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Abstract

In this paper, we classified a class of fourth-order partial differential equations
(PDEs) to be fourth-order PDE of type I, II, III and IV. The PDE of type IV is solved
by using an efficient numerical method. The PDE is first transformed to a system
of fourth-order ordinary differential equations (ODEs) using the method of lines,
then the resulting system of fourth-order ODEs is solved using direct Runge-Kutta
method (RKFD). The RKFD method is constructed purposely for solving special
fourth-order ODEs. Numerical results demonstrated that the RKFD method is in
good agreement with the exact solutions.
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1. Introduction

Fourth-order partial differential equations (PDEs) are widely used to describe the math-
ematical models in a variety of physical phenomenon and dynamic processes in physics,
engineering and geological science such as fluids in lungs, physical flows include ice
formation, episodic vibration of a uniform elastic beams and plate deviation theory (see
[1, 2, 3, 4, 5, 6]). Several methods have been used to find the analytic solution of linear
and non-linear fourth-order PDEs, for instance variation iteration method [7], homotopy
perturbation method [8], Adomian Decomposition Method [9, 10]) and homotopy anal-
ysis method [11]. For most fourth-order PDEs the analytic solutions are not available,
hence, there is a need to develop an efficient numerical methods to solve these PDEs
because the solutions of fourth-order PDEs are of great importance to scientists and
engineers.

In the last years, wide classes of PDEs problems in various fields of mathematics,
engineering and physics have been solved by using numerical methods. For instance,
the method of lines (MOL) is one such efficient technique for solving PDEs. This
computational technique involves approximation of the derivatives by converting the
partial differential equations to a system of ordinary differential equations and then the
resulting ODE system is solved using numerical method. The MOL has been applied
in [12, 13, 14] to solve second-order elliptic PDEs. Also, MOL has been used in [15]
to solve wave equation while Khaliq and Twizell [16] solved fourth-order parabolic
PDEs using MOL. Furthermore, PDE of type I and II have been solved by using finite
difference method in [17, 18]. Caglar and Caglar [19] proposed B-spline method to solve
PDE of type II. Soltanalizadeh [20] obtained the solution of PDE of type II by applying
differential transformation method (DTM). Recently, Mechee et al. [31] categorized
three types of third-order PDEs to be third-order PDE of type I, II and III.

Motivated and inspired by the ongoing research in this field, we have classified fourth-
order PDEs to be of type I, II, III and IV. We proposed a new numerical method to solve
fourth-order PDE of type IV together with MOL. First MOL is applied to convert the
fourth-order PDE of type IV to a system of fourth-order ODEs and then used the RKFD
method to solve the resulting system directly.

The outline of this paper is as follows: In section 1 we present the preliminaries. In
section 2 the proposed numerical method is given in details. In section 3 we implement
numerical experiments to show the accuracy of the proposed method. The concluding
remarks are given in section 5.
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2. Preliminaries

Definition 2.1. The general fourth-order PDEs in two variables can be presented as
follows:

f

(
x, t, u(x, t),

∂u(x, t)

∂x
,
∂u(x, t)

∂t
,
∂2u(x, t)

∂x2
,
∂2u(x, t)

∂x∂t
,
∂2u(x, t)

∂t2
,
∂3u(x, t)

∂x3
,

∂3u(x, t)

∂x2∂t
,
∂3u(x, t)

∂x∂t2
,
∂3u(x, t)

∂t3
,
∂4u(x, t)

∂x4
,
∂4u(x, t)

∂x3∂t
,

∂4u(x, t)

∂x∂t3
,
∂4u(x, t)

∂x2∂t2
,
∂4u(x, t)

∂t4

)
= 0. (2.1)

In general the linear fourth-order PDE in n variables can be written as follows:

n∑
j=1

fj (x1, x2, . . . , xn)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1

gj1,j2(x1, x2, . . . , xn)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2

+
n∑

j1≤j2≤j3=1

hj1,j2,j3(x1, x2, . . . , xn)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1

zj1,j2,j3,j4(x1, x2, . . . , xn)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

= f (x1, x2, . . . , xn). (2.2)

Generally, quasi linear fourth-order PDE in n variables will be in the following form

n∑
j=1

fj (x1, x2, . . . , xn, u)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1

gj1,j2(x1, x2, . . . , xn, u)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2

+
n∑

j1≤j2≤j3=1

hj1,j2,j3(x1, x2, . . . , xn, u)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1

zj1,j2,j3,j4(x1, x2, . . . , xn, u)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

= f (x1, x2, . . . , xn, u). (2.3)
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Here, Some new definitions for a class of quasi linear fourth-order PDE are presented.

