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Abstract

The paper deals with various exact distribution-free prediction intervals for the
future generalized order statistics (GOS) from a X-sequence of independent and
identically (iid) continuous random variables, based on observed GOS from an-
other independent Y -sequence of iid variables from the same distribution. The
coverage probabilities of these intervals are exact expressions and are also free of
the parent distribution F . Finally, a real life data set is used to illustrate the proposed
procedures.
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1. Introduction

Let X1,n,m,k, X2,n,m,k, . . . , Xn,n,m,k be n GOS from an absolutely continuous cumulative
distribution function (cdf) F(x) and probability density function (pdf) f (x). The idea
of GOS has been introduced, see Kamps [8], as a unified approach to a variety of models
of ordered random variables (r.v.’s) with different interpretations, such as ordinary order
statistics, sequential order statistics, progressive type II censoring, record values, kth
record values, Pfeifer’s records. Review articles on GOS are found in Al-Hussaini [6],
Cramer [7], Kamps and Cramer [9] and among others.

Prediction of future events on the basis of the past knowledge are of natural in-
terest in this context. There are different types of predictions of future observation
such as one-sample prediction, two-sample prediction and multi-sample prediction. We
focus our attention here on the two-sample prediction. In this type, we use the first



1244 M. S. Kotb

sequence to predict future observations from another independent sequence. In re-
cent years, distribution-free confidence and prediction intervals (PIs) for order statistics
(record values) from a future sequence Y of iid r.v.’s have been discussed extensively by
many researches. In the context of records, Ahmadi and Balakrishnan [2, 3] proposed
distribution-free confidence intervals for the quantiles of a distribution based on record
ranges. Ahmadi and Balakrishnan [4] derived PIs for order statistics (or record) from the
Y-sequence based on the record values (or order statistics) from the X-sequence. Raqab
and Balakrishnan [14] derived PIs for records from the Y-sequence based on the record
values from the X-sequence as well as outer and inner prediction intervals are derived
based on X-records. Recently, Ahmadi and Balakrishnan [5] derived distribution-free
PIs for order statistics based on record coverage, as well as PIs for future records based
on observed order statistics are also obtained.

In this paper, we will construct PIs for future GOS from an independent Y-sequence
based on observed GOS from an independent X-sequence. The rest of this paper is
organized as follows. Section 2 contains some preliminaries. In Section 3, we derive
distribution-free PIs for GOs from a future sample based on observed GOS from the
X-sequence. In Section 4, we show how the GOS spacings of the observed X-sequence
can be used to construct upper and lower prediction limits for GOS spacings of the
future Y-sequence. In Section 6, we make some remarks. A numerical example from an
accelerated life-testing given by Nelson [11] is used for illustration in Section 7.

2. Preliminaries

Suppose we observed n GOS from X -sequence and we wish to predict the future u GOS
from an independent Y-sequence. Then, the interval (Xi,n,m,k, Xj,n,m,k), 1 ≤ i ≤ j ≤ n

is logical (termed the upper GOS coverage) to predict Yr,u,µ,q , 1 ≤ r ≤ u. Now, let us
denote the lth GOS from the X -sequence by Xl,n,m,k. When m1 = m2 = · · · = ml−1 =
m, the marginal pdf of the lth GOS Xl,n,m,k is given by (see Kamps [8], p. 64)

fl,n,m,k(x) = cl−1

(l − 1)!
(
F̄ (x)

)γl−1
gl−1

m (F (x)) f (x), (2.1)

where cl−1 =
l∏

i=1

γi , γi = k + (n − i)(m + 1), F̄ (x) = 1 − F(x) and

gm(x) =



1

m + 1

(
1 − (1 − x)m+1), m �= −1,

−log(1 − x), m = −1,
x ∈ [0, 1).

