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Abstract. 

 

Regularity of non-stationary and stationary solutions to the diffusion 

approximation of the GI/G/1 queueing system under the elementary return 

boundary condition are discussed in this paper. Some boundedness of the 

solutions are also verified by using maximum principle. 

 

 

Introduction 
We discuss explicit non-stationary and stationary solutions to an initial boundary value 

problem of a linear partial differential equation of parabolic type, used in the elementary 

return boundary formulation of diffusion approximation to the GI/G/1 queueing system. 

It has been one of open problems in the literature [18]. 

Diffusion approximation is one of the most useful methods for tracing the temporal 

behavior of queueing systems. It describes the probability distribution function of the 

customer number in the system or virtual waiting time of a customer at each time, which 

is formulated by an initial boundary value problem of a linear partial differential 

equation of parabolic type. It is especially efficient for the GI/G/1 queueing system, 

where the inter-arrival times are independent and identically distributed random 

variables, customers are served in order of arrival, the service times of customers are 

independent and identically distributed random variables, and the inter-arrival and 

service times form independent sequences. The justification of this approach was 

provided by Kleinrock [12]. 

Even though the queue length is assumed to be infinite, the customer number in the 

system and virtual waiting time take non-negative values. Therefore, we have to 

consider the problem on the interval 𝑹+ ≡ (0,∞) . As a result, some boundary 

conditions at 𝑥 = 0  and 𝑥 → ∞  are necessary. In general, there exist two 

formulations of the diffusion approximation of the GI/G/1 system according to the form 

of boundary conditions: the reflecting barrier and elementary return formulations. The 

former formulation models the sample path of the object to be reflected instantaneously 
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at the point 𝑥 = 0 , which means that it does not rest at that point. In the latter 

formulation, however, the sample path remains at the point 𝑥 = 0 with time subject to 

the exponential distribution, then jumps into the region 𝑥 > 0. The distance of the 

jump is assumed to be subject to a probability distribution function provided in advance. 

The equation of diffusion approximation of the GI/G/1 queueing system under the 

elementary return boundary condition is described as follows [17]: 

 (
𝜕

𝜕𝑡
− 𝐿)𝑤 = Λ𝑅(𝑡)𝜙(𝑥) (𝑥, 𝑡) ∈ 𝑹+

2 , 1.1 

where the operator 𝐿 ≡ −𝛽
𝜕

𝜕𝑥
+
𝛼

2

𝜕2

𝜕𝑥2
, and 𝑹+ ≡ (0,∞). In the above formulation, 

𝜙(𝑥) is a function denoting the location of a sample path right after resting at 𝑥 = 0. 

Gelenve [7] formulated 𝜙(𝑥) = 𝛿(𝑥 − 𝑑), where 𝛿(𝑥) is the Dirac’s delta function, 

and 𝑑 > 0 is a constant. Takahashi [17] considered a model in which multiple 𝑁 

calls are present and formulated this term by 𝜙(𝑥) = ∑ 𝛿𝑁
𝑖=1 (𝑥 − 𝑑𝑖)  with 𝑑𝑖 >

0 (𝑖 = 1,2, … ,𝑁). 
 

The independent variable 𝑡 stands for time, and 𝑥 for the approximated number of 

customers in the queue or the virtual waiting time. By virtue of the renewal limit 

theorems, when it approximates the number of customers in the queue, 𝛼 and 𝛽 are 

defined as (𝛼, 𝛽) = (𝜆3𝑉𝑎 + 𝜇
3𝑉𝑠, 𝜆 − 𝜇), where 𝜆 and 𝜇 are the arrival rate and the 

customers served in a unit of time, respectively, and 𝑉𝑎 and 𝑉𝑠 are the variances of 

the inter-arrival and service time, respectively. In case (1. 1) approximates the time 

evolution of the virtual waiting time, they are expressed as (𝛼, 𝛽) = (𝜚𝜇−1(𝜆2𝑉𝑎 +
𝜇2𝑉𝑠), 𝜚 − 1),  with 𝜚 = 𝜆/𝜇.  They are positive and negative constants. Let us 

introduce other notations in (1. 1). Λ represents the mean interval of the events in 

which the system becomes empty; 𝑅(𝑡), the probability that the systems becomes 

empty at time 𝑡, and 𝑤(𝑥, 𝑡) ∈ 𝑹 is the probability density function of the customer 

number or the virtual waiting time at time 𝑡. Note that both 𝑤(𝑥, 𝑡) and 𝑅(𝑡) are 

unknown variables in this formulation. Due to the definitions of 𝑅(𝑡) and 𝑤(𝑥, 𝑡), the 

following relationship should be satisfied: 

 𝑅(𝑡) + ∫ 𝑤
∞

0
(𝑥, 𝑡) d𝑥 = 1 ∀𝑡 ∈ (0,∞). 1.2 

Condition (1. 2) is rewritten as the following boundary condition: 

𝐵𝑤(𝑡) ≡ (
𝛼

2

𝜕

𝜕𝑥
− 𝛽𝑤)|𝑥=0 =

𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡). 1.3 

The closest contributions to ours is those by Czachórski [1], [3] for single and multi-

server models with infinite length queue. They derived a solution not by solving the 

partial differential equation, but by considering the probabilistic behavior of a sample 

path. The obtained solution includes functions satisfying some integral equations, 

which are solvable by only numerical calculations. They also investigated a model with 

a bounded queue [2] by using a similar approach. For instance, their solution was 

provided in such a form 

�̃�(𝑥, 𝑠) = �̃�(𝑥, 𝑠; 𝜓) + �̃�1(𝑠)�̃�(𝑥, 𝑠, 1) + �̃�𝑁−1(𝑠)�̃�(𝑥, 𝑠, 𝑁 − 1) 
where 𝑓(𝑠) is the temporal Laplace transform of a function 𝑓(𝑡) in general. The 

functions �̃�𝑖(𝑠) (𝑖 = 1,𝑁 − 1)  are calculated from a lengthy algebraic equations. 
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Czachórski [1] also advocated that as 𝑡 tends to infinity, the non-stationary solution 

converges to a solution to the problem 

{

−𝐿𝑤𝜙 = Λ𝑅∞𝜙(𝑥) in 𝑹+,

𝐵𝑤𝜙|𝑥=0 = 𝑤𝜙(0) = 0,

lim
𝑥→∞

𝑤𝜙 (𝑥) = 0,
 

 

which is obtained by replacing 𝑅(𝑡) in (1. 1) by 𝑅∞ ≡ lim
𝑡→∞

𝑅 (𝑡). In this paper, we 

theoretically prove this fact by making use of the theory of linear partial differential 

equations of parabolic type. The principal difficulty in obtaining an explicit non-

stationary form of 𝑤  lies in the calculation of the inverse Laplace transform with 

respect to time, which we have overcome with classical theories of the complex analysis 

and ordinary differential equation. For details, see Lemma 4. 4 in Section 4. In this 

paper, we provide a purely theoretical solution. 

