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Abstract 

 

In the present paper Haar wavelet method is implemented on advection-

dispersion equation representing one dimensional contaminant transport 

through a porous medium. Non uniform flow is considered by assuming 

velocity and dispersion varying with time as an exponentially increasing 

function. Expressing the Haar wavelets in advection-dispersion equation into 

Haar series provides the main advantage in the existing method where the 

simplicity of the Haar wavelet is preserved. The obtained numerical results are 

compared with the exact solution of advection-dispersion equation with 

constants coefficients as there are very few analytical solutions with the 

variable coefficients. The computations are carried out with the aid of the 

MatLab program. It is concluded that Haar wavelet method is easy, efficient 

and convenient. 

 

Keywords: Advection-dispersion equation, Haar wavelet, temporally varying 

coefficients, Peclet number. 

 

 

Introduction 
During the past several years the study was more emphasized towards water supply 

problems and water supply potential of aquifers. However the studies are now 

emphasized more in water quality problems in the past 20 years. Consequently the 

need arises to study the contaminant transport through the subsurface environment. In 

the earlier study the developing methods where focused to analyze aquifers of high 

permeability. However the studies are now focused largely on the reactive and non-

reactive solute transport in adsorbing and non-adsorbing porous media. An extensive 

literature is available on the study of transport and dispersion processes with various 
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kinds of contaminants. The deterministic mathematical models used for most of the 

groundwater models and its computer simulation has gained a technological growth in 

the solute transport in groundwater system. These types of models are generally 

governed by the partial differential equations (PDE) based on basic principles and 

laws. The contaminants being physically, chemically or biologically active the 

transport of contaminants becomes a subject of great importance in engineering and 

science. Usually advection-dispersion equation (ADE) describes the contaminant 

transport through a medium and is a parabolic PDE. This type of equation is broadly 

classified as ADE with constant and variable coefficients. The velocity and 

dispersivity are assumed to be constant in the ADE with constant coefficient, whereas 

velocity and dispersivity vary with either space or time in ADE with variable 

coefficient. 

An extensive literature is available with the exact solutions of ADEin one dimension 

with constant coefficients [6]. There are very few analytical solutions with the 

variable coefficients [1-2] and consequently the numerical solutions are compared 

with the exact solutions of ADE with constant coefficients. The analytical solutions in 

general are restricted with specific boundary conditions and may not have much 

practical importance or may be complex. As a result the numerical solutions can be 

widely used to solve the ADE with non-uniform flow with respect todifferent types of 

initial and boundary conditions. In the present paper a numerical solution is obtained 

for the ADE with non-uniform velocity fields and variable dispersion coefficients 

using Haar wavelet method. Dirichlet boundary conditions at the inflow and out flow 

ends of the flow system and initial condition in the Gaussian form is considered for 

various cases. 

 

 

Model Formulation 
We consider the transport of a contaminant through a homogeneous finite aquifer of 

length L under transient-state flow. Initially it is assumed that the domain is not clean 

and may contain some contamination. The initial contamination may be assumed to 

be non-zero constant or in Gaussian form. The inflow and out-flow conditions of the 

flow system are assumed to be time-dependent. Let ( , )c x t  be the concentration of 

contaminants in the aquifer at position x and time t .  ,v x t and  ,D x t are the velocity 

of the medium transporting the contaminants and the solute dispersion parameter 

respectively.  ,D x t is assumed to be constant if it is independent of position and time 

and known as dispersion coefficient. Then the problem with first-order decay can be 

mathematically formulated as follows: 

   , , , 0 ,0 0
c cR D x t v x t c R c x L t t
t x x


   

       
   

 (1) 

       0 0,D t D V t v t v V t   (2) 



Numerical solution of one dimensional contaminant transport equation 1285 

In equation (1) 1 d dkR
n


   is the retardation factor. dk is distribution coefficient. n

is the porosity, d  is the density and  is the decay constant. In equation (2) 0D  is the 

initial dispersion coefficient and 0v  is the initial velocity. 

