is defined in the outer region, given by 

( ) ( )
( )
( )

( ) ( )
( )( )

4 3 2
2 1 3 2

1 1

2 5 6 41 11
2 3 2 2 4 8 8 2 3

n n
s p p p p

n n n nn n nnf r r r r r r CI
n n n n−

+ +
 + − − ++ −
 = − + − + +

+ + + +         
(46) 

( ) ( )
( )( ) ( )

7 6 5 4 3 2
3

1 2 2

10 32 18 93 164 52 40

8 1 2 3
n

s p

n n n n n n n
f r r

n n n+

+
+ + + − − − +

= −
+ + +

 

( )
( )
( )

( )
( )( )

4 3 2
2 3 2

2 5 6 411
2 3 2 2 4 8 2 3p

n
p p

n n n nn nr r r r
n n n n

+
 + − − ++
 + − + +

+ + + +    
( )

( )( )
( )
( ) ( ) ( )

4 3 2
3 2 2 1 3

12 2

2 5 6 4 1 1
4 2 3 2 12 3

n n n n
p p p

p

n n n n nr nr log r r r r r CI
n n r nn n

+ + + +
+ − − +   +

− + − − +  + + ++ +        
(47) 

where 
( )( )
( ) ( )

( )( )
( ) ( )

( )( )
( )( )

2
1 2 2

1 7 1 6 1 5
8 1 34 3 5 4 2 4 p p

n n n n n n n n
CI r r

n nn n n n
+ + + + − +

= − + +
+ ++ + + +

 

( )
( )( ) ( )

7 6 5 4 3 2
3

2 2

4 10 60 39 112 128 8

16 1 2 3
n
p

n n n n n n n
r

n n n
+

+ − − − + + −
−

+ + +
 

( )( )
( )( )( )

( )
( )( ) ( )

4 3 2 4 3 2
5 3

1 6 3 36 24 2 5 6 4
1 63 4 5 4 2 3

n n
p p p

n n n n n n n n n
r r log r

n n n n n
+ +

+ + − − + + − − +
+ −

+ + + + +
      (48) 

Solving Eq. (41) by the variable separable method subject to the boundary conditions 
(42), (44) – (45), we get the most general solution of ( )1tf r, t as 

( ) ( ){ }2-
1 0

1
, m t

t m
λ

m
mf r A eλt J r

∞

=

=∑       (49) 

where 

( ) ( )
( ) ( ) [ ]

1

0 10
1 21 22

000

2m
m

mm

sJ r f r r dr
A I I

JJ r r dr

λ

λλ
= − = − +

  

∫
∫

      (50) 

where
 ( ) ( )1 0 10

pr

smI J r f r r drλ
−

= ∫       (51) 

and 

( ) ( )
1

2 0 1
p

smr
I J r f r r drλ

+
= ∫       (52) 
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where ( )0 mJ rλ and ( )1 mJ rλ denote the Bessel’s functions of the first kind of order 
zero and one, respectively, and the eigen values 'smλ  are the root of the equation 

( )1 0J r = . Evaluating the integrals in Eqs. (51) and (52), we get the expressions for 1B  
and 2B , and these expressions are given in Appendix A. 
 
2.1.3.2 Solution of diffusion coefficient ( )2K t  

It is to be noted that ( )2K t  is a very useful dispersion coefficient appearing in the 
generalized dispersion model represented by Eq. (36) and is used to measure the 
dispersion of solute in the solvent (H-B fluid). Using Eqs. (20), (21), (38),(46) – (48), 
(50) – (52) in Eq. (36), we get the expression for the dispersion coefficient ( )2K t  and 
is given Appendix B. When the power-law index 1n = , and yield stress 0yτ = , the 
H-B fluid model reduces to Newtonian fluid model and in this case, the present model 
reduces to the Taylor-Aris dispersion model of Newtonian fluid. Applying the 
aforementioned values of the power-law index and yield stress in Eqs. (36) and (37), 
we get the values of the coefficient of longitudinal convection ( )1K t  and coefficient 

of longitudinal diffusion ( )2K t  for the dispersion of solute in Newtonian fluid flow 

as zero and ( ) ( )21 1 192Pe +  respectively. So, if the higher order terms in Eq. (27) 

are neglected, then it reduces to a simple diffusion equation for ( )mC z,t with 

diffusion coefficient as ( )2K t . Once ( )2K t  is known, ( )2f r ,t can be obtained from 

Eq. (30). The method of obtaining ( )2f r ,t  from Eq. (30) is very similar to the 

method that was applied to get ( )1f r ,t . Substitution of the expression of ( )2f r,t  in 

Eq. (37) yields ( )3K t  and proceeding in a similar way, one can find ( )3f r ,t ,  ( )4K t ,

( )4f r ,t , ( )5K t  and so on from Eqs. (31) and (37) recursively. Since the solutions 

obtained for ( )1f r ,t  and ( )2K t  are very lengthy and highly complicated, it is 

cumbersome to find the higher order dispersion function ( )2f r ,t and diffusion 

coefficient ( )3K t  and so on. 

