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Abstract 

 

The aim of this research is forecasting volatility of portfolio return using 

GARCH model. Portfolio return is combination of several return assets. The 

mean model of stock return is constructed using Autoregressive Integrated 

Moving Average (ARIMA), and the variance is determined using GARCH 

model. Based on squares of residual that yielded from mean model, the 

variance model is constructed using GARCH. The optimal GARCH model is 

implemented for forecasting volatility of several stock return such as Bank 

Mandiri (BMRI), Bank BCA (BBCA), Unilever (UNVR) stock return and their 

portfolio as case studies. The weight(proportion) of each asset in the portfolio 

return is determined based on Lagrange Multiplier Method. 
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1. Introduction 
Financial time series data are usually characterized by volatility clustering, 

persistence autocorrelation and leptokurtic behavior [1, 2, 3, 4, 5]. The data are 
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usually non-stationary and non-linear [3, 4, 5]. One of the most popular models which 

applied for time series modeling is ARIMA [6, 7, 8, 9, 10]. Whereas Autoregressive 

Conditional Heteroscedasticity (ARCH) model was proposed by Engle in 1982 [1] 

and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model that 

developed by Bollerslev in 1986 [2] are popular variance models. ARIMA-GARCH 

has been applied in a lot of research for forecasting financial time series data [11, 12, 

13, 14, 15]. The aim of this research is forecasting volatility of portfolio return using 

GARCH. The procedure of volatility modeling consists of two global steps, firstly, 

steps of constructing mean model and secondly, steps of constructing variance model 

[1, 2, 3]. The remaining paper is organized as follows: section 2 discusses about basic 

concept of mean model (Box-Jenkins ARIMA) and variance model (ARCH/GARCH); 

section 3 discusses about application GARCH model for forecasting volatility of 

LQ-45 stock return; and the conclusion is discussed in section 4. 

 

 

2. Basic Concept of Mean and Variance Models 
Basic concept of time series analysis that discussed in this section covers general 

forms of mean model ARIMA and variance model ARCH/GARCH. 

 

2.1 ARIMA Model 

Autoregressive Integrated Moving Average (ARIMA) model is the method introduced 

by Box-Jenkins [2]. To date, ARIMA become the most popular model for forecasting 

univariate time series data. Generally, ARIMA(p, d, q) model can be written as (see [6, 

8, 10]) 

   tqt
d
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q
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where B  is backward shift operator, p and q denotes order of autoregressive and 

moving average respectively and d denotes order of differences. 

 

2.2 Volatility Models 

2.2.1 GARCH Model 

Given stationary time series tZ  such as financial return, so tZ can be expressed as 

summation of its mean and a white noise [1, 2], if there is no autocorrelation among 

tZ  itself, i.e 

   ttt aZ   and ttta   (2) 

where t  is process mean of tZ  and )1,0(N~t . To investigate the volatility 

clustering or conditional heteroscedasticity, it is assumed that )a(Var t1t = 2
t , where 

)(Var 1t   express conditional variance given information at time (t-1), and 
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Because mean of ta  is 0, )a(Var t1t = )a(E 2
t1t  = 2

t . Therefore, Eq.2 can be 

written as: 

   t
2

ptp
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1t10
2
t uaaa     (4) 

where )a(Eau 2
t1t

2
tt  is white noise with mean 0. Model (2) and (3) is called 

ARCH model [1]. 

In practice, the number of lags p are frequently large, then the number of parameters 

in the model that should be estimated are also very large. Bollerslev (1986) proposed 

more parsimonious model to substitute AR model (3) with equation below [2]. 
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where )p,,2,1,0i(0i  ; )q,,2,1j(0j   to guarantee that conditional 

variance 2
t  is always positive. Eq.5 together with Eq.2 is called as generalized 

ARCH or GARCH(p, q). If q=0 the GARCH model become ARCH model [1]. 

 

2.2.2 EGARCH Model 

Nelson proposed Exponential GARCH (EGARCH) model with leverage effect that 

written as follow [7]. 
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where 2
tlnth  . The conditional variance of EGRACH t is guaranteed to be 

positive regardless the coefficients in model (6), because ln 2
t  has substituted to 2

t  

itself in the model [5]. 

