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Abstract

In this paper, a new phase-fitted and amplification-fitted modified Runge-Kutta
(MRK) method is constructed to solve first-order ordinary differential equations
with oscillatory solutions. This new method is based on the Runge-Kutta Zonn-
eveld method with fourth algebraic order. The numerical results for the new method
have been compared with other existing methods. Findings have shown that the
new method is more efficient than the other existing methods.
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1. Introduction

This study deals with the initial value problems (IVPs) of the form:

y′(x) = f (x, y), y(x0) = y0,

y′(x0) = y′
0, x ∈ [a, b] (1)

where
y(x) = [y1(x), y2(x), . . . , ys(x)]T

f (x, y) = [f1(x, y), f2(x, y), . . . , fs(x, y)]T

y0 is a given vector of initial conditions and their solution is oscillatory. This problem
often exists in a number of applied science area, such as astronomy, quantum mechanics,
mechanics, and electronics.

Lately, there have been a number of numerical methods derived by several authors
based on different approaches like minimal phase-lag, phase-fitted, and exponential-
fitted for solving first-order oscillatory IVPs. See [1-3] they proposed application of
phase-lag and dissipation error for solving oscillatory problems. Other than phase-lag,
a lot of research is also focused on methods having high dissipative order, which is the
distance of the computed solution from the standard cyclic solution. Van der Houwen
and Sommeijer [3] constructed diagonally implicit Runge-Kutta Nyström method which
have relatively low algebraic order and high order of dispersion for solving oscillatory
problems. Van de Vyver [2] suggested a symplectic Runge-Kutta Nyström method with
minimal phase-lag for solving oscillatory problems. Senu et al. [4] derived a zero
dissipative Runge-Kutta Nyström method with minimal phase-lag. In 1993, Simos [5]
derived a Runge-Kutta-Fehlberg method based on the idea of phase-lag of order infinity.
Recently, the idea of phase-lag of order infinity has been used to develop new numerical
methods. Anastassi et al. [6] suggested a family of Runge-kutta methods with zero
phase-lag and derivatives for the numerical solution of the Schrödinger equation and
related problems. Simos et al. [7-8] proposed a modified Runge-Kutta method with
phase-lag of order infinity for solving the Schrödinger equation and a modified phase-
fitted Runge-Kutta method for numerical solution of the Schrödinger equation.

In this work, the aim is to combine the idea of the phase-lag of order infinity together
with zero amplification error. A five-stage phase-fitted and amplification-fitted modified
Runge-Kutta method is constructed based on the coefficients of the Zonneveld method
of algebraic order four.

2. Analysis Phase-Lag of the Method

An explicit m-stage MRK formula is given by

yn+1 = yn + h

m∑
i=1

bif (xn + cih, Yi) (2)
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where

Yi = giyn + h

m∑
j=1

aijf (xn + cjh, Yj ) (3)

The method is said to be explicit when aij = 0 for i ≤ j and implicit otherwise. The
method in Eq. (2) and Eq. (3) can be reduced into Butcher tableau form (see Table 1).

Table 1:
m-stage modified explicit Runge-Kutta method

0
c2 g2 a21

c3 g3 a31 a32

. . . .

. . . .

. . . .
cm gm am1 am2 ... am,m−1

b1 b2 ... bm−1 bm

To develop the new method, we utilize the test equation based on [3]

y′ = ivy (4)

where v is real. Then we compare the theoretical solution and the numerical solution
for this equation. By requiring that the solutions are in phase with maximal order in the
step-size h, we derive the so-called dispersion relation.

Applying the above method (2) and (3) to the test equation (4) we obtain

yn = an∗y0

with

a∗ = Am(H 2) + iHBm(H 2), H = vh (5)

The amplification factor is a∗ = a∗(H), and yn denotes the approximation to y(xn). A
comparison of Eq. (5) with the solution of Eq. (4) leads to the following definition of the
dispersion or phase error or phase-lag and the amplification error.

Definition 2.1. An explicit m-stage MRK, presented in Table 1 the quantities:

t (H) = H − arg[a∗(H)], a(H) = 1− | a∗(H) | (6)

are called the dispersion or phase error or phase-lag and the amplification error respec-
tively. If t (H) = O(Hr+1), and a(H) = O(Hs+1) then the method is said to be
phase-lag order r and dissipative order s.
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From the Eq. (6) it follows that,

a(H) = 1 −
√

[A2
m(H 2) + H 2B2

m(H 2)] (7)

Meanwhile, for the Runge-Kutta method given in Table 1, the following formula is used
for the direct calculation of the phase-lag order r and the phase-lag constant q

tan(H) − H

[
Bm(H 2)

Am(H 2)

]
= qHr+1 + O(Hs+3). (8)

The analysis of phase-fitted (dispersion of order infinity) and amplification-fitted (dis-
sipation of order infinity) are based on dispersion and dissipation quantities that have
discussed above. The modified RK method is phase-fitted and amplification-fitted if the
following conditions hold:

t (H) = 0 and a(H) = 0.