 

Let us refer to existing results concerning other formulations of diffusion 

approximation for the GI/G/1 system. The diffusion approximation of the GI/G/1 

system under the reflecting barrier formulation is investigated by Heyman [11], 

Kobayashi [13] and Newell [16]. In this formulation, they considered the homogeneous 

version of (1. 1) with a homogeneous boundary condition: 

 𝐵𝑤(𝑡) ≡ (
𝛼

2

𝜕

𝜕𝑥
− 𝛽𝑤)|𝑥=0 = 0. 1.4 

To this problem, an explicit non-stationary and stationary solutions were provided [16]. 

Under this formulation, however, the sample path of the objects does not remain at 𝑥 =
0, which results in the lower accuracy of the approximation, as Takahashi [17] pointed 

out. When the buffer length is finite, the domain of 𝑥 is a bounded interval (0, 𝐿) 
with 𝐿 > 0. In this case, reflecting barrier boundary conditions are imposed on both 

boundaries, and an explicit solution was provided by Kobayashi [14] when the buffer 

length is finite. 

In the rest of this section, we discuss the mathematical formulation. From the classical 

theory of partial differential equations, it is sufficient to impose initial and two more 

boundary conditions so that the problem is well-posed: 

 𝑤(𝑥, 0) = 𝛿(𝑥 − 𝑥0) 𝑥 ∈ 𝑹+, 1.5 

 lim
𝑥→+∞

𝑤 (𝑥, 𝑡) = 0 𝑡 > 0, 1.6 

 𝑤(0, 𝑡) = 0 ∀𝑡 > 0. 1.7 

 

As Czachórski did, Gelenbe [9] and Takahashi [17] also derived the stationary solution 

by letting 𝑡 go to infinity in (1. 1) and (1. 3). The solution is consistent with our result 

as we will state in Theorem 5. 1. 

We investigate problem (1. 1), (1. 3), (1. 5)–(1. 7) from the viewpoint of the theory of 

partial differential equations, and provide the explicit form of the non-stationary and 

stationary solutions. We also investigate the mathematically rigorous conditions for the 

well-posedness of the problems. Furthermore, we theoretically prove that the obtained 

solution 𝑤(𝑥, 𝑡) satisfies 𝑤(𝑥, 𝑡) ≥ 0. 
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Mathematical formulation 
In this section, we formulate again the problem to be solved. The unknown variables 

are 𝑤(𝑥, 𝑡) and 𝑅(𝑡) satisfying the following problem. 

 

{
  
 

  
 (

𝜕

𝜕𝑡
− 𝐿)𝑤 = Λ𝑅(𝑡)𝜙(𝑥) (𝑥, 𝑡) ∈ 𝑹+

2 , (8)

𝑤(𝑥, 0) = 𝑤0(𝑥) 𝑥 > 0, (9)

𝐵𝑤(𝑡) =
𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡) 𝑡 > 0, (10)

lim
𝑥→∞

𝑤 (𝑥, 𝑡) = 0 𝑡 > 0, (11)

𝑤(0, 𝑡) = 0 𝑡 > 0,

 2.1 

If we consider 𝑅(𝑡) be provided, the problem for 𝑤 can be regarded to be linear, and 

𝑤(𝑥, 𝑡) is represented by 𝑅(𝑡) explicitly. The main idea of our proof is as follows. 

First, we solve 𝑤(𝑥, 𝑡) explicitly by using (2. 1) 1–(2. 1) 4, which includes 𝑅(𝑡). 
Next, it is substituted into (2. 1) 5 , which yields 𝑅(𝑡) . As a result, 𝑤(𝑥, 𝑡)  is 

presented explicitly including 𝑅(𝑡), while for 𝑅(𝑡), only the Laplace transformed 

representation is obtained. 

 

 

Function spaces 
In this section, we prepare function spaces used in the following arguments. Let 𝐺 be 

a domain in 𝑹𝑛 (𝑛 = 1,2) . By 𝐶(𝐺)  and 𝐶𝑚(𝐺) (𝑚 ∈ 𝑵) , we denote sets of 

continuous and 𝑚 times continuously differentiable functions on 𝐺, respectively. We 

also introduce a notation 𝐶∞(𝐺) ≡ ⋂ 𝐶𝑚∞
𝑚=0 (𝐺), and 𝐿𝑝(𝐺) (0 < 𝑝 < ∞) stands 

for a space of integrable functions in the sense of Lebesgue measure of finite norm 

 ∥ 𝑓 ∥𝐿𝑝(𝐺)
𝑝 ≡ ∫ |

𝐺
𝑓(𝑥)|𝑝 d𝑥. 

For simplicity, we hereafter denote 
𝜕𝛼𝑢

𝜕𝑥𝛼
 and 

𝜕𝛼𝑢

𝜕𝑡𝛼
 (or sometimes 

𝑑𝛼𝑢

𝑑𝑡𝛼
 ) by 𝐷𝑥

𝛼𝑢 and 

𝐷𝑡
𝛼𝑢, respectively. 

By 𝑊2
𝑙(𝐺) we mean a space of functions 𝑢(𝑥),  𝑥 ∈ 𝐺 equipped with norm [21] 

 ∥ 𝑢 ∥
𝑊2
𝑙(𝐺)

2 = ∑
|𝛼|<𝑙

‖𝐷𝛼𝑢‖𝐿2(𝐺)
2 +∥ 𝑢 ∥

�̇�2
𝑙(𝐺)

2 , 

where 

{
  
 

  
 ∥ 𝑢 ∥�̇�2𝑙(𝐺)

2 =∑

|𝛼|=𝑙

∥𝐷𝑥
𝛼𝑢 ∥𝐿2(𝐺)

2 =∑

|𝛼|=𝑙

∫|
𝐺

𝐷𝑥
𝛼𝑢(𝑥)|2d𝑥if 𝑙 is an integer,

∥ 𝑢 ∥
�̇�2
𝑙(𝐺)

2 =∑

|𝛼|=[𝑙]

∫ ∫
|𝐷𝑥

𝛼𝑢(𝑥) − 𝐷𝑥
𝛼𝑢(𝑦)|2

|𝑥 − 𝑦|𝑛+2{𝑙}𝐺𝐺

d𝑥d𝑦

if 𝑙 is a non − integer, 𝑙 = [𝑙] + {𝑙},  0 < {𝑙} < 1.