 

2.3 Portfolio Return 

Portfolio return is summation of single asset stock return multiplied by its weight 

(proportion). The weight of each stock to be determined based on Lagrange Multiplier 

method. The optimal weight can be solved by minimizing portfolio variance function 

with constraint 1N
T 1w [13]. Define the portfolio variance as: ww  T2

p
2

1
. 

Minimizing function ww T

2

1
 with respect to w is equivalent to minimizing function 

ww T
. The aim of minimizing function ww T

2

1
is minimizing risk based on the 

mean of portfolio return. Mathematically, it can be written as: 


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min)min( with constraint 1N

T 1w . The optimization problem can 

be solved by using Lagrange function. 
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where L: Lagrange function and  : Lagrange multiplier. The optimal weight w is 

obtained by minimizing Eq.7. Based on theory of calculus, we obtain 

  
N

1T
N

N
1

11

1
w








 . (8) 

Therefore, the portfolio return of N assets can be determined using formula: 

  i,t

N

1i
ip rwr 
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 (9) 

where iw : weight of thi   asset and i,tr : return of thi   asset. 

 

 

3. Application 
As an implementation of GARCH modeling for forecasting volatility of portfolio 

return, GARCH models to be constructed for forecasting volatility of Bank Mandiri 

(BMRI) stock return, Bank BCA (BBCA) stock return, Unilever (UNVR) stock return 

and their portfolio. The daily stock return of BMRI, BBCA and UNVR from 2 January 

2013 until 16 April 2014 are used for constructing models (see 

www.finance.yahoo.com). 

Procedure of GARCH modeling can be divided into two main steps, the first one are 

mean modeling steps and the second one are variance modeling steps. The steps of 

constructing ARIMA model consists of model identification, parameter estimation, and 

verification model. The estimated model that satisfied all of the assumptions can be 

used for forecasting, but if the estimated model didn’t satisfy the assumption especially 

homoscedasticity assumption (there is GARCH effect) then the variance model should 

be constructed. The model should be constructed based on the squares of residual. 

Results of constructing GARCH models for forecasting volatility of single asset and 

portfolio can be described as follows. 

 

3.1 Forecasting volatility of single asset 

3.1.1 Forecasting volatility of BMRI 

Estimated model of BMRI return is: ARIMA([2], 0, [2])-EGARCH(1, 1) that can be 

written as: t2t2tt aa8350.0r7133.0r   , 

where ),0(N~a 2
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3.1.2 Forecasting volatility of BBCA 

The estimated model of BBCA stock return is: ARIMA(2, 0, 2)-GARCH(1, 1) that 

can be written as: 

ta2ta0302.11ta5657.02tr9820.01tr5899.0tr   

where ),0(N~a 2
tt   and 2

1t
2

1t
2
t 83505,0a050571.0000044.0   . 
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3.1.3 Forecasting volatility of unilever (UNVR) 

Estimated model of UNVR stock return is: ARIMA([2], 0, [2])-IGARCH(1, 1) that 

can be written as: 

t2t2tt aa9941.0r9303.0r   , 

where ),0(N~a 2
tt   and 2

1t
2

1t
2
t 9737.0a0263.0   . 

The result of predicted volatility of single asset return BMRI, BBCA and UNVR are 

respectively shown as Figure 1, Figure 2 and Figure 3. 
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Figure 1: The estimated volatility of BMRI 
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Figure 2: The estimated volatility of BBCA 
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Figure 3: The estimated volatility of UNVR 

 

 

3.2 Forecasting volatility of portfolio asset 

3.2.1 Forecasting volatility of portfolio: BMRI and BBCA 

The weight of each asset is calculated by minimizing Lagrange multiplier function. 

The weight of BMRI and BBCA is 23% and 77% respectively. Portfolio return is 

determined using Eq.9. The constructed model of portfolio return is: ARIMA([2], 0, 

[2])-GARCH(1, 1) that can be written as: 

t2t2tt aa8337,0r8121.0r   , 

where ),0(N~a 2
tt   and 2

1t
2

1t
2
t 8387.0a0598.0000037.0   . 