Definition 2.2. The quasi linear fourth-order PDE of type I which has n independent
variables can be defined as follows:

uxjk
=

n∑
j=1& �=jk

fj (x1, x2, . . . , xn, u)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1& �=jk

gj1,j2(x1, x2, . . . , xn, u)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2

+
n∑

j1≤j2≤j3=1& �=jk

hj1,j2,j3(x1, x2, . . . , xn, u)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1& �=jk

zj1,j2,j3,j4(x1, x2, . . . , xn, u)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

− f (x1, x2, . . . , xn, u), (2.4)

for jk = 1, 2, . . . , n. Hence the general form of fourth-order PDE of type I in two
variables is defined as

ut = f (x, t, u, ux, uxx, uxxx, uxxxx), (2.5)

or

ux = f (x, t, u, ut , utt , uttt , uttt t ). (2.6)

Definition 2.3. The quasi linear fourth-order PDE of type II which has n independent
variables is given as

uxjk
,xjk

=
n∑

j=1& �=jk

fj (x1, x2, . . . , xn, u)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1& �=jk

gj1,j2(x1, x2, . . . , xn, u)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2

+
n∑

j1≤j2≤j3=1& �=jk

hj1,j2,j3(x1, x2, . . . , xn, u)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1& �=jk

zj1,j2,j3,j4(x1, x2, . . . , xn, u)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

− f (x1, x2, . . . , xn, u), (2.7)
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for jk = 1, 2, . . . , n. Hence the general form of fourth-order PDE of type II in two
variables is defined as

utt = f (x, t, u, ux, uxx, uxxx, uxxxx), (2.8)

or

uxx = f (x, t, u, ut , utt , uttt , uttt t ). (2.9)

Definition 2.4. The quasi linear fourth-order PDE of type III which has n independent
variables can be defined as follows:

uxjk
,xjk

,xjk
=

n∑
j=1& �=jk

fj (x1, x2, . . . , xn, u)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1& �=jk

gj1,j2(x1, x2, . . . , xn, u)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2

+
n∑

j1≤j2≤j3=1& �=jk

hj1,j2,j3(x1, x2, . . . , xn, u)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1& �=jk

zj1,j2,j3,j4(x1, x2, . . . , xn, u)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

− f (x1, x2, . . . , xn, u), (2.10)

for jk = 1, 2, . . . , n. Hence the general form of fourth-order PDE of type III in two
variables is defined as follows:

uttt = f (x, t, u, ux, uxx, uxxx, uxxxx), (2.11)

or

uxxx = f (x, t, u, ut , utt , uttt , uttt t ). (2.12)

Definition 2.5. The quasi linear fourth-order PDE of type IV which has n independent
variables is defined as follows:

uxjk
,xjk

,xjk
,xjk

=
n∑

j=1& �=jk

fj (x1, x2, . . . , xn, u)
∂u(x1, x2, . . . , xn)

∂xj

+
n∑

j1≤j2=1& �=jk

gj1,j2(x1, x2, . . . , xn, u)
∂2u(x1, x2, . . . , xn)

∂xj1∂xj2
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+
n∑

j1≤j2≤j3=1& �=jk

hj1,j2,j3(x1, x2, . . . , xn, u)
∂3u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3

+
n∑

j1≤j2≤j3≤j4=1& �=jk

zj1,j2,j3,j4(x1, x2, . . . , xn, u)
∂4u(x1, x2, . . . , xn)

∂xj1∂xj2∂xj3∂xj4

− f (x1, x2, . . . , xn, u), (2.13)

for jk = 1, 2, . . . , n. Hence the general form of fourth-order PDE of type IV in two
variables is given as

utttt = f (x, t, u, ux, uxx, uxxx, uxxxx), (2.14)

or

uxxxx = f (x, t, u, ut , utt , uttt , uttt t ). (2.15)

Recently, several numerical techniques have been used to solve a vast classes of PDEs.
However, these numerical methods give numerical solutions of some types of PDEs. The
main objective of this paper is to solve fourth-order PDE of type IV numerically. First,
the fourth-order PDE of type IV is transformed to a system of fourth-order ODEs using
the method of lines. Then the resulting system of fourth-order ODEs is solved using
RKFD method, which constructed purposely for directly solving fourth-order ODEs (see
[21, 22]).

