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Abstract 

 

An understanding of the spread of infection from one individual to another 

individual is a very important concern in order to prevent major outbreaks. In 

this work stochastic modelling is used to gain insight into the dynamics of an 

epidemic. This work deals with a commonly used simple SIR-model; a 

compartment model with three states: susceptible, infected, and recovered. We 

have described the changes in the state variable of the model and also estimated 

model parameters by taking into account recovery and infection times are 

continuous. A Markov Chain Monte Carlo (MCMC) approach is used to handle 

the estimation of different parameters. 

 

Keywords: infectious disease, MCMC, SIR model, Monte Carlo simulation, 

epidemic. 

 

 

Introduction 

Now a day’s infectious disease spread has a great concern to public health analytics. 

Hence it is essential to design strategies for managing disease threat to humans and it 

is possible through infectious disease modelling. In the present work, we have 

demonstrated framework for describing infectious diseases and estimate its parameters 

to fit specific observations on recovery and infection times for continuous time SIR-

model. The modelling of disease transmission behavior takes a practical approach to 

the area of simulation. 

Initially, well-known formulas on how to obtain maximum likelihood estimates for β 

and γ in case of full observations are derived. Hereafter, an approach for handling 

estimation, in case of missing infection times is presented through Bayesian analysis 

using Markov Chain Monte Carlo (MCMC) methods. Our goal is to obtain a sufficient 

understanding for creating an own implementation of the SIR-estimation procedures 
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with the help of Markov Chain Monte Carlo (MCMC) methods of model parameters. 

The transmission rate is the most difficult parameter to estimate in model. Some 

attempts have been made to establish it ‘bottom up’ from a priori knowledge of host 

and disease behavior, to predict probable disease dynamics and control in a host in 

which it had not yet become established [1]. De Leo and Dobson [2] have suggested a 

method based on ‘Allometry’ that might provide order of magnitude estimates of the 

transmission rate in the absence of other data. Two other approaches are more 

commonly used. One is to deduce the transmission coefficient and the form of the 

transmission function from results of experiments [3]. The second is to deduce it from 

observations of disease behaviour in the field, in particular Prevalence and dynamic 

responses to perturbations such as control of the host (such as culling). Finkenstadt and 

Grenfell [4] have recently developed a statistically rigorous method for estimating 

transmission rates from a time series of pathogen prevalence. 

Earlier, it is shown that, the behavior of Host–pathogen models is greatly affected by 

the way in which transmission between infected and susceptible hosts are modelled [5]. 

Hohle M. and Jorgensen E. [6] did mathematical modelling to gain insight into the 

dynamics of an epidemic. They have given a rigorous treatment of an existing technique 

to handle estimation in partially observed epidemics using Markov Chain Monte Carlo 

(MCMC). The aim of this report is to extend the basic SIR model to handle two 

common situations: course of the epidemic and population heterogeneity due to the 

spatial layout of confinement. 

 

 

Model 

The present study consists of stochastic version of a standard susceptible-Infected-

Removed (SIR) model through infectious disease which indicates the status of 

individuals from one state to another state in which susceptible class 𝑆 to the infective 

class 𝐼 to the removed class 𝑅. 

Here state variables at time t are; 𝑆(𝑡) is the number of susceptible individuals, I(t) is 

the number of infected individuals, 𝑅(𝑡) is the number of recovered individuals 

and 𝐷(𝑡) is the number of removed/dead individuals. In a standard SIR model we 

considered all the Recovered and Dead individuals into a single removed class 𝑅 with 

the assumption of population is closed to immigration or emigration so that 𝑆(𝑡) +
𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡)  =  𝑁, where 𝑁 is constant. Now, SIR model [5,7,8] is described 

as follows 

𝑑𝑆

𝑑𝑡
=  −𝑘𝑆𝑙𝑛 (1 +

𝛽𝐼

𝑘
) (1) 

𝑑𝐼

𝑑𝑡
=  𝑘𝑆𝑙𝑛 (1 +

𝛽𝐼

𝑘
) − (𝛾 + 𝜇)𝐼 (2) 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼 (3) 

𝑑𝐷

𝑑𝑡
=  𝜇𝐼 (4) 

Where the model parameters are described as β is transmission rate, k is over dispersion 
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parameter, μ is death rate and γ is rate of recovery to the immune class. The negative 

binomial distribution can be taken as a compound stochastic process in which 

encounters between infected and susceptible individuals occur randomly. This SIR 

model formulation leads to a natural discrete time approximation for the number of 

infections(𝐼), recoveries(𝑅̂), and deaths (𝐷̂) arising in the unit time interval from 𝑡 

to (𝑡 + 1). Assuming the total number of infected individuals 𝐼, is approximately 

constant and integrating Eq. (1) over a unit time interval gives 

𝑆(𝑡 + 1) = 𝑆(𝑡) (
𝑘

𝑘+𝛽𝐼(𝑡)
)

𝑘

, (5) 

so that the fraction of susceptible individuals surviving throughout a unit time interval 

is (
𝑘

𝑘+𝛽𝐼(𝑡)
)

𝑘

. When viewed as a discrete time stochastic process, where the mean 

number of remaining susceptible individuals is given by Eq. (5), the mean number of 

new infections occurring between time 𝑡 and (𝑡 + 1) is 

𝑆(𝑡) [1 − (
𝑘

𝑘+𝛽𝐼(𝑡)
)

𝑘

]. (6) 

Therefore, if S(t) = s and I(t) = i, we may sensibly take the new infections Î at time 
(t + 1) to follow 

𝐼|𝑠, 𝑖~𝐵𝑖𝑛(𝑠, 𝑝𝑖(𝑖, 𝛽, 𝑘)), where 𝑝𝑖(𝑖, 𝛽, 𝑘) = 1 − (
𝑘

𝑘+𝛽𝑖
)

𝑘

 (7) 

Similarly, by integrating Eqs (2 and 3), the number of recoveries and deaths occurring 

between time t and (t + 1) can be described by 

𝑅̂|𝑖~𝐵𝑖𝑛(𝑖, 𝑝𝑟), where 𝑝𝑟 = 1 − 𝑒−𝛾 (8) 

𝐷̂|𝑖, 𝑟̂~𝐵𝑖𝑛(𝑖 − 𝑟̂, 𝑝𝑑), where 𝑝𝑑 = 1 − 𝑒−𝜇 (9) 

Here, (𝑠, 𝑖, 𝑟) denote the realized value of the associated capital letter random variable. 

In this discrete time approximation we have assumed a particular ordering of events, 

namely that recoveries occur first, followed by deaths from among those infected 

individuals who did not recover, followed by new infections. Simulation studies 

indicated that these assumptions, as well as other possible orderings, resulted in system 

dynamics that were equal in expectation to the deterministic solutions to the continuous 

time SIR model. 

 

 

Parameter Estimation 
Particularly, we have used Markov Chain Monte Carlo (MCMC) [9, 10] to find the 

posterior distributions of 𝛽, 𝑘, 𝛾 and 𝜇. 

Let 𝑖𝑡̂ = 𝑆(𝑡 − 1) − 𝑆(𝑡) be the number of new infected at time 𝑇, and similarly for the 

newly recovered and dead individuals 𝑟̂𝑡 and 𝑑̂𝑡 so that 𝑟̂𝑡 + 𝑑̂𝑡 = 𝐼(𝑡 − 1). Then, the 

likelihood function for the observed data up to time 𝑇 is given below 

∏ 𝐵𝑖𝑛(𝑖̂𝑡|𝑆(𝑡 − 1), 𝑝𝑖(𝐼(𝑡 − 1), 𝛽, 𝑘))𝑇
𝑡=1 × ∑ 𝐵𝑖𝑛(𝑟̂𝑡|𝑝𝑟)𝑇

𝑡=1 × ∏ 𝐵𝑖𝑛(𝑑̂𝑡|𝐼(𝑡) − 𝑟̂𝑡 , 𝑝𝑑)𝑇
𝑡=1  (10) 