3. Construction of the New Method

In this section, we will persent the construction of a method with phase-lag of order
infinity and zero amplification error which is based on Zonneveld fourth order method
with five-stages as follows [11].

Table 2:
Butcher Tableau for five-stage fourth order RK method

0

1
2

1
2

1
2

0
1
2

1 0 0 1

3
4

5
32

7
32

13
32

− 1
32

1
6

1
3

1
3

1
6

0

subsituting the cofficents in Table 2 into equation (9) and chosing a21 and g2 as free
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parameters for the optimized value of the maximum global error we have:

A5(H
2) = 1 + 1

12
H 4a21 +

(
−1

3
g2 − 1

6
− 1

6
a21

)
H 2,

B5(H
2) =

(
−1

6
a21 − 1

12
g2

)
+ 2

3
+ 1

3
g2. (9)

Applying equations (10) to equations (7) and (8), we obtain:

a(H) =
(

1 + 1

12
H 4a21 +

(−1

3
a21 − 1

6
− 1

6
g2

)
H 2

)2

+H 2
((

−1

6
a21 − 1

12
g2

)
H 2 + 2

3
+ 1

3
g2

)2

− 1 = 0 (10)

tan(H) − H

[ (−1
6a21 − 1

12g2
) + 2

3 + 1
3g2

1 + 1
12H 4a21 + (−1

3g2 − 1
6 − 1

6a21
)
H 2

]
= 0 (11)

Solving Eq. (11) and Eq. (12) simultaneously using maple package, obtaining the solution
as given below:

a21 = 1

(16 + h4 − 42)h2
(RootOf (786h2 + 64h2

+ 23044 − 2304 tan(h)h − 960 tan(h)2)h2

+ 208(h)2h4 − 16 tan(h)2h6 + 4h8 tan(h)2 + 576h3 tan(h) − 16h6 + 4h8

+ (−4h4 − 4 tan(h)2h4 + 8 tan(h)2h2 + 8h2

− 96 tan(h)2 − 96)Z + (tan(h)2 + 1)Z2)),

g2 = 1

(16 + h4 − 4h2)h(−2 tan(h)h + h2 − 4
(192 tan(h) + 20 tan(h)h4 − 80 tan(h)h2

+ tan(h)h2RootOf (768h2 + 64h4 + 4h8 tan(h)2 + 576h3 tan(h) − 16h6

+ 2304 tan(h)2 − 2304 tan(h)h + 4h8

− 4 tan(h)4 − 960 tan(h)2h2 + 208 tan(h)2h4 − 16 tan(h)2h6 + (−4h4 − 4 tan(h)2h4

+ 8h2 + 8 tan(h)2h2 − 96 − 96 tan(h)2)Z − 2304 tan(h)h − 960 tan(h)2h2 − 16h6

+ 2304 tan(h)2 + 4h8 tan(h)2 + 576h3 tan(h) + 208 tan(h)2h4 + 4h8

+ (−4h4 − 4 tan(h)2h4 + 8 tan(h)2h2

+ 8h2 − 96 tan(h)2 − 96)Z + (tan(h)2 + 1)Z2) − 2h6 tan(h)

+ 2hRootOf (768h2 + 64h4 − 2304 tan(h)h − 960 tan(h)2h2 − 16h6

+ 2304 tan(h)2 + 4h8(h)2 + 576h3 tan(h) + 208 tan(h)2h4 − 16 tan(h)2h6 + 4h8

+ (−4h4 − 4 tan(h)2h4 + 8 tan(h)[2h2 + 8h2 − 96 tan(h)2 − 96)Z

+ (tan(h)2 + 1)Z2) − 128h − 8h5 + 32h3).
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In corresponding taylor series expansion of the solution is given in equation bellow:

a21 = 1

2
− 1

120
H 4 − 13

4480
H 6 − 229

1209600
H 8 + 8549

63866880
H 10

+ 1755109

38745907200
H 12 + 2947561

996323328000
H 14 + · · · (12)

g2 = 1 + 1

40
H 4 + 1

672
H 6 − 37

34560
H 8 − 2143

5913600
H 10

− 319

13478400
H 12 + 4488229

268240896000
H 14

+ 44755279

7904165068800
H 16 + · · · (13)

This new method is denoted as PHAFRK4.