3. The description of the proposed numerical method

Special fourth-order ODEs in which the function does not depend explicitly on the first
derivative (y′(x)), the second derivative (y′′(x)) and the third derivative (y′′′(x)). This
type of ODEs commonly can be found in various fields of applied science and engineering
such as beam theory [23], fluid dynamics [24], neural networks [25] and electric circuits
[26]. Such equations can be written in the following form

y(iv)(x) = f (x, y), x ≥ x0 (3.1)

with initial conditions

y(x0) = y0, y′(x0) = y′
0, y′′(x0) = y′′

0 , y′′′(x0) = y′′′
0 ,

where f : R × Rd → Rd . Traditionally researchers and engineers used to solve
fourth-order ODEs by transforming them into an equivalent first-order system of ODEs
and then applying a suitable numerical method to this system (see [27, 28, 29]). However,
this technique wasted a lot of computing time and human effort. Therefore, the direct
numerical methods would be more efficient for solving fourth-order ODEs (3.1) (see
[21, 22, 30]).
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3.1. The direct numerical RKFD method

The general form of s-stage RKFD method for solving fourth-order ODEs (3.1) is given
as follows:

yn+1 = yn + hy′
n + h2

2
y′′

n + h3

6
y′′′

n + h4
s∑

i=1

biki, (3.2)

y′
n+1 = y′

n + hy′′
n + h2

2
y′′′

n + h3
s∑

i=1

b′
iki, (3.3)

y′′
n+1 = y′′

n + hy′′′
n + h2

s∑
i=1

b′′
i ki, (3.4)

y′′′
n+1 = y′′′

n + h

s∑
i=1

b′′′
i ki, (3.5)

where

k1 = f (xn, yn), (3.6)

ki = f (xn + cih, yn + hciy
′
n + h2

2
c2
i y

′′
n + h3

6
c3
i y

′′′
n + h4

s∑
j=1

aij kj ). (3.7)

for i = 2, 3, . . . , s.

The parameters bi, b
′
i , b

′′
i , b

′′′
i , aij and ci of the RKFD method are to be determined for

i = 1, 2, . . . , s ; j = 1, 2, . . . , s and supposed to be real. The RKFD method is an
explicit method if aij = 0 for i ≤ j and is an implicit method if aij �= 0 for some i

such that i ≤ j . The RKFD method can be represented in Butcher tableau as follows
(see Table 1):

Table 1: The Butcher tableau for RKFD method.

c A

bT

b′T

b′′T

b′′′T

In [21], direct RKFD methods of orders four and five for solving special fourth-order
ODEs are constructed. while the variable step size technique of RKFD pairs of orders
6(5) and 5(4) are developed in [22]. The RKFD methods of orders four and five can be
written in Butcher tableau and given in Tables 2 and 3 respectively.
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Table 2: The Butcher tableau for RKFD4 method of order four

4

11
−1

5
17

20

19

125

19

125

17

200
− 7

75

1

20
1

18

209

1926

5

1926
47

408

847

2568

100

1819
47

408

1331

2568

2000

5457

Table 3: The Butcher tableau for RKFD5 method of order five

3

5
+

√
6

10

4059

187793
3

5
−

√
6

10
− 1502

532215

1826

569317
19

1080

13

1080
− 11

√
6

2160

13

1080
+ 11

√
6

2160
1

18

1

18
−

√
6

48

1

18
+

√
6

48
1

9

7

36
−

√
6

18

7

36
+

√
6

18
1

9

4

9
−

√
6

36

4

9
+

√
6

36

3.2. The Proposed Numerical Method

Here, we present a numerical technique to solve fourth-order PDEs of type IV based on
the combination of the method of lines with RKFD method, the approach is as follows:

First, we consider the fourth-order PDE of type IV of the form

utttt = f (x, t, u, ux, uxx, uxxx, uxxxx), a ≤ x ≤ b 0 < t < T, (3.8)

with initial conditions

u(x, 0) = f1(x), ux(x, 0) = f2(x), uxx(x, 0) = f3(x), uxxx = f4(x), (3.9)
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and the boundary conditions,

u(a, t) = g1(t), u(b, t) = g2(t). (3.10)

We assume that the interval of the numerical solution in the directions of x and t be [a, b]
and [0, T ] respectively, with h = b − a

n
and k = T

m
. Where n is the number of points

in the direction of x on the interval [a, b] and m is the number of points in the direction
of t on the interval [0, T ]. Problem (3.8) with initial conditions (3.9) and the boundary
conditions (3.10) will be solved by combining the method of lines (MOL) and RKFD
method by following these steps:

1. while 1 ≤ i ≤ m do the steps 2-6.