Kamps and Cramer [9] have introduced the marginal pdf of the lth GOS Xl,n,m̃,k, for
γi �= γj , i �= j , ∀ i, j ∈ {1, . . . , n}, in the following form

fl,n,m̃,k(x) = cl−1f (x)

l∑
i=1

ai(l)
(
F̄ (x)

)γi−1
, (2.2)
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where m̃ = (m1, . . . , mn−1) ∈ Rn−1, γl = k + n − l + Ml ≥ 1, ∀ l ∈ {1, . . . , n − 1},

Ml =
n−1∑
i=l

mi, γn = k and ai(l) =
l∏

j=1,j �=i

1

γj − γi

. (2.3)

3. PIs for a future generalized order statistics

In the following theorem, under the assumption that m1 = m2 = · · · = mn−1 = m and
µ1 = µ2 = · · · = µu−1 = µ, we obtain two-sided distribution-free PIs for Yr,u,µ,q with
coverage probabilities being free of the parent distribution F . Then the survival function
of Xl,n,m,k is given by (see Kamps [8], p. 73)

F̄l,n,m,k(x) = cl−1
(
F̄ (x)

)γl

l−1∑
�=0

g�
m (F (x))

�!cl−�−1
. (3.1)

Theorem 3.1. Let X1,n,m,k ≤ X2,n,m,k ≤ · · · ≤ Xn,n,m,k be GOS sample with size n

based on continuous distribution function F(x). Moreover, let Y1,u,µ,q ≤ Y2,u,µ,q ≤
· · · ≤ Yu,u,µ,q be GOS from a future random sample of size u from the same cdf F(x).
If X,n,m,k is the  th GOS, then (Xi,n,m,k, Xj,n,m,k), 1 ≤ i < j ≤ n, is a two-sided PI
for Yr,u,µ,q, 1 ≤ r ≤ u, µ > −1, whose coverage probability is free of F and is given
by

π1 (i, j ; r) = dr−1

(µ + 1)r−1

r−1∑
ν=0


j−1∑

�=i

φ�,ν(j) +
i−1∑
�=0

(
φ�,ν(j) − φ�,ν(i)

) , (3.2)

where

φ�,ν(j) = b̄ν(r)

γj+1

�∏
s=0

γj−s+1

γj−s + δr−ν

and b̄ν(r) = (−1)ν

(r − ν − 1)!ν! . (3.3)

Proof. Under the assumption that X,n,m,k, 1 ≤  ≤ n are continuous r.v.’s, we can write

P
(
Xi,n,m,k ≤ y ≤ Xj,n,m,k

) = P
(
Xi,n,m,k ≤ y

) − P
(
Xj,n,m,k ≤ y

)
. (3.4)

From (3.1) and (3.4), we readily obtain

P
(
Xi,n,m,k ≤ y ≤ Xj,n,m,k

) = (
F̄ (y)

)γj

j−1∑
�=i

η�,j

�! g�
m (F (y)) +

i−1∑
�=0

1

�!g
�
m (F (y))

×
(
η�,j

(
F̄ (y)

)γj − η�,i

(
F̄ (y)

)γi
)

, (3.5)

where η�,j = cj−1

cj−�−1
=

�∏
v=1

γj−v+1.
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Using the conditioning argument, we then have

P
(
Xi,n,m,k ≤ Yr,u,µ,q ≤ Xj,n,m,k

)
=

∫ ∞

−∞
P

(
Xi,n,m,k ≤ Yr,u,µ,q ≤ Xj,n,m,k|Yr,u,µ,q = y

)
dFr,u,µ,q(y)

=
∫ ∞

−∞
P

(
Xi,n,m,k ≤ y ≤ Xj,n,m,k

)
dFr,u,µ,q(y). (3.6)

Upon using (2.1) and (3.5) in (3.6), we obtain

P
(
Xi,n,m,k ≤ Yr,u,µ,q ≤ Xj,n,m,k

)
= dr−1

(r − 1)!


j−1∑

�=i

η�,j

�! I�(j) +
i−1∑
�=0

1

�!
(
η�,j I�(j) − η�,iI�(i)