Since the value of the dispersion coefficient ( )3K t  for Newtonian fluid is 

( )3 1 23040K t →∞ = −  which is negligibly small, the magnitude of the higher order 
coefficients decreases very significantly [26]. It is also observed that the dispersion 
coefficients ( )2 1 2jK j , ,...+ =  can be calculated from Eq. (37), but the values of these 

dispersion coefficients are very small when compared to ( )2K t  and hence, in the 
present study, we have ignored the computation of the dispersion coefficients 

( )2 1 2jK j , ,...+ = . 
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2.1.3.3 Solution for mean concentration ( )1mC z ,t  
Since the magnitude of the coefficients ( ) ( ) ( )3 4 5K t , K t ,K t ,.....are negligibly small, 
on neglecting the terms involving these coefficients, Eq. (27) simplifies to 

( )
2

2 2
1

m mC CK t .
t z

∂ ∂
=

∂ ∂
      (53) 

The mean concentration of the solute ( )1mC z ,t  has the following initial and boundary 
conditions. 

( ) 1
1

1

1 if 2
0

0 if 2
s

m
s

z z
C z ,

z z
 ≤=  ≥

      (54) 

( ) 0mC ,t∞ =       (55) 
Solving Eq. (53) subject to the initial and boundary conditions (54) and (55), we 
obtain the expression for mean concentration of the solute as [25] 

( ) ( ) ( )1 1
1 2 1 2

2 21
2 2 2

s s
m

z z z z
C z,t erf erf

ξ ξ
 − +   

= +    
     

      (56) 

where 

( ) ( )20

t
t K t dtξ = ∫       (57) 

From Eq.(56), one can observe that at any time t, the mean concentration ( )1mC z ,t  is 

symmetric about a point which moves with the average velocity ( )m pu r of the fluid. 

Substituting the expressions obtained so far for the mean concentration ( )1,mC z t and 

the dispersion function ( )1f r ,t  in Eq. (24) (neglecting the higher order terms), one 

can get the expression for the local concentration ( )1C r,z ,t (with first order 
approximation) as given below. 

( ) ( ) ( ) ( )1 1 1 1
1

m
m

CC r,z ,t C z ,t f r ,t z ,t
z

∂
= +

∂
      (58) 

 
2.2 Flow in Channel 
2.2.1 Governing equations 
Consider the unsteady dispersion of a bolus of solute of initial length sz units in the 
steady, laminar and fully developed slow flow of viscous incompressible non-
Newtonian fluid through a channel of width 2h  bounded by two parallel flat plates. 
We consider the non-Newtonian fluid flowing in the channel as Herschel-Bulkley (H-
B) fluid model. Cartesian coordinate system ( )x ,z  is used to analyze the flow 
between the parallel flat plates, where x and z are the coordinates taken in the 
vertical (transverse) and axial (longitudinal) directions respectively, as shown in Fig. 
1(b). For the steady flow of viscous incompressible (H-B) fluid, the momentum 
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equations in the axial and transverse directions reduce to the following equations. 

( )dp d
dz dx

τ= −       (59) 

and 

0dp
dx

=       (60) 

where p  is the pressure and τ  is the shear stress. Eq. (60) implies that pressure is 
constant in the transverse direction x  and it varies only in the axial direction z . The 
constitutive equation of the H-B fluid is given by 

( )1 if

0 if

n

y y

y

du
dx

τ τ τ τ
η

τ τ

 − >− = 
 ≤

      (61) 

where u  is the velocity of the fluid in the axial direction, η  is the coefficient of 

viscosity (at high rate of shear) of H-B fluid model with dimension ( ) TTML n21 −− , n 
the is power-law index, yτ  is the yield stress. Eqs. (59) and (61) form the system of 
nonlinear differential equations which can be solved for the unknowns shear stress τ  
and velocity u  with the following boundary conditions. 

is finite at 0xτ =       (62) 
0atu x h= =       (63) 

The simplified form of the unsteady convective diffusion equation for the dispersion 
of solute in the steady, laminar, fully developed flow of H-B fluid is given below. 

2
2

2m
C Cu D L C
t z z

 ∂ ∂ ∂
+ = + ∂ ∂ ∂ 

      (64) 

where L x=∂ ∂ , C  is the concentration of the solute, t  is the time of the dispersion 
process and mD  is the coefficient of molecular diffusion. The initial and boundary 
conditions governing the flow are 

( )
0 if 

2

0 if 
2

s

s

zC , z
C x , z , t

z, z

 ≤= 
 >


      (65) 

( ) 0C x , t∞ =       (66) 

( ) ( )0 0C C, z t h , z t
x x

∂ ∂
= =

∂ ∂
      (67) 

 
2.2.2 Non-dimensional variables 
Let us introduce the following non-dimensional variables. 

( ) ( )2 2
0 0 0

ymp m
p y

xu x
u h h h u

D z D tCC , u , x , x , z , t , ,
C h dp dh z h dp dz

τττ τ= = = = = = = =
− −

      (68) 
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where 

( )
1

0
1

1 2

nnh dpu
n dzη

+  = − +  
      (69) 

is the characteristic velocity. Integrating Eq. (59) with respect to x and then using the 
non-dimensional variables (68), we get the expression for the shear stress as xτ = . 
Replacing x  by px  in xτ = , one can easily obtain the expression for yield stress as 

y pxτ = . 
Applying the non-dimensional variables (68) in Eq. (61), we obtain the non-
dimensional form of the constitutive equation of H-B fluid model as below. 

