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      Abstract:- 

 

The purpose of our paper is to study the existence of α-fuzzy fixed point for 

multivalued fuzzy contraction mapping under Ciric type contractive condition 

in the setting of complete b-metric spaces and an example is given to support 

the main result. 
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1. Introduction:- 

 

 The theory of multivalued mappings has an important role in various branches 

of pure and applied mathematics because of its many applications, for instance, in real 

and complex analysis as well as in optimal control problems. In 1928, Von Neumann 

[2] was the first person to introduce the idea of fixed point for multivalued mappings. 

The development of geometric fixed point theory for multivalued functions was 

initiated by Nadler [7]. 

 The concept of fuzzy set was initiated by Zadeh [3]. Many researches were 

conducted on the generalization of the concept of a fuzzy set. Heilpern [9] introduced 

the concept of fuzzy contraction mappings which maps from an arbitrary set to a 

certain subfamily of fuzzy sets in a metric linear space X. He also proved the 

existence of a fuzzy fixed point theorem which is a generalization of Nadler’s [7] 

fixed point theorem for multivalued mappings. Frigon and Regan [5] generalized the 

Heilpern theorem under a contractive condition for 1-level sets (i.e [Tx]1) of a fuzzy 

contraction T on a complete metric space. 

 In 1993, Czerwik [12] introduced the notion of b-metric spaces which 

generalized the concept of metric spaces and observed a characterization of the 

celebrated Banach fixed point theorem [8] in the context of complete b-metric spaces. 

Subsequently, several other authors studied the fixed point theorem for single valued 
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to multivalued mappings in b-metric spaces (see [1, 6, 11]). 

 In 2015, S. Phiangsungnoen [14] introduced the new concept of multivalued 

fuzzy contraction mappings in b-metric space and gave sufficient conditions for the 

existence of α-fuzzy fixed point for this class of mappings. The aim of this paper is to 

obtain α-fuzzy fixed point for fuzzy contraction mapping T on a b-metric space under 

a contractive condition of Ciric type for α-level sets (i.e [Tx]α) of T in connection with 

Hausdorff metric. This results generalize the various known results proved by S. 

Phiangsungnoen [14]. At last, we observe relation between multivalued mappings and 

fuzzy mappings which can be useful to obtain fixed point for multivalued mappings. 

 

Definition 1.1:-Let X and Y be non empty sets. T is said to be a multivalued mapping 

from X to Y if T is a function from X to the power set of Y. We denote a multivalued 

mapping by X2y. 

A point x  X is said to be a fixed point of multivalued mapping T if x  Tx. We 

denote the set of fixed points of T by Fix(T). 

 

Definition 1.2[12]:-Let X be a non empty set and let s ≥ 1 be a given real number. A 

function d: X × X  R+ is said to be a b-metric if and only if for all x, y, z  X the 

following conditions are satisfied: 

(i) d(x, y) = 0 if and only if x = y; 

(ii) d(x, y) = d(y, x) for all x, y  X; 

(iii) d(x, y)  s[d(x, z) + d(z, y)] for all x, y, z  X. 

Then (X, d) is called a b-metric space. 

 

 Note that a (usual) metric space is evidently b-metric space. However, 

Czerwik [10, 11, 12] has shown that a b-metric on X need not be a metric on X. In 

following example, Singh and Prasad [13] proved that a b-metric on X need not be a 

metric on X. 

 

Example 1.3:-Consider the set X = [0, 1] endowed with the function d: X × XR+ 

defined by d(x, y) = |x – y|2 for all x, y  X. Clearly, (X, d) is a b-metric space with    

s = 2, but it is not a metric space. 

 

Example 1.4:-Let X = {a, b, c} and d(a, c) = d(c, a) = m ≥ 2, d(a, b) = d(b, c) = d(b, a) 

= d(c, b) = 1 and d(a, a) = d(b, b) = d(c, c) = 0. Then,  

                              d(x, y) ≤ 
2

m
[d(x, z) + d(z, y)]  

for all x, y, z  X. If m ˃ 2, the triangle inequality does not hold. 