) , (3.7)

where

I�(j) =
∫ ∞

−∞
(
F̄ (y)

)γj+δr−1
g�

m (F (y)) gr−1
µ (F (y)) f (y)dy. (3.8)

Making the transformation t = F̄ (y), equation (3.8) reduces to

I�(j) =
∫ 1

0
tγj+δr−1

(
1 − tm+1

m + 1

)� (
1 − tµ+1

µ + 1

)r−1

dt

= (µ + 1)−(r−1)

(m + 1)�+1

r−1∑
ν=0

bν(r)B

(
� + 1,

ν(µ + 1) + γj + δr

m + 1

)
. (3.9)

Using ν(µ + 1) + δr = δr−ν , we have

I�(j) = (µ + 1)−(r−1)

(m + 1)�+1

r−1∑
ν=0

bν(r)B

(
� + 1,

γj + δr−ν

m + 1

)

= (µ + 1)−(r−1)

(m + 1)�+1

r−1∑
ν=0

bν(r)
	 (� + 1) 	

(
γj+δr−ν

m+1

)
	

(
γj+δr−ν

m+1 + � + 1
)

= (µ + 1)−(r−1)

(m + 1)�+1

r−1∑
ν=0

bν(r)	 (� + 1)(
γj+δr−ν

m+1 + �
) (

γj+δr−ν

m+1 + � − 1
)

· · ·
(

γj+δr−ν

m+1

)

= 	 (� + 1)

(µ + 1)r−1

r−1∑
ν=0

bν(r)

�∏
s=0

1

γj−s + δr−ν

, µ > −1. (3.10)
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It can be shown easily that

dr−1

(r − 1)!η�(j)I�(j) = dr−1cj−1	 (� + 1)

(r − 1)!(�!cj−�−1) (µ + 1)r−1

r−1∑
ν=0

bν(r)

�∏
s=0

1

γj−s + δr−ν

= dr−1

(µ + 1)r−1

r−1∑
ν=0

φ�,ν(j), (3.11)

where

φ�,ν(j) = b̄ν(r)

γj+1

�∏
s=0

γj−s+1

γj−s + δr−ν

and b̄ν(r) = (−1)ν

(r − ν − 1)!ν! . (3.12)

If we take q ∈ N for µ1 = µ2 = · · · = µu−1 = µ = −1, we obtain prediction of qth
record based on GOS. With q ∈ N for µ = −1, taking limit µ → −1, we obtain from
(3.8),

I�(j) =
∫ 1

0
tγj+q−1

(
1 − tm+1

m + 1

)�

(− ln t)r−1 dt

= 1

(m + 1)�

�∑
ν=0

bν(� + 1)

∫ 1

0
tγj−ν+q−1 (− ln t)r−1 dt

= 	 (r)

(m + 1)�

�∑
ν=0

bν(� + 1)(
γj−ν + q

)r , m > −1. (3.13)

In this case, it is easy to verify that dr−1 = qr and

dr−1

(r − 1)!η�(j)I�(j) = qr

(m + 1)�

�∑
ν=0

ξ�,ν(j), (3.14)

where

ξ�,ν(j) = b̄ν(� + 1)(
γj−ν + q

)r

�∏
s=1

γj−s+1.

Upon substituting (3.14) in (3.7), we get

π1 (i, j ; r) = qr

j−1∑
�=i

�∑
ν=0

ξ�,ν(j)

(m + 1)�
+ qr

i−1∑
�=0

�∑
ν=0

(
ξ�,ν(j) − ξ�,ν(i)

(m + 1)�

)
. (3.15)

If we take k ∈ N and q ∈ N for m1 = · · · = mn−1 = m = −1 and µ1 = · · · = µu−1 =
µ = −1, respectively; we obtain prediction of qth record based on kth record. With
k, q ∈ N, taking limit (m, µ) → −1, we obtain from (3.8),