( ) if

0 if

n

y y

y

du
dx

τ τ τ τ

τ τ

 − >− = 
≤

      (70) 

The non-dimensional form of the boundary condition (63) is 
0 atu x h= =       (71) 

Substituting the non-dimensional variables (68) into Eq. (64) one can get the non-
dimensional form of the unsteady convective diffusion as given below. 

2
2

2 2

1C Cu L C
t z Pe z

 ∂ ∂ ∂
+ = + ∂ ∂ ∂ 

      (72) 

where L x= ∂ ∂  and 0 mPe hu D=  is the Peclet number. The non-dimensional form 

of the initial and boundary conditions (65)-(67) for the concentration ( )C z,x,t  of the 
solute are 

( )
1 if 2

0
0 if  2

s

s

z z
C x, z,

z z
 ≤=  >

      (73) 

( ) 0C x, , t∞ =       (74) 

( ) ( )0 0 1C C, z, t , z, t
x x

∂ ∂
= =

∂ ∂
      (75) 

 
2.2.3 Method of solution 
Applying binomial series expansion for ( )n

yτ τ− in Eq. (70) and then approximating 

the series expansion to first two terms followed by, making use of xτ = , y pxτ =  and 
Eq. (71) in the resulting equation. Hence, we obtain the expression for the velocity of 
the H-B fluid in the outer flow (shear flow) region in the form 

( ) ( ) ( ) ( ) ( )1 2 11
1 1 1 1

2
n n n

p p

n n
u x x n x x x x+ −
+

+
= − − + − + −       (76) 

The velocity of the H-B fluid in the plug flow (unshear flow) region is obtained from 
Eq. (76) by replacing x  by px  and is given below. 
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( ) ( ) ( ) ( )2 11 1
1 1

2 2
n

p p p p

n n n n
u x n x x x +
−

+ −
= − + + −       (77) 

Using Eqs. (76) and (77), we get the expression for the mean velocity as below. 

( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

2
2 231 2 1 2

1
2 1 2 2 1

n
m p p p p

n nn n n n n
u x x x x

n n n
+

 −+ + − +
= − + − 

+ + +  
      (78) 

Let the solute’s convection occurs across a plane which moves with the average 
velocity mu  of the H-B fluid so that the axis is moving with the mean speed of the H-

B fluid flow. Hence, we define a new coordinate system ( )1x, z  with the new axial 

coordinate 1z  defined by 

1 mz z u t= −       (79) 
Using the generalized dispersion model of Gill and Sankarasubramanian [12], let us 
assume the solution of Eq. (72) as a derivative series expansion involving 1

j j
mC z∂ ∂ , 

as given below. 

( ) ( ) ( ) ( )1 1 1
1 1

j
m

m j j
j

CC x,z ,t = C z ,t f x,t z ,t
z

∞

=

∂
+

∂∑       (80) 

where 

( ) ( )
1

1 10mC z , t C x, z t dx= ∫       (81) 

is the mean concentration of the solute over a cross section, ( )jf x, t  dispersion 

function corresponding to 1
j j

mC z∂ ∂ . Using Eq. (80) in Eq. (72), one can get 

( ) ( )
2 1

2
2 2 1

11 1 1 1

1 j j
jm m m m m

m j m jj j
j

fC C C C Cu u L f u u f
t z Pe z t z z

+∞

+
=

∂ ∂ ∂ ∂ ∂ ∂
+ − − + − + − ∂ ∂ ∂ ∂ ∂ ∂ 

∑  

2 1

2 2
1 1

1 0
j j

m m
j jj j

C Cf f
Pe z t z

+ +

+

∂ ∂
+ =∂ ∂ ∂ 

      (82) 

As in the section 2.1.3, let us express the generalized dispersion model for ( )1mC z , t  

with the dispersion coefficients ( )iK t  as function of time t  is shown as below. 

( )
1 1

i
m m

i i
i

C CK t
t z

∞

=

∂ ∂
=

∂ ∂∑       (83) 

The physical significance of ( )1K t  and ( )2K t  in the dispersion of solutes is 
mentioned in section 2.1.3. Using Eq. (83) in Eq. (82) and grouping the coefficients of 

1 1 2j j
mC z , j , ,....∂ ∂ =  together, one can obtain 

( ) ( ) ( ) ( ) ( )
2

2 21 2
1 1 2 1 1 1 2 2 2

1 1

1m m
m m

C Cf fL f u u K t L f u u f K t f K t
t z t Pe z

∂ ∂∂ ∂   − + − + + − + − + + −   ∂ ∂ ∂ ∂   
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( ) ( ) ( )
21

2 2
2 1 2 22 2

1 1 1

1 0
jj

j m
j m j j i j i j j

j i

f CL f u u f f K t f K t
t Pe z

++∞
+

+ + + − + +
= =

∂  ∂
+ − + − − + + = ∂ ∂ 
∑ ∑

      
(84)

 
As in section 2.1.3, equating the coefficients of 1

j j
mC z∂ ∂  to zero in the above 

equation for 1 2 3j , , ,...= , we obtain the following infinite system of partial differential 
equations. 