3.1. Analysis of Stability

An m-stage modified Runge-Kutta method (2) and (3) is applied to equation (4), we
obtain

yn+1 = yn + ĥBY, (14)

Y = ynG + ĥAY (15)

where
Y = [Y1, Y2, . . . , Ys], G = [g1, g2, . . . , gs]

and
B = [b1 b2 · · · bs]T , ĥ = hv

From (11), we have
Y = (I − ĥA)−1ynG (16)

substituting equation (16) into equation (14), we obtan:

yn+1 = R(ĥ)yn,

where
R(ĥ) = 1 + ĥB(1 − ĥA)−1G (17)

is the stability function of the method.
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For this new method, we obtained the stability polynomial are three different stages of
the solutions. First, we take the value of a21 and g2 up to h6 from their series solution.

a21 = 1

2
− 1

120
H 4 − 13

4480
H 6,

g2 = 1 + 1

40
H 4 + 1

672
H 6.

R(ĥ) = 1 + h + 1

2
ĥ2 + 1

6
ĥ3 + 1

24
ĥ4

+ 1

120
ĥ5 + 1

720
ĥ6 + 1

840
ĥ7

− 19

13440
ĥ8 − 29

80640
ĥ9 − 13

53760
ĥ10 + · · · . (18)

Secondly, we take the values a21 and g2 up to h8 from their series solution.

a21 = 1

2
− 1

120
H 4 − 13

4480
H 6 − 229

1209600
H 8,

g2 = 1 + 1

40
H 4 + 1

672
H 6 − 37

34560
H 8.

R(ĥ) = 1 + h + 1

2
ĥ2 + 1

6
ĥ3 + 1

24
ĥ4

+ 1

120
ĥ5 + 1

720
ĥ6 + 1

840
ĥ7

− 19

13440
ĥ8 − 29

80640
ĥ9 − 13

53760
ĥ10 − 1753

14515200
ĥ11 − 229

14515200
ĥ12 + · · · . (19)

Lastly, we take the values a21 and g2 up to h10 from their series solution.

a21 = 1

2
− 1

120
H 4 − 13

4480
H 6 − 229

1209600
H 8 + 8549

63866880
H 10

g2 = 1 + 1

40
H 4 + 1

672
H 6 − 37

34560
H 8 − 2143

5913600
H 10

R(ĥ) = 1 + ĥ + 1

2
ĥ2 + 1

6
ĥ3 + 1

24
ĥ4 + 1

120
ĥ5

+ 1

720
ĥ6 + 1

840
ĥ7 − 19

13440
ĥ8

− 13

18144
ĥ9 − 877

1814400
ĥ10 − 551

2280960
ĥ11 − 3023

95800320
ĥ12

− 3779

479001600
ĥ13 + 8549

766402560
ĥ14 + · · · . (20)



1236 Firas A. Fawzi, N. Senu, F. Ismail & Zanariah Abd. Majid

we next obtained the stability region of the new method from the above three stability
polynomials by equating each to the Euler formula and then solve for h using maple
package, i.e.

R(ĥ) = eIθ = cos(θ) + I sin(θ).

The stability region for the new method is shown in Figure 1.

Figure 1: The stability region for the new method PHAFRK4 for different order

Definition 3.1. A Runge-kutta method is said to be absolutely stable if ∀ ĥ ε(−h, 0), |
R(ĥ) |< 1.

Now, our new method is absolutely stable since for all ĥ ε(−2.8, 0), | R(ĥ) |< 1
where we obtained using maple package.

3.2. Error Analysis

The local truncation error (LTE) of the new method is based on the Taylor series expansion
of the differences yn+1 and y(xn + h)

LT E = yn+1 − y(xn + h) (21)
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LT E = h5
[
− 1

2880
(fxxxx + f 4fyyyy) − 1

120
(fyy(x)w4 + f 2

y fxyy
′ + f 3

y fx + f 4
y y′)

+ fxxyyy
′(2) + fxfxyy + f 2

y fxx)

+ 1

480
(fyfxyyy

′ − y′(2)fxfyyy − fxxfyyy
′ − fxxyyy

′(2)

− fxfxxy + fxxfxy + f 2
yyy

′(3) − f 2
y fxx)

− 1

240
(fxfxyyy

′ + fxfyfxy − f 2
xyy

′)

+ 1

160
(fxyfyyy

′(2) − f 2
xxfyy) − 1

1440
fyfyyyy

′(3)

− 1

80
f 2

y fyyy
′(2) − 1

60
fxfyfyyy

′

− 1

720
(fxxxyy

′ + fxyyyy
′(3) − fyfxxx)

]
+ O(h6). (22)

From equation (22), it is clear that the order of the new method is four because all the
terms of h lower than h5 are vanished.