I�(j) =
∫ 1

0
tk+q−1 (− ln t)�+r−1 dt = 	(� + r)

(k + q)�+r
. (3.16)
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From (3.16) and (3.7), we readily obtain

π1 (i, j ; r) = qr

j−1∑
�=i

k�

(k + q)�+r

(
� + r − 1

�

)
=

(q

k

)r k

k + q

j−1∑
�=i

P (Wr = �), (3.17)

where Wr is a binomial random variable with parameters (�+ r − 1, k/(k + q)). Hence,
the theorem is proved. �

In the following theorem, we assume that γi �= γj and δi �= δj , i �= j , i, j =
1, 2, · · · , n − 1(u − 1). Then the cdf of Xl,n,m̃,k is given by

F̄l,n,m̃,k(x) = cl−1

l∑
i=1

ai(l)

γi

(
F̄ (x)

)γi
, (3.18)

where 1 ≤ l ≤ n and m̃ = (m1, . . . , mn−1), see Kamps and Cramer [9].

Theorem 3.2. Under the assumption of Theorem 3.1, (Xi,n,m̃,k, Xj,n,m̃,k), 1 ≤ i ≤ j ≤
n, is a two-sided PI for Yr,u,µ̃,q, 1 ≤ r ≤ u, whose coverage probability is free of F and
is given by

π2 (i, j ; r) =
r∑

ν=1

δνa
(δ)
ν (r)


 j∑

�=i+1

a
(γ )

� (j)

γ� + δν

+
i∑

�=1

a
(γ )

� (j) − a
(γ )

� (i)

γ� + δν


 , (3.19)

where

a(δ)
ν (r) =

r∏
s=1,s �=ν

δs

δs − δν

. (3.20)

Proof. It is known that when Y is continuous, we have

P
(
Xi,n,m̃,k ≤ y ≤ Xj,n,m̃,k

) = P
(
Xi,n,m̃,k ≤ y

) − P
(
Xj,n,m̃,k ≤ y

)
(3.21)

By Equations (3.18) and (3.21) can be expressed as

P
(
Xi,n,m̃,k ≤ y ≤ Xj,n,m̃,k

) = cj−1

j∑
�=i+1

a�(j)

γ�

(
F̄ (y)

)γ�

+
i∑

�=1

(
cj−1

γ�

a�(j) − ci−1

γ�

a�(i)

) (
F̄ (y)

)γ�
.

(3.22)
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Then we find

P
(
Xi,n,m̃,k ≤ Yr,u,µ̃,q ≤ Xj,n,m̃,k

)
= dr−1cj−1

j∑
�=i+1

a�(j)

γ�

r∑
ν=1

āν(r)

∫ ∞

−∞
(
F̄ (y)

)γ�+δν−1
f (y)dy

+dr−1

i∑
�=1

(
cj−1

γ�

a�(j) − ci−1

γ�

a�(i)

) r∑
ν=1

āν(r)

∫ ∞

−∞
(
F̄ (y)

)γ�+δν−1
f (y)dy

= dr−1cj−1

j∑
�=i+1

r∑
ν=1

a�(j)āν(r)

γ� (γ� + δν)

+dr−1

i∑
�=1

r∑
ν=1

cj−1a�(j) − ci−1a�(i)

γ� (γ� + δν)
āν(r), (3.23)

where µ̃ = (µ1, . . . , µu−1),

dr−1 =
r∏

s=1

δs and āν(r) =
r∏

s=1,s �=ν

1

δs − δν

.

It is easy to verify that

dr−1cj−1a�(j)āν(r) =
(

r∏
s=1

δs

) 
 j∏

s=1

γs





 r∏

s=1,s �=ν

1

γs − γν





 j∏

s=1,s �=�

1

δs − δ�




= γ�δν


 r∏

s=1,s �=ν

δs

δs − δν





 j∏

s=1,s �=�

γs

γs − γ�




= γ�δνa
(δ)
ν (r)a

(γ )

� (j), say, (3.24)

where

a(δ)
ν (r) =


 r∏

s=1,s �=ν

δs

δs − δν


.