Above equation (10) consists of three mutually independent components when 
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conditioning on the course of the epidemic. Conditional conjugacy can be exploited for 

𝛾 and 𝜇 via beta priors for 𝑝𝑟 and 𝑝𝑑. A 𝑏𝑒𝑡𝑎(𝑎, 𝑏) prior for 𝑝𝑟 implies that 

𝑝(𝑣) = (1 − 𝑒−𝑣)𝛼𝑟−1𝑒−𝑣𝛽𝑟 (11) 

Conjugate updating leads to the posterior conditional 

𝑝𝑟| … ~𝐵𝑒𝑡𝑎(𝑎 + ∑ 𝑟̂𝑡
𝑇
𝑡=1 , 𝑏 + ∑ 𝐼(𝑡) − 𝑟̂𝑡

𝑇
𝑡=1 ) (12) 

The conditional posterior distribution for 𝛾 is similar to Eq. (11) and can be simulated 

by first drawing 𝑝𝑟 using Eq. (12) and then applying the inverse transformation 𝛾 =
−log (1 − 𝑝𝑑). Sampling for 𝜇 proceeds similarly with 

𝑝𝑑| … ~𝐵𝑒𝑡𝑎(𝑐 + ∑ 𝑑̂𝑡
𝑇
𝑡=1 , 𝑑 + ∑ 𝐼(𝑡) − 𝑟̂𝑡

𝑇
𝑡=1 − 𝑑̂𝑡) (13) 

Then it is possible to consider Gibbs samples for 𝛾 and 𝜇 so long as appropriate 

hyperparameters 𝑎, 𝑏, 𝑐, 𝑑 can be found to represent our prior beliefs. We have 

considered informative prior as uniform for 𝑝𝑟 and 𝑝𝑑. 

Obtaining samples for 𝛽 and 𝑘 requires the Metropolis-Hastings algorithm. So, the 

conditional on a previous sample (𝛽, 𝑘) the next sample (𝛽′, 𝑘′) can be obtained by 

Metropolis-within-Gibbs steps using: 

𝑝(𝛽′|𝑘, … ) ∝ ⌈(𝛽′|𝛼𝑏, 𝛽𝑏) ∏ 𝐵𝑖𝑛(𝑖̂𝑡|𝑆(𝑡 − 1), 𝑝𝑖(𝐼(𝑡 − 1), 𝛽′, 𝑘))𝑇
𝑡=1 , (14) 

 

And 

𝑝(𝑘′|𝛽′, … ) ∝ ⌈(𝑘′|𝛼𝑘, 𝛽𝑘) ∏ 𝐵𝑖𝑛(𝑖̂𝑡|𝑆(𝑡 − 1), 𝑝𝑖(𝐼(𝑡 − 1), 𝛽′, 𝑘′))𝑇
𝑡=1  (15) 

The prior parameterization sets are (𝛼𝑏 , 𝛽𝑏) = (𝛼𝑘, 𝛽𝑘) = (1, 3) which turns out to be 

uninformative on the scale of the support of the posterior. We use random walk uniform 

proposals on the positive real line, i.e. 𝛽′~ 𝑈[3𝑏/4, 4𝑏/3], which gives reasonably 

good mixing in the Markov chain. 

 

 

Application 

To illustrate the above model we have considered influenza disease which posed a new 

challenge to the public health systems and community all over the world. Influenza is 

an emerging infectious disease and influenza-like illness (ILI) is a clinical illness 

caused by the influenza virus, which occurred throughout history. There have been four 

major outbreaks since 1918, each with different characteristics, such as 1918-19 

Spanish flu, 1957-58 Asian flu, 1968 Hong Kong flu, 2004-05 Bird flu and most 

recently 2009-10 Swine flu pandemic. Influenza, commonly known as "the flu", is an 

infectious disease caused by an influenza virus [11]. 

The model samples, desired realizations of model parameters in a stochastic SIR model 

for influenza. We have considered N = 1000 individuals from time 0 to T (40 Days). 