 

 

Next we introduce anisotropic Sobolev–Slobodetskiĭ spaces [21] 

 𝑊2
𝑙,
𝑙

2(𝐺𝑇) ≡ 𝑊2
𝑙,0(𝐺𝑇) ∩𝑊2

0,
𝑙

2(𝐺𝑇)  (𝐺𝑇 ≡ 𝐺 × (0, 𝑇)), 

 

whose norms are defined by 
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∥ 𝑢 ∥
𝑊2
𝑙,
𝑙
2(𝐺𝑇)

2 = ∫ ∥
𝑇

0

𝑢(⋅, 𝑡) ∥
𝑊2
𝑙(𝐺)

2 d𝑡 + ∫∥
𝐺

𝑢(𝑥,⋅) ∥
𝑊2

𝑙
2(0,𝑇)

2 d𝑥

≡∥ 𝑢 ∥
𝑊2
𝑙,0(𝐺𝑇)

2 +∥ 𝑢 ∥
𝑊2
0,
𝑙
2(𝐺𝑇)

2 .
 

 

For a function or a distribution, to which the spacial Laplace transform is applicable 

and has its support included in 𝑹+, we define the following function spaces [20] with 

𝛾 ∈ 𝑹: 

𝐻𝛾
𝑙 (𝑹+) ≡ {𝑓|∫ |

𝛾+𝑖∞

𝛾−𝑖∞

𝜂|2𝑙|𝑓(𝜂)|2d𝜂 < ∞}, 

 

where 𝑓(𝜂) stands for the spacial Laplace transform of 𝑓: 

𝑓(𝜂) ≡ 𝐿𝑥[𝑓](𝜂) ≡ ∫ 𝑓
∞

0

(𝑥) exp( − 𝜂𝑥) d𝑥, 

 

which is holomorphic in the half-plane Re𝜂 > 𝛾. It has been shown that 𝐻0
𝑙(𝑹+) is 

equivalent to a set of functions 𝑓 ∈ 𝑊2
𝑙(𝑹+)  satisfying 𝐷𝑥

𝑖𝑓|𝑥=0 = 0 (𝑖 =
1,2, … , [𝑙])  [20]. If a mapping 𝑡 ∈ 𝑹+ ⟼∥ 𝑓(𝑡) ∥𝑊2𝑙(𝐺)  is 𝑚  times continuously 

differentiable for each 𝑡 ∈ 𝑹+, we represent 

 

𝑓 ∈ 𝐶𝑚((𝑹+;𝑊2
𝑙(𝐺)). 

 

A function 𝑓 defined on 𝑹 is denoted by 𝑓|𝐺 when it is restricted on a domain in 

𝐺 ⊂ 𝑹 . Finally, we introduce notations concerning the distribution. We denote a 

function space of rapidly decreasing functions by 𝑆: 

𝑆 ≡ {𝑓 ∈ 𝐶∞(𝑹)| 𝑥𝑚𝐷𝑥
𝑛𝑓(𝑥) < ∞ ∀𝑚, 𝑛 ∈ {0}⋃𝑵}. 

Then we denote a set of linear continuous mappings on 𝑆 by 𝑆′, which is known as 

the space of tempered distributions. We now define the Fourier and Laplace transforms 

of a distribution Φ ∈ 𝑆 in accordance with the usual definitions of those of tempered 

distributions [23] [24]. We also say Φ ≥ 0 in the distribution sense if it takes non-

negative values on any test function 𝑓 ∈ 𝑆, that satisfies 𝑓(𝑥) ≥ 0 ∀𝑥 ∈ 𝑹. We define 

the support of a function 𝑓 defined on 𝑹: 

𝑠𝑢𝑝𝑝(𝑓) ≡ {𝑥 ∈ 𝑹| 𝑓(𝑥) ≠ 0}, 

where 𝐺 stands for the closure of a domain 𝐺 in general. For a tempered distribution 

Φ, we say Φ = 0 on 𝐺 if it vanishes on any function 𝑓 ∈ 𝑆 defined on 𝐺. Now, let 

us denote the union of any continuous domain 𝐺𝜆 (𝜆 ∈ 𝑵) by ⋃ 𝐺𝜆𝜆  on which Φ 

vanishes. We define the support of Φ, denoted by 𝑠𝑢𝑝𝑝(Φ), as the complement of 

⋃ 𝐺𝜆𝜆 : 𝑠𝑢𝑝𝑝(Φ) ≡ (⋃ 𝐺𝜆𝜆 )𝑐 [24]. 
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Explicit non-stationary solution 
In this section, we provide an explicit form of a non-stationary solution, which is one 

of the main results of this paper. 

 

 

Compatibility condition 

First, let us introduce a new concept of the compatibility condition. Note that since the 

right-hand side of the equation and initial data are formulated as distributions in (2. 1), 

compatibility conditions in the ordinary sense do not make sense. Nevertheless, the 

solution in the region 𝑡 > 0  has some regularity, as discuss later. Therefore, we 

introduce the following concept of compatibility conditions. For 𝑘 ∈ {0}⋃𝑵, let us 

define 

�̃̃�(𝑘)(𝜂) = 𝐷𝑡
𝑘�̃̃�|𝑡=0(𝜂). 

Then, the compatibility condition in the weak sense of order 𝑚 for (2. 1) means that 

lim
𝜂→∞

𝜂 {(
𝛼

2
𝜂 − 𝛽)�̃̃�(𝑘)(𝜂) −

𝛼

2
lim
𝜂′→∞

𝜂′ �̃̃�(𝑘)(𝜂′)} = 𝐷𝑡
𝑘𝜓(0) 

hold for 𝑘 = 1,2, … ,𝑚. For the usual definition of the compatibility condition, which 

does not make sense here, refer to the appendix of this paper, [15], and [19]. 