Substituting (3.24) into (3.23), the result in (3.19) follows. �

By choosing suitable parameters in the model of GOS, several models of ordered
r.v.’s, such as ordinary order statistics, record values, sequential order statistics and
progressively type II censoring are seen to be particular cases, see Table 2.

To illustrate the procedures in this section, we consider four simulated samples from
a sequential 2-out-of-5 system based on components, using the algorithms of Aboe-
leneen [1]. The influence of failures on remaining components in the system is as-
sumed to be described by the increasing sequence of parameters αi+1 = 1 + i/10,
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Table 1: The values of π2 (i, j ; r) for mi = (n − i + 1)αi − (n − i)αi+1 − 1, k = αn,
µ1 = · · · = µu−1 = 0, q = 1 and some selected choices of n, u, i, j and r .

j

n u r i 4 5 6 7 8 9 10
10 5 1 1 0.4787 0.5488 0.5960 0.6270 0.6466 0.6583 0.6644

2 0.2550 0.3251 0.3723 0.4033 0.4229 0.4346 0.4406
3 0.1033 0.1734 0.2206 0.2516 0.2712 0.2829 0.2890

3 1 0.2094 0.3133 0.4266 0.5450 0.6647 0.7815 0.8897
2 0.1614 0.2654 0.3787 0.4971 0.6168 0.7335 0.8418
3 0.0901 0.1941 0.3073 0.4258 0.5454 0.6622 0.7704

5 1 0.0112 0.0230 0.0428 0.0748 0.1273 0.2171 0.3942
2 0.0099 0.0217 0.0414 0.0735 0.1259 0.2158 0.3929
3 0.0066 0.0184 0.0381 0.0702 0.1226 0.2125 0.3896

10 1 1 0.4420 0.4735 0.4886 0.4956 0.4985 0.4996 0.4999
2 0.1907 0.2222 0.2374 0.2443 0.2473 0.2484 0.2487
3 0.0638 0.0953 0.1105 0.1174 0.1203 0.1214 0.1218

2 1 0.5702 0.6563 0.7084 0.7378 0.7530 0.7600 0.7626
2 0.3252 0.4113 0.4634 0.4929 0.5081 0.5150 0.5176
3 0.1334 0.2196 0.2716 0.3011 0.3163 0.3232 0.3258

3 1 0.5146 0.6479 0.7470 0.8150 0.8575 0.8810 0.8916
2 0.3464 0.4796 0.5788 0.6467 0.6862 0.7127 0.7233
3 0.1645 0.2978 0.3969 0.4649 0.5074 0.5309 0.5415

7 1 0.0562 0.1109 0.1930 0.3064 0.4527 0.6292 0.8238
2 0.0496 0.1043 0.1864 0.2998 0.4461 0.6226 0.8172
3 0.0328 0.0875 0.1696 0.2830 0.4293 0.6058 0.8004

30 10 1 1 0.4075 0.4813 0.5379 0.5817 0.6160 0.6430 0.6645
2 0.2285 0.3023 0.3589 0.4027 0.4370 0.4640 0.4855
3 0.0976 0.1714 0.2279 0.2718 0.3060 0.3331 0.3545

3 1 0.1070 0.1573 0.2108 0.2657 0.3208 0.3752 0.4282
2 0.0815 0.1318 0.1853 0.2402 0.2953 0.3496 0.4027
3 0.0448 0.0951 0.1486 0.2036 0.2587 0.3130 0.3660

5 1 0.0088 0.0157 0.0250 0.0370 0.0516 0.0689 0.0902
2 0.0074 0.0144 0.0237 0.0357 0.0502 0.0676 0.0895
3 0.0047 0.0116 0.0209 0.0329 0.0475 0.0648 0.0860