To initialize this process for evaluation of epidemic growth over time, initial values of 

transition rates are considered as β = 0.00218, γ = 0.4, k = 10 and μ = 0 [12]. These 

Monte-Carlo algorithms were developed and analyzed with R software. 

We have performed 10000 iterations for each run of the MCMC algorithm following 

2000 burnin. In order to avoid autocorrelation within successive samples, we have 

allowed every 10th observation to participate in making inference (i.e. thinning) [10]. 

http://www.niaid.nih.gov/topics/Flu/Research/Pandemic/Pages/TimelineHumanPandemics.aspx
https://en.wikipedia.org/wiki/Infectious_disease
https://en.wikipedia.org/wiki/Influenza_virus
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Initialized the program by choosing model parameters as β = 0.2, γ = 0.3, k = 10 

and μ = 0.3. We have also verified that estimates were robust to a change in the initial 

values. We have considered the prior distribution as beta (a, b) with mean a (a + b)⁄  

and variance ab ((a + b)2⁄ (a + b + 1)). The seed used in the simulations was given 

by the computer clock. The joint posterior distribution of parameters was explored by 

MCMC sampling, and characterized by means and equal tailed 90% credible intervals 

(CrI). 

 

 

Results and Conclusions 

By taking recourse of Monte Carlo simulation, we have simulated the population 

trajectories for the above model, which gives us the stochastic SIR model with mean 

trajectories for each compartment in the experimental population, as well as the 5th and 

95th quantiles, are recorded. Figure 1 shows the distribution of the susceptible, infected, 

and recovered individuals in the population as the epidemic progresses. 

 

 
 

Figure 1: SIR epidemic plot for number of susceptible, infected and recovered 

individuals with 5th and 95th quantiles are shown. 

 

 

The output was recorded to constitute samples from the posterior distribution and the 

convergence was visually assessed through trace plots. Trace plots provide a useful 

method for detecting problems with MCMC convergence and mixing [10], see  

Figures 2. 
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Figure 2: Summary of posterior distribution for a) Realizations of Model parameter β, 

b) Realizations of over dispersion model parameter γ, c) Realizations of model 

parameter k and d) Realizations of Model parameter μ. 

 

 

We have estimated posterior means for transmission rate (𝛽), rate of recovery (𝛾), over 

dispersion parameter (𝑘) and death rate (𝜇). It is characterised by average along with 

90% CrI. From the estimates of parameter, we can say that, if the individual is 

infectious, he/she infects others at rate 𝛽 (when all individuals are susceptible) per unit 

time, and the mean duration of the infectious period equals 1 γ⁄ . The Table 1 

summarizes results from the statistical model See Tables 1. 

 

Table 1: Posterior summary of simple SIR model parameter 

 

Parameters  Mean  5th Quantile  95th Quantile 

𝜷  0.00229  0.00196  0.00262 

𝜸  0.35948  0.27778  0.44701 

𝒌  6.22202  2.73678  9.71836 

𝛍  0.02529  0.02229  0.02802 

 

 

The results from Table 1 shows that, the posterior mean of transmission rate in a 

community is 0.00229 (0.00196, 0.00262) per day and the posterior mean rate of 

clearing infection in a community is 0.35948 (0.27778, 0.44701) per day. Also, 

posterior mean of over dispersion parameter is 6.22202 (2.73678, 9.71836). The 

posterior mean of death rate in community is 0.02529 (0.02229, 0.02802) per day. Our 

results are comparable with Murray [12]. 
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Discussion 

This model adjusts fairly well to the pattern of the disease spread in the population and 

efficiently captures effect of the infectious disease transmission. Our model did not take 

into account all factors that are known to affect the disease spread; For example, this 

analysis did not include disease sequel, transmission of infection within household 

members, the infection solidity may depend on serotype of the infection, etc. This work 

is also compatible with other diseases which are practically fit in SIR model. Since, we 

have generated desired data through simulation one can perform analysis by collecting 

real infection data. Despite the inherent limitations of this model, it gives 

comprehensible idea of disease spread. 
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