Here, we made following assumptions: 

a. Fluid is of constant density and viscosity. 

b. Solute is subject to first-order nonreactive transformation. 

c. No adsorption, 0dk  . 

 

Based on the above assumption, equation (1) reduces to 

   
2

2
, , , 0 ,0 0

c cD x t v x t c x L t t
t x x

   
      

   
 (3) 

Here we considered   mtV t e  where, m  is the flow resistance coefficient. 

 

 

Initial and Boundary Conditions 
We assume that there is some contamination in the flow system initially. Thus in the 

initial condition the initial concentration of the contaminant can be assumed with non-

zero constant value or function of space variable. In the present paper we assume that 

the initial contaminant profile took on a Gaussian shape. We assume 

 

    ,0 ,0c x f x x L    (4) 

To solve equation (3)completely different boundary conditions are associated with it. 

In general Dirichlet, Neumann and Cauchy boundary conditions can be applied at the 

inflow and out flow ends of the flow system. The above three conditions are also 

known as the boundary condition respectively. The value of the concentration is 

represented by first-type, whereas the gradient and flux are represented by second and 

third type boundary condition respectively. In the existing paper the first-type 

boundary condition is implemented at the inflow and out flow of the flow system as 

the time dependent functions of sufficient smoothness as follows 

    1 00, t 0c g t t t    (5) 

    2,c L t g t  (6) 

where 1g  and 2g  are the known sufficient smoothness. 

 

 

Haar Wavelet 

A system of square wave is known as Haar wavelet [3, 4, 5]  ih X which is 

orthogonal and orthonormal. In this system  0h X  is a scaling function,  1h X  is 

known as mother wavelet and all other wavelet transform are given by 
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   1 2 j
nh X h X k  , 2 jn k  , 0j  , 0 2 jk   

The Haar wavelet family for  0,1X   is defined as follows: 

  

0.5
1, , ,

0.5 1
1, , ,

0, .

i

k kX
m m
k kh X X

m m
elsewhere

  
  
 

   
   

 




 (7) 

Here, 2 , 0,1,....., (Maximumlevelof resolution)jm j J  , 0,1,...., 1k m   are known 

as level of wavelets and translation parameter respectively. In equation(7), the index i
is given by 1i m k   where the minimal value is i = 2 and the maximum values 

12 2Ji M   . 

Let        
0 0

,

X X

i i i iP X h X dX Q X P X dX    (8) 

We consider the collocation points given by  0.5 2lX l M  where 1,2,.....,2l M

, through which we get the coefficient matrices , ,H P Q  with 2 2M M  matrices. 

Equation (9) represents the matrix equation for calculating the matrix P  of order m
[13] 

 
 

   

 

2 2

1

2

21

2

m m

m
m

MP H
P

H OM 

 
  

  

 (9) 

in whichO  is a null matrix of order 
2 2

m m
 , 

      0 1 1, ,....,m m m m m mH h x h x h x     (10) 

and
1i x i

m m
   and 1 1

(r)T
m m m mH H diag

m


   

Once  mP  and  mH are calculated the same can be used for solving various 

differential equations. 

 

 

Method of Solution 

Case I: We consider 0

mtD D e  (varying temporally), assuming v constant then 

equation (3) reduces to 

 
2

0 02

mtC C CD e v
t x x

  
 

  
 (11) 

Using the dimensionless variable 
xX
L

  and 0v tT
L

  equation(11) becomes 
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2

02
,0 X 1,0 T T

m TC e C C
T Pe X X


  

     
  

 (12) 

where 0

0

v LPe
D

  is the Peclet number and 
0

m Lm
v

   is dimensionless constant. 

with initial and boundary condition 

  
 

2
2

8,0

X

C X e




  (13) 

  
 

 

2
2 5 2

5 2020
0,

20

T
TC T e

T








 (14) 

  
 

 

2
5 4

10 2020
1,

20

T
TC T e

T








 (15) 

Dividing the time interval into N equal parts,  C X,T  in terms of Haar wavelets is 

expressed as 

    
2

1

,
M

i i
i

C X T a h X


   (16) 

where(  ) and ( ' ) represents differentiation with respect to time and space variable 

respectively,  
T
ma is the row vector in the subinterval  1,s sT T T   is constant. In 

equation(16), T  and X  are integrated from sT  to T  and 0  to X  respectively, the 

variable  C X,T ,  C X,T  C X,T  and  C X,T  can be successively obtained. 