 

Definition 1.5[6]:-Let (X, d) be a b-metric space. Then a sequence {xn} in X is called: 

(i) Convergent if and only if there exist x  X such that d(xn, x) 0 as n . 

(ii) Cauchy if and only if d(xn, xm) 0 as n, m  . 

(iii) Complete if and only if every Cauchy sequence is convergent. 
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 Let (X, d) be a b-metric space, denote CB(X) the collection of non empty 

closed bounded subsets of X. For A, B  CB(X) and x  X, define the function                   

H: CB(X) × CB(X) R+ by  

                       H(A, B) = max{δ(A, B), δ(B, A)}, 

where δ(A, B) = sup{d(a, B): a  A}, δ(B, A) = sup{d(b, A): b  B}, with                         

d(x, A) = inf{d(x, a), a  A}. Note that H is called the Hausdorff b-metric induced by 

the b-metric d. 

 

Remark 1.6 [10]:-The function H: CL(X) × CL(X) R+ is a generalized Hausdorff 

b-metric, that is H(A, B) = +  if max{δ(A, B), δ(B, A)} do not exist. 

 

 Let (X, d) be a b-metric space. We cite the following lemma from Singh and 

Prasad [13]. 

 

Lemma 1.7[13]:-Let (X, d) be a b-metric space. For any A, B, C  CB(X) and any    

x, y  X, we have the following: 

(i) d(x, B) ≤ d(x, b) for any b  B, 

(ii) d(x, B) ≤ H(A, B) for all x  A, 

(iii) δ(A, B) ≤ H(A, B), 

(iv) H(A, A) = 0, 

(v) H(A, B) = H(B, A), 

(vi) H(A, C) ≤ s(H(A, B) + H(B, C)), 

(vii) d(x, A) ≤ s(d(x, y) + d(y, A)). 

 

Lemma 1.8[13]:-Let (X, d) be a b-metric space. For any A  CB(X) and x  X, then 

we have d(x, A) = 0 x  A̅ = A, where A̅ denotes the closure of the set A. 

 

Let Ѱb be a set of strictly increasing functions in b-metric space, ѱ: [0,  )[0,  ) 

such that  

                        0

n

n
s





 ѱn(t) ˂ +  for each t ˃ 0,  

where ѱn denotes n-th iterate of the function ѱ. It is well known that ѱ(t) ˂ t for all     

t ˃ 0 and ѱ(0) = 0 for t = 0. 

 

 Now we introduced the concept of fuzzy set, fuzzy mappings and α-fuzzy 

fixed point in b-metric space. 

 

Let (X, d) be a b-metric space. A fuzzy set in X is a function with domain X and value 

[0, 1]. If A is a fuzzy set and x  X, then the function value A(x) is called the grade 

of membership of x in A. The collection of all fuzzy sets in X is denoted by Ƒ(X). Let 

A   Ƒ(X) and α   [0, 1]. The α-level set of A, denoted by [A]α is defined by    

                        [A]α = {x: A(x) ≥ α} if α  [0, 1],  

                           [A]0 = { : ( ) 0}x A x  ,  
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whenever B  is a closure of set B in X. 

For A, B   Ƒ(X), a fuzzy set A is said to be more accurate than a fuzzy set B 

(denoted by AB) if and only if Ax ≤ Bx for each x in X, where A(x) and B(x) 

denote the membership function of A and B respectively. Now, for x   X,                

A, B   Ƒ(X), α   [0, 1] and [A]α, [B]α   CB(X), we define  

                            d(x, S) = inf{d(x, a); a S}, 

                            pα(x, A) = inf{d(x, a); a   [A]α },  

                            pα(A, B) = inf{d(a, b); a   [A]α, b   [B]α }, 

                            p(A, B) = sup pα(A, B), and  

                            H([A]α, [B]α) = max 
[ ] [ ]

sup ( ,[ ] ), sup ( ,[ ] )
a A b B

d a B d b A
 

 
 

 
 
 

. 

Here H([A]α, [B]α) is called Hausdorff fuzzy b-metric. 