 

Explicit non-stationary solution 

In this subsection, we state the main result of this paper. We state sufficient conditions 

for the well-posedness and the explicit form of the solution under these conditions. Let 

𝑙 > 0 be arbitrarily provided, and assume following items: 

(i) 𝑠𝑢𝑝𝑝(𝜙),  𝑠𝑢𝑝𝑝(𝑤0) ⊂ 𝑹+; 

(ii) lim
𝜂→0

�̃̃� (𝜂) = lim
𝜂→0

�̃̃�0 (𝜂) = 1; 

(iii) 𝜙 ≥ 0. If 𝜙 is a distribution, it holds in a distribution sense; 

(iv) 𝜙 ∈ 𝐻0
𝑙(𝑹), 𝑤0 ∈ 𝐻0

1+𝑙(𝑹); 
(v) (𝐻 ∗𝑥 𝜙 −𝐻) ∈ 𝐻0

1+𝑙(𝑹+) , where 𝐻(𝑥)  stands for the Heaviside step 

function, and 𝑓 ∗𝑥 𝑔 = ∫ 𝑓
𝑹

(𝑥 − 𝑦, 𝑡)𝑔(𝑦, 𝑡) d𝑦 

(vi) for functions or distributions 𝑓 and 𝑔 in general; 

(vii) the compatibility conditions in the weak sense up to order 1 are satisfied. 

 

Then problem (2.1) has a unique solution (𝑤(𝑥, 𝑡), 𝑅(𝑡)) satisfying 

𝑤 ∈ 𝐶∞(𝑹+;𝑊2
2+𝑙(𝑹+)),  𝑅 ∈ 𝐶

∞(𝑹+) 
of the form 𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) + 𝑤𝜙(𝑥), where 

𝑢(𝑥, 𝑡) = [ΛΓ1 ∗ (𝑅𝜙
∗) + Γ1 ∗𝑥 (𝑤0 − 𝑤𝜙)

∗]|𝑹+ , 

𝑣(𝑥, 𝑡) = −2exp(
𝛽𝑥

𝛼
)𝐺 ∗𝑡 (�̄� − 𝐵𝑢|𝑥=0), 

𝑤𝜙(𝑥) = −
2𝛬𝑅∞
𝛼

exp(
2𝛽𝑥

𝛼
) ∗𝑥 (𝐻 ∗𝑥 𝜙 − 𝐻), 

�̃�(𝑠) =
𝑅∞−𝛼𝑟𝐶2(𝑠)

𝛼𝑟𝛬𝐶1(𝑠)−(𝑠+𝛬)
. 4.1 
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Here, 𝐿𝑥
−1 stands for the inverse Laplace transform with respect to 𝑥, 𝑓∗ stands for 

an extension of a function 𝑓(𝑥)  defined on 𝑹+  into 𝑹  by zero, 𝑅(𝑡) ≡ 𝑅(𝑡) −

𝑅∞ ≡ 𝑅(𝑡) − lim
𝑡→∞

𝑅 (𝑡), �̄�(𝑡) ≡
𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡), and 

Γ1(𝑥, 𝑡) ≡
1

√2𝜋𝛼𝑡
exp(

−(𝑥 − 𝛽𝑡)2

2𝛼𝑡
),  𝐽(𝑥, 𝑡) ≡ √

2𝜋

𝛼𝑡
exp( −

𝑥2 + 𝛽2𝑡2

2𝛼𝑡
), 

𝐾(𝑥, 𝑡) = −
𝛽

𝛼
∫ 𝐽
∞

𝑥

(𝑧, 𝑡) exp(
𝛽

𝛼
(𝑥 − 𝑧)) d𝑧,  𝐺(𝑥, 𝑡) ≡

1

2𝜋
(𝐽(𝑥, 𝑡) + 𝐾(𝑥, 𝑡)), 

𝑓 ∗𝑡 𝑔 ≡ ∫ 𝑓
𝑡

0

(𝑥, 𝑡 − 𝜏)𝑔(𝑥, 𝜏) d𝜏,  𝑓 ∗ 𝑔 = ∫ ∫𝑓
𝑹

𝑡

0

(𝑥 − 𝑦, 𝑡 − 𝜏)𝑔(𝑦, 𝜏) d𝑦d𝜏, 

𝐶1(𝑠) ≡
1

𝛼𝑟
∫ exp (−(

𝛽

𝛼
+ 𝑟)𝑦)

∞

0

𝜙∗(𝑦) d𝑦, 

𝐶2(𝑠) ≡
1

𝛼𝑟
∫ exp (−(

𝛽

𝛼
+ 𝑟)𝑦)

∞

0

(𝑤0 − 𝑤𝜙)
∗(𝑦) d𝑦,  𝑟 = √

2

𝛼
(𝑠 +

𝛽2

2𝛼
) ∈ 𝑪. 

Condition (ii) equals ∫ 𝜙
∞

0
(𝑥) d𝑥 = 1  and ∫ 𝑤0

∞

0
(𝑥) d𝑥 = 1  if 𝜙  and 𝑤0  are 

functions in an ordinary sense, respectively. For the problem formulated by Gelenbe 

[7] and Czachórski [1], usually 𝜙 = 𝛿(𝑥 − 𝑑) with 𝑑 > 0 and 𝑤0(𝑥) = 𝛿(𝑥 − 𝑥0) 
with 𝑥0 > 0. In this case, the solution is provided in the following corollary. Let us 

assume 𝑥0 > 0  and 𝑑 > 0 . Then, problem (2.1) with 𝜙  and 𝑤0  replaced with 

𝛿(𝑥 − 𝑑) and 𝛿(𝑥 − 𝑥0), respectively, has a unique solution 𝑤(𝑥, 𝑡) satisfying 

𝑤 ∈ ⋂ 𝐶∞
∞

𝑚=0

(𝑹+;𝑊2
𝑚(𝑹+)) 

of the form 

𝑤(𝑥, 𝑡) = 𝑢′(𝑥, 𝑡) + 𝑣′(𝑥, 𝑡) + 𝑤𝑑(𝑥), 4.2 

where 

𝑢′(𝑥, 𝑡) = ΛΓ1(𝑥 − 𝑑, 𝑡) ∗𝑡 𝑅 + Γ1(𝑥 − 𝑥0, 𝑡)|𝑹+ − Γ1 ∗𝑥 𝑤𝑑
∗|𝑹+ , 

𝑣′(𝑥, 𝑡) = −2 exp(
𝛽𝑥

𝛼
)𝐺 ∗𝑡 (�̄� − 𝐵𝑢

′|𝑥=0), 

𝑤𝑑(𝑥) =

{
 

 
𝛬𝑅∞
𝛽

(exp(
2𝛽𝑥

𝛼
) − 1) on (0, 𝑑),

𝛬𝑅∞
𝛽

(1 − exp( −
2𝛽𝑑

𝛼
)) exp(

2𝛽𝑥

𝛼
) on(𝑑,∞).