       
2

1

, ,
M

s i i s
i

C X T T T a h X C X T


     (17) 

           
2

1

, , 0, 0,
M

s i i s s
i

C X T T T a P X C X T C T C T


         (18) 

           

   

2

1

, , 0, 0,

0, 0,

M

s i i s s
i

s

C X T T T a Q X C X T C T C T

X C T C T


    

    


 (19) 

       
2

1

, 0, 0,
M

i i
i

C X T a Q X C T X C T


       (20) 

Setting 1X   in equation (19)and(20), we have 

               
2

1

0, 0, 1 1, 1, 0, 0,
M

s s i i s s
i

C T C T T T a Q u T C T C T C T


          (21) 

       
2

1

0, 1 0, 1,
M

i i
i

C T a Q C T C T


      (22) 

Substituting equation (21)and (22)into equation (17)-(20)and discretizing to lX X  and 

1 to sT T  we get 
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         

   
1

2 2

1 1 1

1 1

'

1 1

0, 1 1, 0,

, ,
s

M M

i i l s l i i s s
i i

m T

l s l s

a Q X C T X a Q C T C T

e C X T C X T
Pe



  

 

 

 
     

 

  

 
 (23) 

Using equation(23)theHaar coefficients  2

T
Ma  can be successively obtained. 

 

Case II: We consider 0

mtv v e  (varying temporally), assuming D  constant in 

equation (3)we get 

 
2

0 02

mtC C CD v e
t x x

  
 

  
 (24) 

Using the dimensionless variable 
xX
L

  and 0v tT
L

  equation(24) reduces to 

 
2

'

02

1
0 X 1,0 T Tm TC C Ce

T Pe X X
  

     
  

 (25) 

where 0

0

v LPe
D

  is the Peclet number and 
0

mLm
v

   is dimensionless constant. 

Using initial condition(13)and boundary conditions (14)-(15)and applying Haar 

wavelet method as discussed in case I to equation(25) we get 

         

   1

2 2

1 1 1

1 1

'

1 1

0, 1 1, 0,

1
, ,s

M M

i i l s l i i s s
i i

m T
l s l s

a Q X C T X a Q C T C T

C X T e C X T
Pe



  

 

 

 
     

 

  

 
 (26) 

Using equation(26)the Haar coefficients  2

T
Ma  can be successively obatined. 

 

Case III: We consider, 0

mtD D e and 0

mtv v e (both varying temporally) in 

equation(3) we get 

 
2

0 02

mt mtC C CD e v e
t x x

  
 

  
 (27) 

Using the dimensionless variable 
xX
L

  and 0v tT
L

  equation(27) reduces to 

 
' 2

'

02
0 X 1,0 T T

m T
m TC e C Ce

T Pe X X
  

     
  

 (28) 

where 0

0

v LPe
D

  is the Peclet number and 
0

mLm
v

   is dimensionless constant. 

Using initial condition (13) and boundary conditions (14)-(15) and similarly applying 

Haar wavelet method to equation(28) we get 
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         

   
1

1

2 2

1 1 1

1 1

'
'

1 1

0, 1 1, 0,

, ,
s

s

M M

i i l s l i i s s
i i

m T
m T

l s l s

a Q X C T X a Q C T C T

e C X T e C X T
Pe





  

 

 

 
     

 

  

 
 (29) 

Using equation (29) the Haar coefficients  2

T
Ma  can be successively obtained. 