 

Then the function H: CL(X) × CL(X)   Ƒ(X) is a generalized Hausdorff fuzzy       

b-metric induced by d is defined as  

               H(A, B) = 
max{ ( , ), ( , )}, ;

,

A B B A if themaximumexists
otherwise

 



  

for all A, B   CL(X). 

 

Definition 1.9[4]:-Let (X, d) be a metric space, a self mapping T: X X is called 

Ciric type contraction if and only if for all x, y X, there exist h ˂ 1 and  

         d(Tx, Ty) ≤ h max{d(x, y), d(x, Tx), d(y, Ty), 
1

2
[d(x, Ty), d(y, Tx)]}, 

 

Definition 1.10[14]:-Let X be a nonempty set and Y be a b-metric space. A mapping 

T is said to be a fuzzy mapping if T is a mapping from the set X into Ƒ(Y). The 

function value (Tx)(y) is the grade of membership of y in Tx. 

 

Definition 1.11[14]:-Let (X, d) be a b-metric space and T be a fuzzy mapping from X 

into Ƒ(X). A point z in X is called an α-fuzzy fixed point of T if z ( )[ ] .zTz   

 

 

2. Main Results:- 

 

Theorem 2.1:-Let (X, d) be a complete b-metric space with coefficient s ≥ 1. Let     

T: XƑ(X), α: X(0, 1] such that [Tx]α(x) is a non empty closed subset of X for all 

x   X and ѱ   Ѱb, such that 

                  H([Tx]α(x), [Ty]α(y)) ≤ ѱ(M(x, y)) (2.1) 

where M(x, y) = max{d(x, y), d(x, [Tx]α(x)), d(y, [Ty]α(y)),  

                                        
1

2s
[d(x, [Ty]α(y)), d(y, [Tx]α(x))]},  

for all x, yX. Then T has an α-fuzzy fixed point. 
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Proof:-Let x0 be an arbitrary point in X. Suppose that there exist x1   
0

0 ( )x
Tx


. 

Since  
1

1 ( )x
Tx


is a nonempty closed subset of X. Clearly, if x0 = x1 or x1   

1
1 ( )x

Tx


, 

so x1 is an α-fuzzy fixed point T. Hence, the proof is completed. Thus, throughout the 

proof, we assume that x0 ≠ x1 and x1   
1

1 ( )x
Tx


. Hence d(x1,  

1
1 ( )x

Tx


) ˃ 0, by 

condition (2.1) and ѱ   Ѱb, we have  

        0 ˂ d(x1,  
1

1 ( )x
Tx


) ≤ H(

0 10 ( ) 1 ( )[ ] , [ ] )x xTx Tx   
                                         ≤ ѱ(M(x0, x1))  

                                         = ѱ(max{d(x0, x1),  
0

0 0 ( )
( , )

x
d x Tx


,  

1
1 1 ( )

( , ),
x

d x Tx


  

                                                         
 

1
0 1 ( )

1
[ ( , ),

2 x
d x Tx

s 
  

0
1 0 ( )

( , )]})
x

d x Tx
  

                                         ≤ ѱ(max{d(x0, x1), d(x0, x1),  
1

1 1 ( )
( , ),

x
d x Tx

  

                                                     0 1

1
[ ( ( , )

2
s d x x

s
 +  

1
1 1 1 1( )

( , )) ( , )]})
x

d x Tx d x x


   

                                         = ѱ(max{d(x0, x1), d(x0, x1),  
1

1 1 ( )
( , ),

x
d x Tx


  

                                                       
0 1

1
[( ( , )

2
d x x  +  

1
1 1 ( )

( , )]})
x

d x Tx


  

                                         = ѱ(max{d(x0, x1),  
1

1 1 ( )
( , )}).

x
d x Tx


 