 

 

Preliminaries for proof of Theorem 4. 1 

In this subsection, we prepare lemmas that prove the sufficiency of conditions in the 

statement in Theorem 4. 1. First, we show (1. 2) is derived from condition (ii). 

It is substantial for the formulation of the diffusion approximation to convert the global 

condition (1. 2) into the local boundary condition (2. 1) 2. The following lemma refers 

to the mathematical sufficiency of condition (ii). Since the right-hand side of (1. 1) and 

the initial condition (1. 5) include the Dirac’s delta function, which mathematically 
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makes sense as a distribution on the space of test functions, we deal with the problem 

by applying the spacial Laplace transform. Under condition (ii) in the statement of 

Theorem 4. 1, a continuous solution 𝑤(𝑥, 𝑡) to (2.1), if it exists, satisfies (1.2). 
Proof. Applying the spacial Laplace transform to (2. 1) yields 

{
 
 

 
 
𝜕�̃̃�

𝜕𝑡
(𝜂, 𝑡) − 𝜂(

𝛼

2
𝜂 − 𝛽)�̃̃�(𝜂, 𝑡) =

𝛼

2
𝜂𝑤(0, 𝑡) +

𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡)(�̃̃�(𝜂) − 1)(15)

 𝜂 ∈ 𝑪,  𝑡 ∈ 𝑹+, (16)

lim
𝜂→0

𝜂 �̃̃�(𝜂, 𝑡) = 0 𝑡 ∈ 𝑹+, (17)

�̃̃�(𝜂, 0) = �̃̃�0(𝜂) 𝜂 ∈ 𝑪.

 4.3 

Then, under condition (ii) in the statement of Theorem 4. 1, 

𝑑

𝑑𝑡
∫ 𝑤
∞

0

(𝑥, 𝑡) d𝑥 = lim
𝜂→0

𝜕�̃̃�

𝜕𝑡
=
𝑑

𝑑𝑡
𝑅(𝑡). 

Condition (ii) also implies lim
𝜂→0

�̃̃� (𝜂, 0) = 1, which means 

lim
𝑡→0

∫ 𝑤
∞

0

(𝑥, 𝑡) = 1, 

and thus (1. 2) holds.   

Next, we refer to the relationship between the derivative of 𝑅(𝑡) at 𝑡 = 0 and the 

order of the compatibility condition in the weak sense. 𝑅(𝑡) provided in Theorem 4. 

1 satisfies 

𝐷𝑡
𝑘𝑅(0) = 0 (𝑘 = 0,1). 4.4 

Under condition (i) in Theorem 4. 1, this is equivalent to the compatibility condition in 

the weak sense of order 1. 

Proof. Introducing notations 

�̃̃�(0)(𝜂) = �̃̃�0(𝜂),  �̃̃�(𝑘)(𝜂) ≡
𝜕𝑘�̃̃�

𝜕𝑡𝑘
|𝑡=0(𝜂) (𝑘 ≥ 1), 

it is sufficient to show the fact 

�̃̃�(𝑘)(𝜂) = 𝜂𝑘(
𝛼𝜂

2
+ 𝛽)𝑘�̃̃�0(𝜂). 4.5 

In fact, the compatibility condition of order 0 in the weak sense becomes 

lim
𝜂→∞

𝜂 {(
𝛼

2
𝜂 − 𝛽)�̃̃�0(𝜂) −

𝛼

2
lim
𝜂′→∞

𝜂′ �̃̃�0(𝜂
′, 𝑡)}|𝑡=0 

=
𝑑𝑅

𝑑𝑡
(0) + Λ𝑅(0). 

It is obvious that 

lim
𝜂→∞

𝜂𝑚 |�̃̃�0(𝜂)| = 0(𝑚 = 0,1,2,… , [2 + 𝑙]), 

since 𝑤0 ∈ 𝐻0
2+𝑙(𝑹+). Noting that condition (i) implies 𝑅(0) = 0, these result in 

𝑑𝑅

𝑑𝑡
(0) = 0. 4.6 

Next, by using (4. 3), 

�̃̃�(1)(𝜂) = 𝜂(
𝛼

2
𝜂 − 𝛽)�̃̃�(0)(𝜂) +

𝛼

2
𝜂 lim
𝜂′→∞

𝜂′ �̃̃�0(𝜂
′, 0) 

+
𝑑𝑅

𝑑𝑡
(0) + Λ𝑅(0)(�̃̃�(𝜂) − 1) 



On Regularity of Solution to Diffusion Approximation 1189 

= 𝜂(
𝛼

2
𝜂 − 𝛽)�̃̃�0(𝜂), 4.7 

and the compatibility condition of order 1 in a weak sense becomes 

lim
𝜂→∞

𝜂 {(
𝛼

2
𝜂 − 𝛽)�̃̃�(1)(𝜂) −

𝛼

2
lim
𝜂′→∞

𝜂′ �̃̃�(1)(𝜂′)} 

= 𝐷𝑡
2𝑅(0) + Λ

𝑑𝑅

𝑑𝑡
(0). 4.8 

The left-hand side of (4. 8) vanishes due to (4. 7), and applying (4. 6) to the right-hand 

side of (4. 8) leads to 

𝐷𝑡
2𝑅(0) = 0. 

In a similar manner, we have 

�̃̃�(2)(𝜂) = 𝜂(
𝛼

2
𝜂 − 𝛽)�̃̃�(1)(𝜂) +

𝛼

2
𝜂 lim
𝜂′→∞

𝜂′ �̃̃�(1)(𝜂′) 

= 𝜂2(
𝛼

2
− 𝛽)2�̃̃�0(𝜂). 

Iterating this process recursively, we have (4. 5) and consequently 

𝐷𝑡
𝑘𝑅(0) = 0 (𝑘 = 0,1,2, … , [2 + 𝑙]). 