 

 

Results and Discussion 
The numerical results of equation (3)with respect to initial and boundary conditions 

(13)-(15) are obtained using equation (23) for case (I), equation (26) for case (II) and 

equation (29) for case (III) using values 0 0.1D  , 0 0.8v   and 0.1m  . The 

corresponding graphical representations are shown in Figure (1), (2) and(3). Figures 

reveals that the contaminant concentration decreases with the time and increases with 

the space variable. This shows that the contamination concentration which is 

distributed initially in the Gaussian form will vanish after sufficient time with respect 

to considered time varying boundary conditions at the inflow and out-flow of the flow 

system. The table (1) depicts a comparative study of ADE with constant coefficient 

and variable coefficients. Three cases are considered for non-uniform flow. In case (I) 

dispersivity is varying with time keeping velocity constant, in case (II) velocity is 

varying with time keeping dispersivity constant and in case (III) the velocity and 

dispersivity are varying with time. It is found that the contaminant concentration is 

less case (II) and (III) in comparison to advection dispersion with constant coefficient. 

However the contaminant concentration is found more in case (I) for exponentially 

increasing dispersion in uniform flow. 

 

Table 1 Comparison of one dimensional contaminant transport equation with constant 

coefficients and variable coefficients (Temporal) at T =0. 5(P =8). 
 

 Constant  

coefficient [6] 

Temporal  

0

m TD D e 
   

and v constant 

Temporal D  constant  

and 0

m Tv v e 
  

Temporal D  and  

v  both variable 

X = 0. 1 0. 51339 0. 518061 0. 51063 0. 510692 

X = 0. 2 0. 54516 0. 552027 0. 542131 0. 542256 

X= 0. 3 0. 57678 0. 585807 0. 573379 0. 573571 

X = 0. 4 0. 60809 0. 619211 0. 604212 0. 604471 

X = 0. 5 0. 63892 0. 652047 0. 634459 0. 634787 

X = 0. 6 0. 66909 0. 684116 0. 663949 0. 664345 

X = 0. 7 0. 69844 0. 71522 0. 692509 0. 692973 

X = 0. 8 0. 72679 0. 745159 0. 719968 0. 720498 

X = 0. 9 0. 75396 0. 773737 0. 746155 0. 74675 
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Figure 1: Dimensionless contaminant concentration profilesfor various values of T 

with dispersivity varying with time and velocity as constant 

 
Figure 2: Dimensionless contaminant concentration profiles for various values of T 

with velocity varying with time and dispersivity as constant 

 
Figure 3: Dimensionless contaminant concentration profile for various values of T 

with dispersivity and velocity both varying with time 
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List of symbols 

R  retardation factor 

x  position 

t  time 

0D  initial dispersion coefficient 

0v  initial velocity 

dk  distribution coefficient 

n  porosity 

  decay constant 

eP  Peclet number 

m  flow resistance coefficient 

m  level of wavelets 

k  translation parameter 

J  maximum level of resolution 

L length 

0t  time duration 

X dimensionless space variable 

T dimensionless time variable 

0T  dimensionless time duration 

m  constant 

2
T

Ma  Haar coefficients 

 

 

Conclusion 
In the present paper the ADE is numerically discussed using Haar wavelet method for 

non-uniform flow. Three cases are considered to observe the effect of dispersion (D) 

and velocity(v) varying with time in comparison to ADE with constant coefficients. 

Exponentially increasing function is considered for D and v varying with time. From 

the obtained results it is found that when D is varying with time keeping v constant, 

the contaminant concentration will be more in comparison to contaminant 

concentration for the ADE with constant coefficients. Thus the method is 

conveniently applied in all the three cases to observe the corresponding effects. It is 

concluded that the method is easy, efficient and accurate. Since the Haar wavelets are 

orthonormal the 2L  convergence in (16)is unconditional and the method is always 

stable [7], the method can be equally appiled to other partial differntial eqautions with 

various types of initial and boundary conditions. 
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