If max{d(x0, x1), 
11 1 ( )( , [ ] )xd x Tx  } = 

11 1 ( )( , [ ] )xd x Tx  , then we have  

                0 ˂ 
11 1 ( )( , [ ] )xd x Tx  ≤ ѱ(

11 1 ( )( , [ ] )xd x Tx  ) ˂ 
11 1 ( )( , [ ] )xd x Tx   

 which is a contradiction. Thus,  

                max{d(x0, x1), 
11 1 ( )( , [ ] )xd x Tx  }= d(x0, x1)  

and since ѱ is a strictly increasing, we have  

                0 ˂ 
11 1 ( )( , [ ] )xd x Tx   ≤ ѱ(d(x0, x1)) ˂ ѱ(rd(x0, x1)), 

 where r ˃ 1 is a real number. This ensures that there exist x2 
11 ( )[ ] xTx   and x1 ≠ x2 

such that 

                 0 ˂ d(x1, x2) ≤ ѱ(d(x0, x1)) ˂ ѱ(rd(x0, x1)). 

Since, 
22 ( )[ ] )xTx   is a nonempty closed subset of X. We assume that x2 

22 ( )[ ] )xTx   

then, 
22 2 ( )( , [ ] )xd x Tx  ˃ 0 by condition (2.1) and ѱ   Ѱb, we also have 

            0 ˂ d(x2,  
2

2 ( )x
Tx


) ≤ H( 

1
1 ( )

,
x

Tx


 
2

2 ( )
)

x
Tx

  
                                              ≤ ѱ(max{d(x1, x2),  

1
1 1 ( )

( , )
x

d x Tx


,  
2

2 2 ( )
( , ),

x
d x Tx


  

                                                       
 

2
1 2 ( )

1
[ ( , ),

2 x
d x Tx

s 
  

1
2 1 ( )

( , )]})
x

d x Tx
  

                                              = ѱ(max{d(x1, x2),  
2

2 2 ( )
( , )}).

x
d x Tx


 

If max{d(x1, x2), 
22 2 ( )( , [ ] )xd x Tx  } = 

22 2 ( )( , [ ] )xd x Tx  , then we have 
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           0 ˂ 
22 2 ( )( , [ ] )xd x Tx  ≤ ѱ(

22 2 ( )( , [ ] )xd x Tx  ) ˂ 
22 2 ( )( , [ ] )xd x Tx    

which is a contradiction. Thus,  

                max{d(x1, x2), 
22 2 ( )( , [ ] )xd x Tx  } = d(x1, x2) 

 and since ѱ is strictly increasing, we have 

            0 ˂ 
22 2 ( )( , [ ] )xd x Tx  ≤ ѱ(d(x1, x2)) ˂ ѱ2(rd(x0, x1)). 

Suppose that there exists x3 
22 ( )[ ] xTx   and x2 ≠ x3 such that  

            0 ˂ d(x2, x3) ≤ ѱ(d(x1, x2)) ˂ ѱ2(rd(x0, x1)). 

By induction, we can construct the sequence {xn} in X such that xn  ( )[ ] )
nn xTx  ,   

xn+1  ( )[ ] )
nn xTx  and 

               0 ˂ ( )( ,[ ] )
nn n xd x Tx  ≤ d(xn, xn+1)  

                                               ≤ ѱ (d(xn – 1, xn))  

                                               ˂ ѱn(rd(x0, x1))  

for all n N. For m, n N with m ˃ n, we have 

       d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)] 

                      = sd(xn, xn+1) + sd(xn+1, xm) 

                      ≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)] 

                      = sd(xn, xn+1) + s2d(xn+1, xn+2) +s2d(xn+2, xm) 

                      ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + …+ sm – n – 1 d(xm – 2, xm – 1) 

                            + sm – n d(xm – 1, xm)  

                      ≤ s ѱn(rd(x0, x1)) + s2 ѱn+1(rd(x0, x1))
 +... + sm – n ѱm – 1 (rd(x0, x1))  

                      ≤ 
1

1
ns 

[sn ѱn(rd(x0, x1)) + sn+1 ѱn+1(rd(x0, x1))
 +...  

                             + sm – 1 ѱm – 1 (rd(x0, x1))
 ]. 