Thanks to (4. 4) in Lemma 4. 2, it is not necessary to impose any initial condition on 

𝑅(𝑡). 
Now let us consider some problems as a fundamentals of the arguments held later. Next 

two lemmas provide explicit solutions to the Cauchy problem and the initial boundary 

value problems with sufficient regularities of data. Let us assume the following 

conditions with 𝑙 > 0 arbitrarily provided: 

(i) 𝑅1(𝑡) ∈ 𝐶
∞(𝑹+); 

(ii) 𝜙1(𝑥) ∈ 𝐻0
𝑙(𝑹) 

(iii) 𝑢10(𝑥) ∈ 𝐻0
2+𝑙(𝑹). 

 

Then, to the Cauchy problem 

{
(
𝜕

𝜕𝑡
− 𝐿)𝑢1 = 𝑅1(𝑡)𝜙1(𝑥) in 𝑹 × 𝑹+, (24)

𝑢1(𝑥, 0) = 𝑢10(𝑥) on 𝑹,
 4.9 

a solution 𝑢1 ∈ 𝐶
∞(𝑹+;𝑊2

2+𝑙(𝑹+)) uniquely exists, which is represented as follows: 

𝑢(𝑥, 𝑡) = Γ1 ∗ (𝑅1𝜙1) + Γ1 ∗𝑥 𝑢10. 
 

Proof. Applying the Fourier transform with respect to 𝑥 to (4. 9), we have 

{
𝜕𝑢1

𝜕𝑡
+ �̂�(𝜉)�̂�1 = 𝑅(𝑡)�̂�(𝜉) in 𝑹 × 𝑹+, (26)

�̂�1(𝜉, 0) = �̂�10(𝜉) on 𝑹,
 4.10 

where �̂�(𝜉) ≡ 𝑖𝛽𝜉 +
𝛼

2
𝜉2and 

𝑓(𝜉, 𝑡) ≡ 𝐹𝑥[𝑓](𝜉, 𝑡) ≡ ∫ exp(
∞

0

− 𝑖𝑥𝜉)𝑓(𝑥, 𝑡) d𝑥 

is the Fourier transform of a function 𝑓 with respect to 𝑥. The solution to (4. 10) is 

represented as follows: 

�̂�(𝜉, 𝑡) = �̂�(𝜉)∫ exp(
𝑡

0

− �̂�(𝜉)(𝑡 − 𝜏))𝑅(𝜏) d𝜏 + �̂�10(𝜉) exp( �̂�(𝜉)𝑡). 
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Thus, applying the inverse Fourier transform and the well known Parseval’s theorem, 

we directly obtain the desired result.  

Next, we consider a boundary value problem as follows: 

{
 
 

 
 (

𝜕

𝜕𝑡
− 𝐿)𝑣1 = 0 in 𝑹+

2 , (28)

𝐵𝑣1(𝑡) = 𝜓1(𝑡) on 𝑹+, (29)
𝑣1(𝑥, 0) = 0 on 𝑹+, (30)
lim
𝑥→∞

𝑣1 (𝑥, 𝑡) = 0 on 𝑹+.

 4.11 

For (4. 11), we introduce the following lemma. Let 𝜓1(𝑡) ∈ 𝐿2(𝑹+)⋂𝐶
∞ (𝑹+), and 

assume that the compatibility condition of order 1 holds. Then, problem (4.11) has 

a unique solution 𝑣1 ∈ 𝐶
∞(𝑹+

2 ) of the form: 

𝑣1(𝑥, 𝑡) = −2 exp(
𝛽𝑥

𝛼
)𝐺 ∗𝑡 𝜓1, 

where 𝐺(𝑥, 𝑡) is a function defined in the statement of Theorem 4. 1. 

Proof. Noting the vanishing initial value of 𝑣1, the temporal Laplace transform to  

(4. 11) with respect to 𝑡 yields the following equation with 𝑠 ∈ 𝑪: 

𝑠�̃�1(𝑥, 𝑠) − 𝐿�̃�1(𝑥, 𝑠) = 0. 
Here 𝑓 is the temporal Laplace transform of a function 𝑓 with respect to time: 

𝑓(𝑥, 𝑠) = 𝐿𝑡[𝑓](𝑥, 𝑠) ≡ ∫ exp(
∞

0

− 𝑠𝑡)𝑓(𝑥, 𝑡) d𝑡. 

For simplicity of calculation, we introduce a new function 𝑞(𝑥, 𝑠) and a constant 𝑑′, 
which is determined later, satisfying 

�̃�1(𝑥, 𝑠) = 𝑞(𝑥, 𝑠) exp( − 𝑑′𝑥). 
Then 𝑞(𝑥, 𝑠) satisfies 

(𝑠 − 𝛽𝑑′ −
𝛼

2
𝑑′2)𝑞 + (𝛽 + 𝛼𝑑′)

𝜕𝑞

𝜕𝑥
−
𝛼

2

𝜕2𝑞

𝜕𝑥2
= 0. 4.12 

Take 𝑑′ = −
𝛽

𝛼
, and (4. 12) is rewritten as follows: 

(𝑠 +
𝛽2

2𝛼
)𝑞 −

𝛼

2

𝜕2𝑞

𝜕𝑥2
= 0. 4.13 

From (4. 13) and the requirement lim
𝑥→∞

�̃�1 (𝑥, 𝑠) = 0 due to (4. 11) 4, 𝑞(𝑥, 𝑠) takes 

form 

𝑞(𝑥, 𝑠) = 𝐴(𝑠) exp( − 𝑟𝑥) 
with a function 𝐴(𝑠). Then the boundary condition (4. 11) 2 yields 

𝐴(𝑠) = −
2𝜓1̃(𝑠)

𝛼𝑟 + 𝛽
, 

and we have 

�̃�1(𝑥, 𝑠) = −
2�̃�1(𝑠)

𝛼𝑟 + 𝛽
exp( (

𝛽

𝛼
− 𝑟)𝑥). 