20 1 1 0.4527 0.5050 0.5380 0.5592 0.5730 0.5821 0.5881
2 0.2215 0.2737 0.3068 0.3280 0.3418 0.3509 0.3569
3 0.0839 0.1361 0.1692 0.1904 0.2042 0.2133 0.2193

3 1 0.3319 0.4398 0.5348 0.6157 0.6832 0.7385 0.7839
2 0.2329 0.3407 0.4357 0.5166 0.5841 0.6394 0.6844
3 0.1167 0.2246 0.3195 0.4004 0.4679 0.5233 0.5683

5 1 0.1048 0.1647 0.2320 0.3034 0.3761 0.4519 0.5724
2 0.0844 0.1443 0.2116 0.2830 0.3558 0.4307 0.5399
3 0.0491 0.1090 0.1763 0.2477 0.3204 0.3977 0.5060
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Table 2: Models of ordered r.v.’s and their correspondence, see Cramer and Kamps [9].

Models γn = k γr mr (1 ≤ r < n)

ordinary order 1 n − r + 1 0
statistics
record values 1 1 -1
sequential order αn (n − r + 1)αr (n − r + 1)αr − (n − r)αr+1 − 1
statistics

progressive type II Rn + 1 N − r + 1 −
r−1∑
i=1

Ri Rr

censoring

i = 0, 1, . . . , n − 1. Furthermore, suppose we have a future sample of u order statistics
from an independent Y-sequence based on observed sequential order statistics. Table 1
gives the values of π2 (i, j ; r) for u = 5, 10 and some selected values of i and j .

4. PIs for generalized order statistics spacings

In this section, we use GOS spacings Di,j,n,m,k = Xj,n,m,k − Xi,n,m,k, i < j from
the X-sequence to construct distribution-free upper and lower prediction limits for GOS
spacing D∗

r,s,u,mµ,q = Ys,u,mµ,q − Yr,u,mµ,q , r < s from the Y-sequence. It is easy to
show that

P
(
Di,j,n,m,k ≥ D∗

r,s,u,µ,q

)
= P

(
Xj,n,m,k − Xi,n,m,k ≥ Ys,u,µ,q − Yr,u,µ,q

)
≥ P

(
Xj,n,m,k ≥ Ys,u,µ,q, Xi,n,m,k ≤ Yr,u,µ,q

)
≥ P

(
Xi,n,m,k ≤ Yr,u,µ,q

) − P
(
Xj,n,m,k ≤ Ys,u,µ,q

)
.

(4.1)

From equations (2.1) and (3.1), using the conditioning argument, we have

P
(
Xi,n,m,k ≤ Yr,u,µ,q

) =
∫ ∞

−∞
P

(
Xi,n,m,k ≤ Yr,u,µ,q |Yr,u,µ,q = yr

)
dFr,u,µ,q(y)

= dr−1

(r − 1)!
∫ ∞

−∞

{
1 − ci−1 (1 − F(y))γi

i−1∑
�=0

g�
m(F (y))

�!ci−�−1

}

× (1 − F(y))δr−1 gr−1
µ (F (y))f (y)dy

= 1 − dr−1

(r − 1)!
i−1∑
�=0

η�,i

�! I�(i), (4.2)
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where I�(i) is given by (3.8). Hence, from (3.11), we get

P
(
Xi,n,m,k ≤ Yr,u,µ,q

) = 1 − dr−1

(µ + 1)r

i−1∑
�=0

r−1∑
ν=0

φ�,ν(i) = 1 − ψi(r)

(µ + 1)r
, say,

(4.3)

where φ�,ν(i) is given by (3.12) and

ψi(r) = dr−1

i−1∑
�=0

r−1∑
ν=0

φ�,ν(i).