 

3.2.2 Forecasting volatility of portfolio: BMRI and UNVR 

The optimal weight of BMRI and UNVR is 48.5% and 51.5%. By using Eq.9, the 

estimated model of portfolio return is: ARIMA(2, 0, 2)-GARCH(1, 1) that can be 

written as: 

t2t1t2t1tt aa9509.0a5541,1r9187.0r5051.1r    

where ),0(N~a 2
tt   and 2

1t
2

1t
2
t 92679.0a05114.00000097.0   . 

 

3.2.3 Forecasting volatility of portfolio: BBCA and UNVR 

The optimal weight of BMRI and UNVR is 48.5% and 51.5% respectively. Return 

portfolio is determined using Eq.13. The estimated model of portfolio stock return is: 

ARIMA([3], 0, 0)-EGARCH(1, 1) that can be written as: 

t3tt ar1076.0r   , where ),0(N~a 2
tt  , )ln(9619.0

a
1078.03811.0)ln( 2
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3.2.4 Forecasting volatility of portfolio: BMRI, BBCA and UNVR 

The optimal weight of BMRI, BBCA and UNVR is 15.8%, 59.2% and 25.0% 

respectively. Portfolio return is determined using Eq.9. The estimated model of 

portfolio return is: ARIMA([2], 0, [2])-IGARCH(1, 1) that can be written as: 

t2t2tt aa9950.0r9018.0r   , 

where ),0(N~a 2
tt   and 2

1t
2

1t
2
t 9695.0a0305.0   . 

The result of predicted volatility of portfolio return are shown as Figure 4, Figure 5, 

Figure 6 and Figure 7 below. 
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Figure 4: The estimated volatility of portfolio (BMRI and BBCA) 

 

.005

.010

.015

.020

.025

.030

.035

.040

2013Q1 2013Q2 2013Q3 2013Q4 2014Q1

Conditional standard deviation

 
Figure 5: The estimated volatility of portfolio (BMRI and UNVR) 
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Figure 6: The estimated volatility of portfolio (BBCA and UNVR) 
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Figure 7: The estimated volatility of portfolio (BMRI, BBCA and UNVR) 

 

 

The examples of predictied volatility for single asset return of BMRI, BBCA and 

UNVR and their portfolio return from 3 April 2014 until 15 April 2014 are given on 

Table 1. 
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Table 1. Predicted volatility of BMRI, BBCA, UNVR and their portfolio return 

 

Date Predicted Volatility 

BMRI BBCA UNVR BMRI, 

BBCA 

BMRI, 

UNVR 

BBCA, 

UNVR 

BMRI, BBCA, 

UNVR 

4/3/2014 0.0199 0.0190 0.0169 0.0189 0.0195 0.0145 0.0153 

4/4/2014 0.0186 0.0186 0.0167 0.0184 0.0191 0.0142 0.0152 

4/7/2014 0.0195 0.0183 0.0168 0.0181 0.0192 0.0142 0.0151 

4/8/2014 0.0184 0.0180 0.0170 0.0178 0.0190 0.0141 0.0151 

4/9/2014 0.0192 0.0177 0.0169 0.0174 0.0186 0.0139 0.0149 

4/10/2014 0.0192 0.0175 0.0167 0.0171 0.0181 0.0136 0.0147 

4/11/2014 0.0206 0.0173 0.0165 0.0173 0.0190 0.0133 0.0147 

4/14/2014 0.0202 0.0176 0.0175 0.0174 0.0191 0.0141 0.0152 

4/15/2014 0.0210 0.0176 0.0173 0.0173 0.0187 0.0140 0.0150 

 

 

4. Conclusion 
Based on the in sample data of return BMRI, BBCA and UNVR as case studies, the 

optimal weight of each asset can be determined using Lagrange Multiplier method for 

constructing portfolio return. The volatility of portfolio return can be predicted. The 

GARCH model can work well for forecasting volatility of BMRI, BBCA, UNVR and 

portfolio return. 
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