Since ѱ   Ѱb, we know that the series 
0

i

i
s





 ѱi (rd(x0, x1)) converges. So {xn} is a 

Cauchy sequence in X. By the completeness of X, there exists x* X such that     

lim
n

xn = x*. Now, we claim that x* ( *)[ *] .xTx 
 

By condition (iii) of b-metric space, we have  

            ( *)( *,[ *] )xd x Tx   ≤ s[d(x*, xn+1) + 1 ( *)( , [ *] )n xd x Tx  ]
  

                                       ≤ s[d(x*, xn+1) + ( ) ( *)([ ] , [ *] )
nn x xH Tx Tx  ]

  
                                       ≤ s[d(x*, xn+1) + ѱ(d(xn, x*))].

 
Letting n and ѱ(0) = 0, we have ( *)( *,[ *] )xd x Tx  =0. Since ( *)[ *] xTx   is closed we 

obtain that x*  ( *)[ *] xTx  . Therefore, x* is an α-fuzzy fixed point of T. This complete 

the proof. 

 

Example 2.2:-Let X = {0, 1, 2} and define d: X × X  R by 
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                        d(x, y) = 

0

1
, {0,1}

4

1
, {0,2}

2

1 , {1,2}.

x y

x y and x y

x y and x y

x y and x y



  


  

  

 

Here (X, d) is a complete b-metric space with the coefficient s = 
4

3
. Define fuzzy 

mapping T: XƑ(X) by 

                        (T0)(t) = (T1)(t) = 

1
0

2

0 1,2

t

t





 

   and 

                         (T2)(t) = 

0 0,2

1
1

2

t

t








 

Define α: X(0, 1] by α(x) = 
1

2
for all x  X. Now we obtain that 

                      [Tx]1/2 = 
{0} 0,1

{1} 2

x
x





 

for x, y   X we get 

            H([T0]1/2, [T2]1/2), H([T1]1/2, [T2]1/2) = H({0}, {1}) =
1

4
. 

            H([T0]1/2, [T1]1/2) = H({0}, {0}) = 0. 

And we know that 

            M(x, y) = max{d(x, y), d(x, [Tx]α(x)), d(y, [Ty]α(y)), 

                                       

1

2s
[d(x, [Ty]α(y)), d(y, [Tx]α(x))]}. 

For M(0, 1), we first calculate 

d(0, 1) = 
1

4
, d(x, [Tx]α(x)) = d(0, [T0]1/2) = d(0, 0) = 0, 

d(y, [Ty]α(y)) = d(1, [T1]1/2) = d(1, 0) = 
1

4
,d(x, [Ty]α(y)) = d(0, [T1]1/2) = d(0, 0) = 0, 

and d(y, [Tx]α(x))] = d(1, [T0]1/2) = d(1, 0) = 
1

4
. 

Thus M(0, 1) = 
1

4
. 

Similarly we have M(0, 2) = 1 and M(1, 2) = 1. 

Define ѱ: [0,  )[0,  ) by 
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                    ѱ (t) = 
1

2
t for all t ˃ 0. Thus we have 

                     H([T0]1/2, [T1]1/2) = 0 ˂ 
1

2
M(0, 1), 

                     H([T0]1/2, [T2]1/2) = 
1

4
˂

1
.1

2  
= 

1

2
M(0, 2), 

         and      H([T0]1/2, [T2]1/2) = 
1

4
˂

1
.1

2  
= 

1

2
M(1, 2), 

for all x, y X. Therefore all conditions of Theorem 2.1 hold and there exist a point   

0X such that 0[T0]1/2
 is α-fuzzy fixed point of T. 

 

Remark 2.2:-If max{d(x, y), d(x, [Tx]α(x)), d(y, [Ty]α(y)), 

                                      

1

2s
[d(x, [Ty]α(y)), d(y, [Tx]α(x))]} = d(x, y), 

in theorem 2.1, then we find the main result Theorem 3.1of [14]. Hence theorem 2.1 is 

an extension of the results [14]. 