2. fix x = xi at the point (x, t) in PDE (3.8), then transform (3.8) to the following
equation

u′′′′
i (t) = f

(
x, t, u(x, t),

∂u(x, y)

∂x
,
∂2u(x, y)

∂x2
,
∂3u(x, y)

∂x3
,
∂4u(x, y)

∂x4

)
,

(3.11)

where

u′′′′
i (t) = d4u(x, t)

dx4
, i = 1, 2, . . . , n − 1. (3.12)

3. Substituting finite difference formulas of the orders one, two, three and four into
the derivatives on the right hand side of ODE (3.11), then a system of fourth-order
ODEs is obtained

u′′′′
i (t) = f (xi, t, ui−2(t), ui−1(t), ui(t), ui+1(t), ui+2(t)) , (3.13)

for i = 1, 2, . . . , n − 1, The central finite differences of orders one, two, three
and four are presented as follows:

∂u(x, t)

∂x

∣∣∣∣
(x,t)=(xi ,tj )

= ui+1,j − ui−1,j

h
,

∂2u(x, t)

∂x2

∣∣∣∣
(x,t)=(xi ,tj )

= ui+1,j − 2ui,j + ui−1,j

h2
,

∂3u(x, t)

∂x3

∣∣∣∣
(x,t)=(xi ,tj )

= ui+2,j − 2ui+1,j + 2ui−1,j + ui−2,j

3h3
,
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∂3u(x, t)

∂t3

∣∣∣∣
(x,t)=(xi ,tj )

= ui,j+2 − 2ui,j+1 + 2ui,j−1 + ui,j−2

3k3
,

∂4u(x, t)

∂x4

∣∣∣∣
(x,t)=(xi ,tj )

= ui+2,j − 4ui+1,j + 6ui,j − 4ui−1,j + ui−2,j

h4
,

∂4u(x, t)

∂t4

∣∣∣∣
(x,t)=(xi ,tj )

= ui,j+2 − 4ui,j+1 + 6ui,j − 4ui,j−1 + ui,j−2

k4
.

4. if j = 1 , thus the initial conditions are

ui(0) = f1(xi), u′
i(0) = f2(xi), u′′

i (0) = f3(xi), u′′′
i (0) = f4(xi).

(3.14)

if 2 ≤ j ≤ m , thus the initial conditions are

ui(tj−1) = u(xi, tj−1),

u′
i(tj−1) = du(x, tj−1)

dx

∣∣∣∣
x=xi

,

u′′
i (tj−1) = d2u(x, tj−1)

dx2

∣∣∣∣
x=xi

,

u′′′
i (tj−1) = d3u(x, tj−1)

dx3

∣∣∣∣
x=xi

, (3.15)

5. set the boundary conditions as follows:

u0,j = u(a, tj ) = g1(tj ),

un,j = u(b, tj ) = g2(tj ), (3.16)

6. solve the system of fourth-order ODEs (3.13) at t = tj with initial conditions
(3.14) and (3.15) and boundary conditions (3.16) using the RKFD method.

4. Numerical Results

We applied our proposed method in the following study cases, which included fourth-
order PDE.

Problem 4.1.

utttt = u, 0 ≤ x ≤ 1, t > 0,
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with initial conditions,

u(x, 0) = e−x, ux(x, 0) = −e−x, uxx(x, 0) = e−x,

uxxx(x, 0) = −e−x,

and boundary conditions,

u(a, t) = e−ae−t , u(b, t) = e−be−t ,

The exact solution is: u(x, t) = e−te−x ; (see Table 4 and Figure 1).

Table 4: The comparison between numerical and exact solutions for RKFD5 for
Problem 1

Times (tj ) xi Numerical solution Exact solution Absolute error
10−7 0.1 9.048374180359595e-01 9.048373275522222e-01 9.048373728060000e-08
10−7 0.2 8.187307530779818e-01 8.187306712049106e-01 8.187307121154674e-08
10−7 0.3 7.408182206817179e-01 7.408181465998995e-01 7.408181834644978e-08
50(10−7) 0.4 6.703200460356393e-01 6.703166944437882e-01 3.351591851163960e-06
50(10−7) 0.5 6.065306597126334e-01 6.065276270669164e-01 3.032645716993798e-06
50(10−7) 0.6 5.488116360940265e-01 5.488088920427061e-01 2.744051320391350e-06
100(10−7) 0.7 4.965853037914095e-01 4.965803379632008e-01 4.965828208747247e-06
100(10−7) 0.8 4.493289641172216e-01 4.493244708500468e-01 4.493267174832116e-06
100(10−7) 0.9 4.065696597405991e-01 4.065655940643301e-01 4.065676268982799e-06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
(x

,t
j)

 

 
Numerical Solution
Exact Solution

Figure 1: The comparison between numerical and exact solutions for Problem 1

Problem 4.2.

utttt = 8(u − uxx), 0 ≤ x ≤ 1, t > 0,
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with initial conditions,

u(x, 0) = cos(x), ux(x, 0) = − sin(x), uxx(x, 0) = − cos(x),

uxxx(x, 0) = sin(x),

and boundary conditions,

u(a, t) = e−2t cos(a), u(b, t) = e−2t cos(b),

The exact solution is: u(x, t) = e−2t cos(x); (see Table 5 and Figure 2).