4. Tested Problems and Numerical Results

In this section, we will apply the new method to solve different problems. The following
explicit MRK method are selected for the numerical comparison.

• PHAFRK4: Combination between phase-fitted and amplification-fitted derived in
this paper.

• RK5B: Fifth-order six-stage RK method given by Sakas and Simos [9].

• PLRK4: The modified RK method derived by Simos and Vigo-Aguiar [7].

• RK4M: Fourth-order five-stage RK method given in Butcher [10].

• RK4Z: Fourth-order five-stage RK method given in Hairer et al. [11].

Problem 1: (Homogeneous)

y′
1 = y2, y1(x) = 1

y′
2 = −64y1, y2(x) = −2

Theoretical solution:

y1(x) = −1

4
sin(8x) + cos(8x)

y2(x) = −2 cos(8x) − 8 sin(8x)
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Source: Chawla and Rao [12].

Problem 2: (Inhomogeneous)

y′
1 = y2, y1(x) = 1

y′
2 = −v2y1 + (v2 − 1) sin(x), y2(x) = v + 1

Estimated frequency: v = 10
Theoretical solution:

y(x) = cos(vx) + sin(vx) + sin(x)

y2(x) = −v sin(vx) + v cos(vx) + cos(x)

Source: Van der Howuen and Sommeijer [3].

Problem 3: (Periodic orbit system)

y′
1 = y3, y1(x) = 1

y′
3 = −y1 + 0.001 cos(x), y3(x) = 0

y′
2 = y4, y2(x) = 0

y′
4 = −y2 + 0.001 sin(x), y4(x) = 0.9995

Theoretical solution:
y1(x) = cos(x) + 0.0005x sin(x)

y2(x) = sin(x) − 0.0005x cos(x)

y3(x) = − sin(x) + 0.0005x cos(x)

y4(x) = cos(x) + 0.0005x sin(x)

Source: Stiefel and Bettis [1].

Problem 4: (Nonlinear system)

y′
1 = y3, y1(0) = 1

y′
3 = −y1(√

y2
1 + y2

2

)3 , y3(0) = 0

y′
2 = y4, y2(0) = 0

y′
4 = −y2(√

y2
1 + y2

2

)3 , y4(0) = 1
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Theoretical solution:
y1(x) = cos(x)

y2(x) = sin(x)

y3(x) = − sin(x)

y4(x) = cos(x)

Source: Moo et al. [13].

Problem 5: (Inhomogeneous)

y′
1 = y2, y1(0) = 1

y′
2 = −y1 + x, y2(0) = 2

Theoretical solution:
y1 = sin(x) + cos(x) + x

y2 = cos(x) − sin(x) + 1

Source: Allen and Wing [14].

RK4Z
RK4M
PLRK4
RK5B

PHAFRK4

log10(Function Evaluations)

lo
g 1

0
(M

A
X
E
R
R
)

76.86.66.46.265.8

1
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−2

−3

−4

−5

−6

Figure 2: Comparison for PHAFRK4, RK5B, PLRK4, RK4M and RK4Z problem 1
with b = 10000.

4.1. Discussion and Conclusion

In this study, we have presented a new phase-fitted and amplification-fitted (PHAFRK4)
method that can be used to solve first-order ordinary differential equations with periodic
solutions. The numerical results are plotted in Figures 1, 2, 3, 4 and 5. Those Figures
display the efficiency curves where the common logarithm of the maximum global error
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Figure 3: Comparison for PHAFRK4, RK5B, PLRK4, RK4M and RK4Z problem 2
with b = 10000.
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Figure 4: Comparison for PHAFRK4, RK5B, PLRK4, RK4M and RK4Z problem 3
with b = 10000.

throughout the integration versus computational cost measured by the number of function
evaluations.

This new method is based on Zonneveld’s five-stage fourth algebraic order. From
Figures 1 to 5, numerical results have shown that the new method is more accurate and
efficient when solving first-order differential equations with oscillatory solutions than
the existing methods.
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Figure 5: Comparison for PHAFRK4, RK5B, PLRK4, RK4M and RK4Z problem 4
with b = 10000.
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Figure 6: Comparison for PHAFRK4, RK5B, PLRK4, RK4M and RK4Z problem 5
with b = 10000.
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