( ) ( )21
1 1 0m

f L f u u K t
t

∂
− + − + =

∂
      (85) 

( ) ( ) ( )22
2 1 1 2 2

1 0m
f L f u u K t f K t
t Pe

∂
− + − + + − =  ∂

      (86) 

( ) ( ) ( ) ( )
2

2 2
2 1 1 2 22

2

1 0
j

j
j m j j i j i

i

f
L f u u K t f K t f K t f

t Pe

+
+

+ + + −
=

∂  − + − + + − + =    ∂  
∑  

for 1 2j , ,...,=  with 0 1f .=       (87) 

Since ( )1C x, z , t  is expressed in terms of ( )1mC z , t  in Eq. (80), ( )1mC z , t  can be 

chosen to satisfy the initial and boundary conditions of ( )1C x, z , t . The initial and 

boundary conditions for ( )jf x, t  can be obtained from (73)-(75) and (80) as below. 

( )0 0jf x, =       (88) 

( ) ( )0 0 1j jf f
, t , t

x x
∂ ∂

= =
∂ ∂

      (89) 

From Eqs. (80) and (81) we get the solvability condition as 

( )
1

0
0jf x, t dx =∫       (90) 

Integrating Eq. (85) with respect to x  from 0 to 1 and then using the solvability 
condition (90), one can get 

( ) ( )
1

1 0
0mK t u u dx= − − =∫       (91) 

Applying the similar procedure to Eqs. (86) and (87), we get 

( )
1

2 12 0

1K t f u dx
Pe

= − ∫       (92) 

( )
1

2 10
1 2j jK t f u dx, j , ,...+ += − =∫       (93) 

 
2.2.3.1 Solution of ( )1f x, t  and ( )2K t  

As in the subsection 2.1.3.1, let us express ( )1f x,t  as below. 

( ) ( ) ( )1 1 1s tf x,t f x f x,t= +       (94) 

where ( )1sf x  is the steady part of the dispersion function and ( )1tf x,t is the unsteady 
part of the dispersion function. Using Eq. (94) in Eq. (85) and proceeding in the same 
way as in subsection 2.1.3.1, we get the following differential equations respectively 
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for ( )1sf x  and ( )1tf x,t . 

( )2
1 0s mL f u u− − =       (95) 

21
1

t
t

f L f
t

∂
=

∂
      (96) 

As in the subsection 2.1.3.1, one can obtain the boundary and initial conditions of 
( )1sf x  and ( )1tf x,t  as below. 

( ) ( )1 10 0 1s sdf dfx x
dx dx

= = = =       (97) 

( ) ( )1 10 0 1t tf f, t , t .
x x

∂ ∂
= =

∂ ∂       
(98) 

( ) ( )1 10t sf x, f x= −       (99) 
The solvability condition (90) takes the following form. 

1 1

1 10 0t sf dx f dx= −∫ ∫     (100) 

Solving Eq. (95) subject to the boundary conditions (97), we get the following 
expressions for steady state dispersion function in the plug core and non-plug core 
regions, respectively. 

( ) ( )
( ) ( ) ( )

( )

2
2 1 2 2

1 2

31 11 1
2 2 2 4 4 4 2

n n
s p p p p

n nn n n
f x x x x x x CI

n n−

+ +
 −+ −
 = − + − + −

+ +       
(101)

 

( ) ( )
( ) ( )

( )
( )

4 3 2 2
3 2

1

2 5 6 4 3
4 2 3 2 2

n n
s p p

n n n n n n
f x x x x

n n n+

+ +
+ − − + −

= −
+ + +

 

( )
( ) ( )

( )

2
2 2 2

311 1
2 2 2 4 4 2

n
p p p

n nn
x x x x

n n
+

 −+
 + − + +

+ +  
 

( ) ( )( )
1 2 3

2
1 1 1
2 2 2 3

n n n
p px x x x x CI

n n n
+ + +− + − −

+ + +
    (102) 

where 
( )

( )( )
( )

( )( )
( )( )

( )
( )
( )

2
2 2

2

33 5 1 4
6 2 3 6 2 3 1 22 6 2

n
p p p

n nn n n n n
CI x x x

n n n n n n
+

−− + − +
= − + + −

+ + + + + +
 

( )
( )( )

( )( )
( )( )( )

4 3 2 4 3 2
3 4

2 5 6 4 1 4 5 18 12
4 2 3 1 22 3 4

n n
p p

n n n n n n n n n
x x

n n n n n
+ +

− − − − + + − − +
− +

+ + + + +
    (103) 

Solving Eq. (96) by variables separable method, we get the solution for ( )1tf x,t  and 
is given below [26]. 