By virtue of the well known equality of the Laplace transform 

𝐿𝑡[𝑓](𝑠)𝐿𝑡[𝑔](𝑠) = ∫ 𝑓
𝑡

0

(𝑡 − 𝜏)𝑔(𝜏) d𝜏, 

we have 
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𝑣1(𝑥, 𝑡) = −2 exp(
𝛽𝑥

𝛼
)𝐿𝑡
−1[
𝑒𝑥𝑝 ( − 𝑟𝑥)

𝛼𝑟 + 𝛽
] ∗𝑡 𝜓1, 

where 𝐿𝑡
−1[𝑓] stands for the inverse Laplace transform of a function 𝑓 with respect 

to time. In the following, we calculate 

𝐿𝑡
−1[
𝑒𝑥𝑝 ( − 𝑟𝑥)

𝛼𝑟 + 𝛽
] =

1

2𝜋𝑖
∫

𝑒𝑥𝑝 ( − 𝑟𝑥)

𝛼𝑟 + 𝛽

𝜎1+𝑖∞

𝜎1−𝑖∞

exp( 𝑠𝑡) d𝑠. 

 

Let us denote 𝑠 = 𝜎1 + 𝑖𝜎2 . Then, we choose 𝜎1  in such a way that the path of 

integrand lies in the domain of analyticity of the integrand. This means that 𝜎1 takes 

the form such as 𝜎1 = −
𝛽2

2𝛼
+
𝛼

2
𝑎2  with a constant 𝑎. From the analyticity of the 

integrand with respect to 𝑠 in the half plane 𝜎1 > −
𝛽2

2𝛼
, it is not difficult to see that it 

vanishes in the region 𝑡 < 0, and we execute following calculations for 𝑡 > 0. We 

have 

∫
𝑒𝑥𝑝 ( − 𝑟𝑥)

𝛼𝑟 + 𝛽

𝜎1+𝑖∞

𝜎1−𝑖∞

exp( 𝑠𝑡) d𝑠 = ∫
𝑟 𝑒𝑥𝑝 ( − 𝑟𝑥 + (

𝛼

2
𝑟2 −

𝛽2

2𝛼
)𝑡)

𝑟 + 𝛽𝛼−1𝐻(𝑎)

 d𝑟 

= ∫
𝑟 𝑒𝑥𝑝 (−𝑟𝑥+(

𝛼

2
𝑟2−

𝛽2

2𝛼
)𝑡)

𝑟+𝛽𝛼−1

𝑎+𝑖∞

𝑎−𝑖∞
 d𝑟, 4.14 

where 𝑎2 ≡
2

𝛼
(𝜎 +

𝛽2

2𝛼
), and 𝐻(𝑎) is the right branch of the hyperbola 𝜎1

2 − 𝜎2
2 =

𝑎2. Since the function in the integrand is analytic in the region of 𝜎1 > −
𝛽2

2𝛼
, the value 

of the integral in (4. 14) does not change if the path 𝐻(𝑎) is replaced with the path 

Re𝑟 = 𝑎. Now Let us define 𝜁 ≡ 𝑟 +
𝛽

𝛼
= 𝑎 +

𝛽

𝛼
+ 𝑖𝜁′, and the right-most-hand side 

of (4. 14) is equivalent to the following term: 

∫
𝑒𝑥𝑝 (𝐼0(𝑥,𝜁,𝑡;𝑎))

𝜁

𝑎+𝛽𝛼−1+𝑖∞

𝑎+𝛽𝛼−1−𝑖∞
(𝜁 −

𝛽

𝛼
) d𝜁 ≡ 𝐼1(𝑥, 𝜁, 𝑡; 𝑎) + 𝐼2(𝑥, 𝜁, 𝑡; 𝑎), 4.15 

where 

𝐼0(𝑥, 𝜁, 𝑡; 𝑎) = −(𝜁 −
𝛽

𝛼
)𝑥 + {

𝛼

2
(𝜁 −

𝛽

𝛼
)2 −

𝛽2

2𝛼
}𝑡. 

In (4. 15), due to the analiticity of the integrand, 𝐼1 does not vary as 𝑎 tends to 𝛽𝛼−1, 

and the following equality holds. 

lim
𝑎→𝛽𝛼−1

𝐼1 (𝑥, 𝜁, 𝑡; 𝑎) = 𝑖√
2𝜋

𝛼𝑡
exp(

𝛽𝑥

𝛼
−
(𝑥 + 𝛽𝑡)2

2𝛼𝑡
) = 𝑖𝐽(𝑥, 𝑡). 

Next, for 𝐼2 in (4. 15), we have the following relationship: 

𝜕𝐼2
𝜕𝑥

= ∫
𝛽

𝛼𝜁

𝑎+𝛽𝛼−1+𝑖∞

𝑎+𝛽𝛼−1−𝑖∞

(𝜁 −
𝛽

𝛼
) exp( 𝐼0(𝑥, 𝜁, 𝑡; 𝑎)) d𝜁 

=
𝛽

𝛼
(𝑖𝐽 + 𝐼2). 4.16 

In conjunction with the obvious fact lim
𝑥→∞

𝐼2 (𝑥, 𝑡) = 0, (4. 16) has a solution 

𝐼2(𝑥, 𝑡) = −
𝛽

𝛼
∫ 𝑖
∞

𝑥

𝐽(𝑧, 𝑡) exp(
𝛽

𝛼
(𝑥 − 𝑧)) d𝑧 = 𝑖𝐾(𝑥, 𝑡). 
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These facts together with (4. 15) yield 

𝐿𝑡
−1[
𝑒𝑥𝑝 ( − 𝑟𝑥)

𝛼𝑟 + 𝛽
] =

1

2𝜋𝑖
(𝐼1 + 𝐼2) = 𝐺(𝑥, 𝑡), 

and consequently we have the desired result.  

 

4. 4. Proof of Theorem 4. 1 

In this subsection, we prove Theorem 4. 1 on the basis of Lemmas 4. 1–4. 4 introduced 

in the previous subsection. As we have stated, we first calculate the explicit 

representation of 𝑤(𝑥, 𝑡) using 𝑅(𝑡), and then 𝑅(𝑡) by using 𝑤(0, 𝑡) = 0. First, 

we divide (2. 1) 1–(2. 1) 4 into the following three problems: 

{

−𝐿𝑤𝜙 = Λ𝑅∞𝜙(𝑥) in 𝑹+, (37)

𝐵𝑤𝜙|𝑥=0 = 𝑤𝜙(0) = 0, (38)

lim
𝑥→∞

𝑤𝜙 (𝑥) = 0.
 4.17 

{
(
𝜕

𝜕𝑡
− 𝐿)𝑢 = Λ𝑅(𝑡)𝜙(𝑥) in 𝑹 × 𝑹+, (40)

𝑢(𝑥, 0) = 𝑤0(𝑥) − 𝑤𝜙(𝑥) on 𝑹,
 4.18 

{

(
𝜕

𝜕𝑡
− 𝐿)𝑣 = 0 in 𝑹+ × 𝑹+, (42)

𝐵𝑣|𝑥=0(𝑡) = �̄�(𝑡) − 𝐵𝑢|𝑥=0(𝑡) on 𝑹+, (43)
𝑣(𝑥, 0) = 0 on 𝑹+.