Thus, from (4.3) into (4.1), with µ > −1, it is easy to verify that

P
(
Di,j,n,m,k ≥ D∗

r,s,u,µ,q

)
≥ ψj(s)

(µ + 1)s
− ψi(r)

(µ + 1)r
= π3 (i, j ; r, s) . (4.4)

With q = 1 and µ1 = · · · = µu−1 = µ = −1, we obtain

P
(
Di,j,n,m,k ≥ YU(s) − YU(r)

) ≥
j−1∑
�=0

�∑
ν=0

φ�,ν(j, s)

(m + 1)�
−

i−1∑
�=0

�∑
ν=0

φ�,ν(i, r)

(m + 1)�
, (4.5)

where φ�,ν(j, r) ≡ φ�,ν(j) and φ�,ν(j) is given by (3.12). Proceeding similarly, if we
take m = µ = −1 and k, q ∈ N, then from (3.8),

P

(
X

U
(k)
j

− X
U

(k)
i

≥ Y
U

(k)
s

− Y
U

(k)
r

)

≥
(q

k

)s k

k + q

j−1∑
�=0

P (Ws = �) −
(q

k

)r k

k + q

i−1∑
�=0

P (Wr = �) .

Hence, the lower and upper prediction limits for D∗
r,s,u,µ,q with prediction coefficient

≥ 1 − α are, respectively, Di,j,n,m,k and Dk1,k2,n,m,k.
Analogous to the results presented in this section, when γi �= γj and δi �= δj , i �= j ,

we obtain the following result

P
(
Di,j,n,m̃,k ≥ D∗

r,s,u,µ̃,q

)
≥

j∑
�=1

s∑
ν=1

δνa
(γ )

� (j)a
(δ)
ν (s)

γ� + δν

−
i∑

�=1

r∑
ν=1

δνa
(γ )

� (i)a
(δ)
ν (r)

γ� + δν

= π4 (i, j ; r, s) .

5. Some remarks

By suitably choosing m1, . . . , mn−1, k, µ1, . . . , µu−1 and q, we can easily get the fol-
lowing results:
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1. If we take m1 = · · · = mn−1 = m = −1 and k = 1, then we obtain from (3.2),

π1 (i, j ; r) = c̄r−1

	(r) (µ + 1)r−1

j−1∑
�=i

r−1∑
ν=0

(
r − 1

ν

)
(−1)ν

(1 + δr−ν)�+1
, (5.1)

as well as if we put in above equation (µ = 0 and q = 1) we get the result of
Theorem 3.1 in Ahmadi and Balakrishnan [4].

2. In particular, with k = q = 1, equation (3.17) reduces to

π1 (i, j ; r) =
j−1∑
�=i

1

2�+r

(
� + r − 1

�

)
= 1

2

j−1∑
�=i

P (W = �), (5.2)

which is the same result of Theorem 1 in Raqab and Balakrishnan [14], where W

is a binomial random variable with parameters (� + r − 1, 1/2).

3. If we put k = 1 and m1 = · · · = mn−1 = m = −1, then from (4.5),

P
(
XU(j) − XU(i) ≥ YU(s) − YU(r)

)
≥

j−1∑
�=0

1

2s+�

(
s + � − 1

�

)
−

i−1∑
�=0

1

2r+�

(
r + � − 1

�

)
, (5.3)

which is same relation of Raqab and Balakrishnan [14] [see α5(r, s; m, n), p. 1960].

4. GOS spacings Di,j,n,m,k represent the width of PIs. So we can be considered as an
optimality criterion while comparing different intervals, evaluation ofE

(
Di,j,n,m,k

)
is of natural interest, see Raqab [12, 13].