( ) ( ){ }2-
1

1

mλ t
m mt

m
f x, t cos xA e λ

∞

=

=∑     (104) 

where 
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( ) ( )

( )
( ) ( ) [ ]

1

1 1
0

1 3 41
2 0

0

2 2
n s

n n s

n

x
x

x

cos f x dx
A cos f x dx I I

cos dx

λ
λ

λ
= − = − = − +
∫

∫
∫

 (105) 

where 

( ) ( ) ( )
( ) ( ) ( )

( )

2
2 1 2

3 1
0

31 11 1
2 2 2 4 4 4 2

rp
n n

n s p p p p

n nn n n
I cos f x dx x x x x

n n
xλ

−

+ +
 −+ −

= = − + − + 
+ +  

∫  

( ) ( ) ( ) ( )2 2

3 2

2 2p n p n p p n p n

n n n

x sin x x cos x sin x
CI

λ λ λ λ

λ λ λ

 −
 × + −
  

    (106) 

and ( ) ( )
1

4 1n s
rp

cosI xx f dx.λ
+

= ∫  This expression is evaluated using Mathematica and 

data required from this part for plotting the graphs is obtained directly from 
Mathematica. Using Eqs. (94), (101)-(106) in Eq. (92), we get the expression for 

( )2K t  and is given in Appendix C. Since the solution of mean concentration 

( )1mC z ,t  is the same as in the case of flow in pipe in subsection 2.1.3.3 (Eqs. (53)-
(57)), we have not repeated the same procedure here. The expression for the 
concentration of the solution in the flow through channel is given below. 

( ) ( ) ( ) ( )1 1 1 1
1

m
m

CC x,z ,t C z ,t f x,t z ,t
z

∂
= +

∂
    (107) 

 
 
3. Results and discussion 
The main objective of the present study is to analyze mathematically the unsteady 
dispersion of a solute in H-B fluid flowing through (i) pipe and (ii) channel between 
parallel flat plates and provide some possible applications of this study to blood flow 
in narrow arteries when a bolus of solute is injected into the blood stream. It is also 
aimed to discuss the effects of the physical parameters such as yield stress, power-law 
index and time on the physiologically important flow quantities such as longitudinal 
dispersion coefficient relative effective diffusivity and relative axial diffusivity. 
 
3.1 Longitudinal dispersion 
In the investigation of the shear augmented dispersion of solutes in blood (modeled as 
H-B fluid) flow, the coefficient of effective longitudinal diffusion ( )2K t  is a 
physiologically important measurement which describes the entire dispersion process 
in terms of a simple diffusion process in the axial direction 1z . Figs. 2(a) and 2(b) 

sketch the variation of the dispersion coefficient ( ) ( )2
2192 1K t Pe −   

with time in 

the dispersion of solutes in pipe flow and the dispersion coefficient 
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( ) ( ) ( )2
2945 8 1K t Pe −   

with time in channel flow, respectively, for different values 

of the plug core radius with n = 0.95. It is noted that the dispersion coefficient 
(effective longitudinal diffusion) increases rapidly (nonlinearly) with the increase of 
time t from 0 to 0.1 and then it increases slowly with the increase of time t from 0.1 to 
0.2. Then, it becomes almost constant with the increase of time t from 0.2 to 0.5. It 
means that the solute diffuses rapidly in the solvent in the beginning of the dispersion 
process and then it diffuses very slowly or constantly after some time (when time t 
takes large values). It is also observed that dispersion process is relatively faster in 
pipe flow when compared with that in channel flow. It is also seen that the dispersion 
coefficient (longitudinal diffusion coefficient) decreases considerably with the 
increase of the plug core radius both in the cases of solutes dispersion in pipe flow 
and channel flow. Since the yield stress of the flowing fluid is equal to the radius/semi 
width of the plug flow region, one can note that the increase in the yield stress value 
of H-B fluid considerably reduces the longitudinal diffusion of solutes in both pipe 
and channel flow. 
The variations of dispersion coefficient ( ) ( )2

2192 1K t Pe −  with time in pipe flow 

and the dispersion coefficient ( ) ( ) ( )2
2945 8 1K t Pe −  with time in channel flow for 

different fluid models are depicted in Figs. 3(a) and 3(b), respectively. It is noticed 
that the dispersion coefficient (longitudinal diffusion of solutes in Newtonian fluid 
flow is higher than that in power-law fluid flow and also higher than that in H-
B/Bingham/Casson fluid flow. It is also found that the solutes dispersion in H-B fluid 
flow is significantly higher than that in Casson fluid flow. One can easily note that the 
solute dispersion reduces with the increase of the power-law index n of H-B fluid. It is 
of interest to note that the plots for the solutes dispersion in Newtonian fluid flow in 
both pipe and channel flow are in good agreement with the corresponding plots in Fig. 
2(a) and 2(b) of Dash et al. [26]. The dispersion of solutes in any solvent fluid is 
found to be marginally higher in flow through pipe than that in flow through channel. 
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(a) Flow in a pipe. 