 

Corollary 2.3(Theorem 3.1,[14]):-Let (X, d) be a complete b-metric space with 

coefficient s ≥ 1. Let T: XƑ(X), α: X(0, 1] such that [Tx]α(x) is a non empty 

closed subset of X for all xX and ѱ   Ѱb, such that 

                 H([Tx]α(x), [Ty]α(y)) ≤ ѱ(d(x, y)) (2.2) 

for all x, yX. Then T has an α-fuzzy fixed point. 

 

 By substituting ѱ(t) = ct where c   (0, 1), in Theorem 2.1 and corollary 2.3, 

we get the following results. 

 

Corollary 2.4:-Let (X, d) be a complete b-metric space with coefficient s ≥ 1. Let     

T: XƑ(X), α: X(0, 1] such that [Tx]α(x) is a non empty closed subset of X for all 

xX, such that 

              H([Tx]α(x), [Ty]α(y)) ≤ k(M(x, y)) (2.3) 

where M(x, y) = max{d(x, y), d(x, [Tx]α(x)), d(y, [Ty]α(y)), 

                                          

1

2s
[d(x, [Ty]α(y)), d(y, [Tx]α(x))]} 

for all x, yX, where 0 ˂ k ˂ 1. Assume that k ˂ 
1

s
, then T has an α-fuzzy fixed 

point. 

 

Corollary 2.5[14]:-Let (X, d) be a complete b-metric space with coefficient s ≥ 1. Let 

T: XƑ(X), α: X(0, 1] such that [Tx]α(x) is a non empty closed subset of X for all 

xX, such that 

                      H([Tx]α(x), [Ty]α(y)) ≤ k(d(x, y)) (2.4) 

for all x, yX, where 0 ˂ k ˂ 1. Assume that k ˂ 
1

s
, then T has an α-fuzzy fixed 
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point. 

 

Remark 2.6:-If we set s = 1 in Corollary 2.5 and [Tx]α(x)   CB(X), we get the 

following result. 

 

Corollary 2.7[9]:-Let (X, d) be a complete metric space. T is a fuzzy mapping from 

X to Ƒ(X) and α: X(0, 1] be a mapping such that [Tx]α(x) is a non empty closed 

subset of X for all xX, such that 

                H([Tx]α(x), [Ty]α(y)) ≤ k(d(x, y)) (2.5) 

for all x, yX, where 0 ≤ k ˂ 1, then T has an α-fuzzy fixed point. 

 

 Here, we study some relation of multivalued mappings and fuzzy mappings. 

Indeed, we indicate that Corollary 2.4 can be utilized to derive fixed point for 

multivalued mapping. 

 

Corollary 2.8:-Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and 

such that S: XCL(X) be multivalued mapping such that 

                   H(Sx, Sy) ≤ k(M(x, y)) (2.6) 

where M(x, y) = max{d(x, y), d(x, Sx), d(y, Sy), 
1

2s
[d(x, Sy), d(y, Sx)]} 

for all x, yX, where 0 ˂ k ˂ 1. Assume that k ˂ 
1

s
, then there exist u   X such that 

u   Su. 

 

Proof:-Let α: X(0, 1] be an arbitrary mapping and T: XƑ(X) defined by 

                             (Tx)(t) = 
( )

0

x t Sx
t Sx

 



 

By a routine calculation, we obtain that 

                             [Tx]α(x) = {t: (Tx)(t) ≥ α(x)} = Sx. 

Now condition (2.6) become condition (2.3). Therefore, Corollary 2.4 can be applied 

to obtain u   X such that u  [Tu]α(x) = Su. This implies that multivalued mapping S 

have a fixed point. This complete the proof. 

By taking M(x, y) = d(x, y) in Corollary 2.8, we get the following result. 

 

Corollary 2.9[10]:-Let (X, d) be a complete b-metric space with coefficient s ≥ 1 and 

such that S: XCL(X) be multivalued mapping such that 

                       H(Sx, Sy) ≤ k(d(x, y)) (2.7) 

or all x, yX, where 0 ˂ k ˂ 1. Assume that k ˂ 
1

s
, then there exist u   X such that   

u   Su. 
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