Table 5: The comparison between numerical and exact solutions for RKFD5 for
Problem 2

Times (tj ) xi Numerical solution Exact solution Absolute error
10−7 0.1 9.950041652780257e-01 9.950039662772126e-01 1.990008131613763e-07
10−7 0.2 9.800665778412416e-01 9.800663818279456e-01 1.960132960387995e-07
10−7 0.3 9.553364891256060e-01 9.553362980583272e-01 1.910672787763801e-07
50(10−7) 0.4 9.210609940028851e-01 9.210517834389980e-01 9.210563887140921e-06
50(10−7) 0.5 8.775825618903728e-01 8.775737861086328e-01 8.775781739966959e-06
50(10−7) 0.6 8.253356149096783e-01 8.253273615947959e-01 8.253314882411544e-06
100(10−7) 0.7 7.648421872844885e-01 7.648268905937102e-01 1.529669077826590e-05
100(10−7) 0.8 6.967067093471654e-01 6.966927753523189e-01 1.393399484650448e-05
100(10−7) 0.9 6.216099682706644e-01 6.215975361956202e-01 1.243207504419974e-05
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Figure 2: The comparison between numerical and exact solutions for Problem 2

Problem 4.3.

utttt = 4u + uxx + 12 sin(2t), −π ≤ x ≤ π, t > 0,



Direct numerical method for solving a class of fourth-order PDE 1269

with initial conditions,

u(x, 0) = cos(2x), ux(x, 0) = −2 sin(2x),

uxx(x, 0) = −4 cos(2x), uxxx(x, 0) = 8 cos(2x),

and boundary conditions,

u(a, t) = cos(−2π) + sin(2t), u(b, t) = cos(2π) + sin(2t),

The exact solution is: u(x, t) = cos(2x) + sin(2t); (see Table 6 and Figure 3).

Table 6: The comparison between numerical and exact solutions for RKFD5 for
Problem 3

Times (tj ) xi Numerical solution Exact solution Absolute error

10−7 −4

5
π 3.090169943749472e-01 3.090171943749472e-01 2.000000000057511e-07

10−7 −3

5
π -8.090169943749475e-01 -8.090167943749475e-01 2.000000000057511e-07

10−7 −2

5
π -8.090169943749473e-01 -8.090167943749473e-01 2.000000000057511e-07

50(10−7) −1

5
π 3.090169943749475e-01 3.090269943749473e-01 9.999999999787956e-06

50(10−7) 0 1.000000000000000e+00 1.000010000000000e+00 1.000000000006551e-05

50(10−7)
1

5
π 3.090169943749475e-01 3.090269943749473e-01 9.999999999787956e-06

100(10−7)
2

5
π -8.090169943749473e-01 -8.089969943749487e-01 1.999999999868773e-05

100(10−7)
3

5
π -8.090169943749475e-01 -8.089969943749488e-01 1.999999999868773e-05

100(10−7)
4

5
π 3.090169943749472e-01 3.090369943749459e-01 1.999999999874325e-05

5. Conclusion

In this paper, four types of fourth-order PDEs are categorized as types I, II, III and IV.
These classes of fourth-order PDEs often arise in various fields of physics and engineer-
ing. Finding solutions for PDEs directly using classical methods can be complicated.
Hence, we established a new numerical technique for solving fourth-order PDEs of type
IV. The PDE of type IV is first converted to a system of fourth-order ODEs using the
method of lines. The system of ODEs is then solved using direct Runge-Kutta type
method, which we derived purposely to solve special fourth-order ODEs of the form
y(iv) = f (x, y) . The proposed direct technique requires less computational work; also,
it has a good accuracy. To show the efficiency of the new technique, we solved various
problems of fourth-order PDEs of type IV. From the numerical results, we observed
that the method is viable for a class of PDEs and has a good agreement with the exact
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Figure 3: The comparison between numerical and exact solutions for Problem 3

solutions. The new method is efficient and provides encouraging results. Hence, we can
conclude that RKFD method can be used as an alternative efficient method to solve PDE
of type IV.
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