6. Illustrative example (real life data)

In this section, we consider the real life data set which given in Nelson [11] to illustrate the
methods proposed in the previous sections. These data which was also used in Lawless
([10], p. 185), concerning the data on time to breakdown of an insulating fluid between
electrodes at a voltage of 34 kV (minutes). The 19 times to breakdown are contained in
the sample (∗)

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91
32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89

Also, from the data (∗), we observe the following seven upper record values (∗∗):

0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89
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Table 3: PIs for future order statistics based on observed records.

n r (i, j) (Ui, Uj ) π1 n r (i, j) (Ui, Uj ) π1

10 9 (1, 7) (0.96, 72.89) 0.8068 100 86 (1, 5) (0.96, 33.91) 0.8018
10 (1, 7) (0.96, 72.89) 0.8462 88 (1, 5) (0.96, 33.91) 0.8076

20 17 (1, 7) (0.96, 72.89) 0.8048 90 (1, 5) (0.96, 33.91) 0.8085
18 (1, 6) (0.96, 36.71) 0.8269 92 (1, 5) (0.96, 33.91) 0.8019

(1, 7) (0.96, 72.89) 0.8460 82 (1, 6) (0.96, 36.71) 0.8031
19 (1, 6) (0.96, 36.71) 0.8377 84 (1, 6) (0.96, 36.71) 0.8199

(1, 7) (0.96, 72.89) 0.8750 86 (1, 6) (0.96, 36.71) 0.8356
20 (1, 7) (0.96, 72.89) 0.8460 88 (1, 6) (0.96, 36.71) 0.8495

50 41 (1, 7) (0.96, 72.89) 0.8015 90 (1, 6) (0.96, 36.71) 0.8607
43 (1, 6) (0.96, 36.71) 0.8268 92 (1, 6) (0.96, 36.71) 0.8674

(1, 7) (0.96, 72.89) 0.8383 94 (1, 6) (0.96, 36.71) 0.8661
45 (1, 5) (0.96, 33.91) 0.8014 96 (1, 6) (0.96, 36.71) 0.8491

(1, 6) (0.96, 36.71) 0.8518 81 (1, 7) (0.96, 72.89) 0.8002
(1, 7) (0.96, 72.89) 0.8720 85 (1, 7) (0.96, 72.89) 0.8379

47 (1, 6) (0.96, 36.71) 0.8589 89 (1, 7) (0.96, 72.89) 0.8731
(1, 7) (0.96, 72.89) 0.8964 93 (1, 7) (0.96, 72.89) 0.9012

49 (1, 6) (0.96, 36.71) 0.8038 97 (1, 7) (0.96, 72.89) 0.8986
(1, 7) (0.96, 72.89) 0.8800 99 (1, 7) (0.96, 72.89) 0.8357

Table 4: PIs for upper records based on observed future order statistics.

n r (i, j) (Xi:n, Xj :n) π1

19 1 (1, 19) (0.19, 72.89) 0.9000
2 (1, 19) (0.19, 72.89) 0.8176
3 (1, 19) (0.19, 72.89) 0.6364
1 (3, 19) (0.96, 72.89) 0.8000
2 (3, 19) (0.96, 72.89) 0.8046
3 (3, 19) (0.96, 72.89) 0.6352
1 (1, 17) (0.19, 33.91) 0.8000
2 (1, 17) (0.19, 33.91) 0.5828
3 (1, 17) (0.19, 33.91) 0.3341
1 (3, 17) (0.96, 33.91) 0.7000
2 (3, 17) (0.96, 33.91) 0.5698
3 (3, 17) (0.96, 33.91) 0.3329

Based on the above seven upper records, PIs for future order statistics were obtained
with prediction coefficient of at least 0.80 and the results are displayed in Table 3. By
using the sample (∗∗), PIs for future upper records, these intervals are presented in
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Table 4. For more numerical examples for some special cases of GOS see Ahmadi and
Balakrishnan [4] and Raqab and Balakrishnan [14].

7. Conclusion

In this paper, we have derived distribution-free PIs for future GOS from the Y -sequence
based on GOS from the X-sequence with coverage probabilities of these intervals being
free of the parent distribution. Also, we have described how GOS spacings Di,j,n,m,k can
be used to construct distribution-free upper and lower prediction limits for GOS spacing
D∗

r,s,u,µ,q .
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