 
(b) Flow in a channel. 

 
Figure 2: Variation of the dispersion coefficient with time t for different values of the 
radius/semi-width of the plug core region with n = 0.95 in (a) pipe and (b) channel. 
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a. Flow in a pipe. 

 
b. Flow in a channel. 

 
Figure 3: Variation of dispersion coefficient with time for different fluid models in 
(a) pipe and (b) channel. 
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with the increase of the radius/semi-width of the plug core region. It is noticed that the 
relative axial diffusivity is considerably higher in the flow through pipe when 
compared to the flow through channel. Figs. 5(a) and 5(b) sketches the variation of 
relative axial diffusivity with time for the dispersion of solutes in different fluid 
models flow through pipe and channel. It is observed that the relative effective 
diffusivity is significantly higher when the solutes disperse in H-B fluid flow than 
when the solutes disperse in Casson fluid flow. It is also clear that the effective 
diffusivity of the solutes decreases considerably with the increase of the power-law 
index of the H-B fluid. 
 

 
(a) Flow in a pipe. 

 
(b) Flow in a channel. 

 
Figure 4: Variation of the relative effective diffusivity with time t for different values 
of the radius/semi-width of the plug flow region with n = 0.95 in (a) pipe and (b) 
channel. 
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(a) Flow in a pipe. 

 
(b) Flow in a channel. 

 
Figure 5: Variation of relative effective diffusivity with time for different fluid 
models in (a) pipe and (b) channel. 
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solutes from the mean concentration mC of the solutes. The evolution of the dispersion 
function 1f  over time for dispersion of solutes in flow through pipe and channel for 
different values of the radius/semi-width of the plug core region with n = 0.95 are 
shown in Figs. 6 and 7 respectively. It is observed that for 0p pr x= = , the magnitude 
of the dispersion function 1f  is maximum, i.e. the solute dispersion is maximum in 
the absence of the plug core in the flow stream. It is also noted that the magnitude of 
the dispersion function 1f  increases with time, but it decreases with the increase of 
the radius ( )pr /semi-width ( )px  of the plug core region. It is seen that for a given pr  

or px , the plots of the dispersion function passes through a common point for all time. 
This is the point where the local concentration C of the solute is same as the mean 
concentration mC  of the solute. 
 

 

 
 

Figure 6: Distribution of total solution 1f  at different instants of time t for dispersion 
in a pipe with (a) 0pr = , (b) 0 025pr .= , (c) 0 05pr .= and (d) 0 1pr .= . 
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Figure 7: Distribution of total solution 1f  at different instants of time t for dispersion 
in a channel with (a) 0 0px .= , (b) 0 025px .= , (c) 0 05px .=  and (d) 0 1px .= . 
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(a) Flow in a pipe. 

 

 
(b) Flow in a channel. 

 
Figure 8: Distribution of total solution 1f  for different fluid models in (a) pipe and 
(b) channel. 
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from 0 to 1 and then it decreases rapidly when time t increases from 1 to 2. The mean 
concentration decreases slowly when time t increases further from 2 to 5 for the flow 
in pipe, and it decreases slowly when time t increases further from 2 to 3 for the flow 
in channel. It is also noted that the mean concentration of solute increases 
considerably with the increase of length of the solute when the solute disperses 
through either pipe or channel. It is found that at any instant of time, the mean 
concentration of the solute is marginally higher when it disperses in pipe than when it 
disperses in channel. 

 

 
(a) Flow in pipe 

 
(b) Flow in channel 

 
Figure 9: Variation of the mean concentration of the solute with time t for different 
values of sz  with 0.5, 0.95, 0.1p pz n r x= = = =  and 48Pe = when the solute 
disperses in (a) pipe and (b) channel. 
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Fig. 10 illustrates the variation of mean concentration of the solute with time when it 
disperses through different fluids in pipe and channel with 0.5, 0.95,z n= =

0.1,p pr x= = 48Pe =  and 0.004sz = . It is found that at any instant of time, the 
mean concentration of the solute is marginally higher when it disperses in the flow 
through pipe than when it disperses in the flow through channel. One can also observe 
that at any instant of time, the mean concentration of the solutes is considerably 
higher when it disperses in H-B fluid than when it disperses in Casson fluid. 

 

 
 

Figure 10: Variation of mean concentration of the solute with time when it disperses 
through different fluids in pipe and channel with 0.5, 0.95,z n= = 0.1,p pr x= =

48Pe =  and 0.004sz = . 
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pipe or channel. It is also found that the estimates of the percentage of decrease in 
dispersion of solutes, mean velocity and relative axial diffusivity are considerably 
lower in flow through pipe than the corresponding estimates obtained for the 
dispersion of solutes in flow through channel. 
 
Table 1: Estimates of the percentage of decrease in the dispersion coefficient, mean 
velocity and relative effective diffusivity in the steady dispersion of solutes in H-B 
and Casson fluids flow through pipe for different values of radius of the plug core 
region and power-law index n. 
 
rp Dispersion coefficient Mean velocity Effective axial diffusivity 

H-B fluid Casson 
fluid 

H-B fluid Casson 
fluid 

H-B fluid Casson 
fluid n = 

0.95 
n = 1 n = 

1.05 
n = 
0.95 

n = 1 n = 
1.05 

n = 
0.95 

n = 1 n = 
1.05 

0.02 6.32 6.59 6.86 54.45 2.55 2.67 2.79 29.50 1.36 1.40 1.45 8.35 
0.04 12.44 12.95 13.46 68.75 5.10 5.33 5.57 40.24 2.78 2.87 2.96 12.50 
0.06 18.35 19.09 19.80 77.16 7.65 8.00 8.35 47.87 4.27 4.40 4.53 15.97 
0.08 24.07 24.99 25.88 82.79 10.21 10.67 11.12 53.87 5.83 6.01 6.19 19.13 
0.10 29.58 30.66 31.71 86.81 12.76 13.33 13.89 58.86 7.46 7.69 7.90 22.10 
0.12 34.88 36.09 37.27 89.78 15.33 15.99 16.65 63.10 9.17 9.44 9.70 24.93 
0.14 39.96 41.28 42.56 92.02 17.89 18.65 19.41 66.78 10.95 11.27 11.58 27.68 
0.16 44.82 46.24 47.60 93.75 20.45 21.31 22.15 70.03 12.80 13.17 13.53 30.36 
0.18 49.46 50.94 52.36 95.08 23.02 23.96 24.90 72.92 14.73 15.15 15.55 32.98 
0.20 53.87 55.41 56.86 96.13 25.58 26.61 27.63 75.50 16.73 17.20 17.65 35.55 

 
Table 2: Estimates of the percentage of decrease in the dispersion coefficient, mean 
velocity and relative effective diffusivity in the steady dispersion of solutes in H-B 
and Casson fluids flow through channel for different values of semi-width of the plug 
core region and power-law index n. 
 
xp Dispersion coefficient Mean velocity Effective axial diffusivity 

H-B fluid Casson 
fluid 

H-B fluid Casson 
fluid 

H-B fluid Casson 
fluid n = 

0.95 
n = 1 n = 

1.05 
n = 
0.95 

n = 1 n = 
1.05 

n = 
0.95 

n = 1 n = 
1.05 

0.02 7.44 7.72 7.98 57.24 2.88 3.00 3.12 30.93 1.86 1.92 1.97 10.37 
0.04 14.59 15.10 15.60 71.53 5.76 6.00 6.23 41.99 3.83 3.92 4.02 15.38 
0.06 21.44 22.15 22.85 79.71 8.64 8.99 9.34 49.78 5.87 6.01 6.15 19.53 
0.08 27.97 28.85 29.71 85.06 11.51 11.97 12.43 55.88 7.99 8.18 8.35 23.25 
0.10 34.17 35.20 36.18 88.79 14.39 14.95 15.50 60.89 10.19 10.41 10.63 26.70 
0.12 40.06 41.19 42.28 91.50 17.25 17.91 18.56 65.15 12.44 12.72 12.98 29.94 
0.14 45.61 46.82 47.98 93.49 20.11 20.86 21.60 68.82 14.77 15.09 15.39 33.03 
0.16 50.82 52.10 53.32 95.00 22.95 23.80 24.62 72.03 17.15 17.51 17.85 36.01 
0.18 55.71 57.02 58.27 96.14 25.78 26.71 27.61 74.87 19.58 19.99 20.37 38.88 
0.20 60.27 61.60 62.86 97.02 28.60 29.60 30.58 77.41 22.06 22.51 22.95 41.66 
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3.6 Some possible clinical applications 
The estimates of the dispersion coefficient, mean velocity and relative axial dispersion 
obtained in Table 1 are physiologically important flow quantities [26]. For the 
physiological data of the canine vascular system [14, 17], the estimates of the 
aforesaid flow measurements in the dispersion of solutes in H-B and Casson fluids 
flow through pipe and channel are computed in Table 3 and Table 4, respectively. It is 
observed that in the dispersion of solutes in flow through circular pipe, the estimates 
of the dispersion coefficient, mean velocity relative axial diffusivity decrease 
considerably with the increase of the plug core radius pr . One can noticed that the 
dispersion coefficient and the mean velocity decrease marginally with the increase of 
the power-law index n  except for dispersion coefficient in venules and arterioles 
which is increases marginally with the increase of power-law index n. It is also clear 
that the relative effective axial diffusivity increases marginally with the increase of 
the power-law index n. In the case of dispersion of solutes in the flow through 
channel, the estimates of the aforesaid flow measurements decrease with the increase 
of the power-law index. It is also noticed that the estimates of these flow 
measurements are considerably higher in the dispersion of solutes in H-B fluid flow 
than those in the dispersion of solutes in Casson fluid flow. It is recorded that the 
estimates of these flow measurements are considerably higher in the dispersion of 
solutes in flow through circular pipe than the corresponding estimates obtained from 
the dispersion of solutes in the flow through channel for the inferior vena cava, 
venules and arterioles but considerably lower in the ascending aorta. 
 
Table 3: Estimates of dispersion coefficient, mean velocity and relative axial 
diffusivity in the dispersion of solutes in pipe flow at t = 0.1 for the canine vascular 
systems. 
 
Artery type Velocity 

(cm/s) 
Diameter 
(cm) 

pr  Dispersion coefficient Mean velocity Relative axial 
diffusivity 

n = 
0.95 

n = 1 n = 
1.05 

Cass
on 
fluid 

n = 
0.95 

n = 
1 

n = 
1.05 

Cass
on 
fluid 

n = 
0.95 

n = 
1 

n = 
1.05 

Cass
on 
fluid 

Ascending 
aorta 

20.00 1.500 0.0737 0.62 0.61 0.61 0.15 0.91 0.90 0.89 0.48 0.75 0.75 0.76 0.64 

Inferior vena 
cava 

25.00 1.000 0.0392 0.69 0.69 0.69 0.25 0.95 0.95 0.95 0.59 0.77 0.77 0.77 0.68 

Venules 0.35 0.004 0.0112 0.76 0.77 0.77 0.44 0.99 0.98 0.98 0.77 0.78 0.79 0.79 0.73 

Arterioles 0.75 0.005 0.0065 0.77 0.78 0.78 0.51 0.99 0.99 0.99 0.82 0.79 0.79 0.79 0.74 
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Table 4: Estimates of dispersion coefficient, mean velocity and relative axial 
diffusivity in the dispersion of solutes in channel flow at t = 0.1 for the canine 
vascular systems. 
 
Artery type Velocity 

(cm/s) 
Diameter 
(cm) 

px  Dispersion coefficient Mean velocity Relative axial 
diffusivity 

n = 
0.95 

n = 1 n = 
1.05 

Casso
n 
fluid 

n = 
0.95 

n = 
1 

n = 
1.05 

Cass
on 
fluid 

n = 
0.95 

n = 
1 

n = 
1.05 

Cass
on 
fluid 

Ascending 
aorta 

20.0 1.500 0.0737 0.62 0.62 0.610 0.11 0.99 0.99 0.99 0.46 0.63 0.63 0.63 0.49 

Inferior vena 
cava 

25.0 1.000 0.0390 0.55 0.54 0.533 0.11 0.94 0.94 0.94 0.58 0.62 0.61 0.61 0.31 

Venules 0.35 0.004 0.0112 0.61 0.62 0.601 0.34 0.98 0.98 0.98 0.76 0.63 0.63 0.62 0.59 

Arterioles 0.75 0.005 0.0065 0.62 0.62 0.612 0.39 0.99 0.99 0.99 0.82 0.63 0.63 0.63 0.59 

 
 
4. Conclusion 
This mathematical analysis brings out many interesting and useful results on the unsteady 
dispersion of solutes in blood flow through (i) pipe and (ii) channel, modeling blood as H-B 
fluid model and the results of this study are compared with the results of Dash et al. [26]. The 
major findings of this mathematical model are summarized below. 
(i) For flow in pipe/channel, the dispersion coefficient, relative effective diffusivity and 

magnitude of the dispersion function decrease considerably with the increase of the 
yield stress of H-B/Casson fluid and power-law index of H-B fluid. 

(ii) The dispersion coefficient, relative effective diffusivity and magnitude of the 
dispersion function are considerably higher when the solute disperses in pipe than 
when it disperses in channel. 

(iii) For the solutes dispersion in the flow through pipe/channel, the dispersion coefficient, 
relative effective diffusivity and magnitude of the dispersion function are 
considerably higher when the solute disperses in H-B fluid than when it disperses in 
Casson fluid. 

(iv) The estimates of the percentage of decrease in the dispersion coefficient and effective 
axial diffusivity increase significantly with the increase of yield stress of the H-
B/Casson fluid, and are significantly lower when the solute disperses in H-B fluid 
than when it disperses in Casson fluid. These estimates are lower when the solute 
disperses in the flow through pipe than when it disperses in the flow through channel. 

 
From the results obtained in this study, we observe that there is a substantial 
difference between the flow quantities of H-B fluid model (present results) and 
Casson fluid model [26] and thus, one can expect that the present H-B fluid model 
may be useful in predicting the physiologically important flow quantities with better 
accuracy. Hence, it is conclude that the present mathematical analysis may be 
considered as an improvement in the mathematical modeling of unsteady dispersion 
of solutes in blood flow through narrow arteries. Since blood flow in narrow arteries 
is highly pulsatile in nature, the study on the unsteady dispersion of solutes in 
pulsatile flow of blood would be more realistic and this will be taken up in the near 
future. 
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Appendix A 
The expression obtained after evaluating the integrals 1I  and 2I  appearing in the 
expression of 1tf  (for flow in pipe) are given below. 
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Appendix B 
The expression for ( )2K t in the case of flow in pipe is given below. 
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Appendix C 
The expression for ( )2K t  in the case of flow in channel is given below. 
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where 
1

5 1
0

tI f dxu= ∫  is evaluated using Mathematica and data required from this part 

for plotting the graphs is obtained directly from Mathematica. 
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