 4.19 

The solution to (4. 17) after the spacial Laplace transform is provided by 

�̃̃�𝜙(𝜂) =
𝛬𝑅∞(�̃̃�(𝜂) − 1)

𝜂(𝛽 −
𝛼𝜂

2
)

, 

which leads to 

𝑤𝜙(𝑥) = exp(
𝛽𝑥

𝛼
) ∗𝑥 (𝐻 ∗𝑥 𝜙 − 𝐻). 

When 𝜙(𝑥) = 𝛿(𝑥 − 𝑑) and 𝑤0(𝑥) = 𝛿(𝑥 − 𝑥0), 𝑤𝜙 equals to 𝑤𝑑 defined in the 

previous subsection, right after (4. 2). 𝑤𝑑  is the same function to that derived by 

Gelenbe [8] and Takahashi [17]. Since 𝑤(𝑥, 𝑡) = 𝑤𝜙(𝑥) + 𝑢(𝑥, 𝑡) + 𝑣(𝑥, 𝑡) satisfies 

problem (2. 1), we only have to construct solutions to problems (4. 18) and (4. 19). 

Now, thanks to Lemma 4. 3, we first have 

𝑢(𝑥, 𝑡) = ΛΓ1 ∗ (𝑅𝜙
∗(𝑥)) + Γ1 ∗𝑥 (𝑤0 − 𝑤𝜙)

∗. 

Next, Lemma 4. 4 yields 

𝑣(𝑥, 𝑡) = −2exp(
𝛽𝑥

𝛼
)𝐺 ∗𝑡 (�̄� − 𝐵𝑢|𝑥=0). 

Next we calculate 𝑅(𝑡). Due to (2. 1) 5, 

𝑤(0, 𝑡) = 𝑢(0, 𝑡) + 𝑣(0, 𝑡) = 0 

holds, which yields 

𝑢(0, 𝑡) − 2 exp(
𝛽𝑥

𝛼
)𝐺 ∗𝑡 {

𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡) − 𝐵𝑢}|𝑥=0 = 0. 

Since 𝑅(0) = 0 by virtue of Lemma 4. 2, applying the Laplace transform to this yields 

{Λ�̃�(𝑠)𝐶1(𝑠) + 𝐶2(𝑠)} − 2�̃�(0, 𝑠) 
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× {(𝑠 + Λ)�̃�(𝑠) + 𝑅∞ −
𝛼𝑟 − 𝛽

2
(Λ�̃�(𝑠)𝐶1(𝑠) + 𝐶2(𝑠))} = 0. 

Thus, we obtain 

�̃�(𝑠) =
𝑅∞ − 𝛼𝑟𝐶2(𝑠)

𝛼𝑟𝛬𝐶1(𝑠) − (𝑠 + 𝛬)
. 

It is also to be seen that 𝑅∞ = 1 − ∫ 𝑤𝜙𝑹+
(𝑥) d𝑥. Actually, from the representation 

of �̃�(𝑠) above, we have 

lim
𝑡→∞

𝑅 (𝑡) = lim
𝑠→0

𝑠 �̃�(𝑠) = 1 − 𝑅∞ −∫ 𝑤𝜙
𝑹+

(𝑥) d𝑥, 

whose left-most-hand side vanishes due to its definition. 

Prior to the verification of the existence and uniqueness of the global-in-time solution, 

we prepare the following lemma. For arbitrary 𝑇 > 0 and functions 𝑓 ∈ 𝑊2

2+𝑙

2 (0, 𝑇) 

and 𝑔 ∈ 𝑊2
𝑙(𝐺) in general, the following inequality holds with a constant 𝐶𝑙 > 0 

dependent only on 𝑙. 
∥ 𝑓𝑔 ∥

𝑊2
𝑙,
𝑙
2(𝐺𝑇)

≤∥ 𝑓 ∥
𝑊2

𝑙
2(0,𝑇)

∥ 𝑔 ∥𝑊2𝑙(𝐺), 

‖∫ exp(
𝑡

0

Λ(𝑡 − 𝜏))𝑓(𝜏) d𝜏‖
𝑊2

𝑙
2(0,𝑇)

≤ 𝐶𝑙𝑇
2−𝑙

2 ∥ 𝑓 ∥𝐿2(0,𝑇). 

For the proof of Lemma 4. 5, we only refer the reader to [21] and omit it here. 

We now show the existence and uniqueness of a global-in-time solution in the desired 

regularity to problem (2. 1). Since the regularity of 𝑅(𝑡) as a continuous function is 

uncertain from the representation (4. 1), it is necessary to calculate it. First, we note the 

representation 

𝑅(𝑡) =
𝛼

2
∫ exp(
𝑡

0
− Λ(𝑡 − 𝜏))

𝜕𝑤

𝜕𝑥
(0, 𝜏) d𝜏, 4.20 

which is derived from (2. 1) 3. Indeed, by virtue of (2. 1) 3 and (2. 1) 4, it is easily 

seen that 
𝛼

2

𝜕𝑤

𝜕𝑥
|𝑥=0(𝑡) =

𝑑

𝑑𝑡
𝑅(𝑡) + Λ𝑅(𝑡), 

which leads to (4. 20). 

 

Then we consider the successive approximation of 𝑤. Define 𝑤(0) = 𝑤0, and for 𝑚 ≥

0, 𝑤(𝑚+1) are recursively defined as a solution to the following problem: 

{
  
 

  
 (

𝜕

𝜕𝑡
− 𝐿)𝑤(𝑚+1) =

𝛼𝛬𝜙(𝑥)

2
∫ exp(
𝑡

0
− Λ(𝑡 − 𝜏))

𝜕𝑤(𝑚)

𝜕𝑥
(0, 𝜏) d𝜏(46)

(𝑥, 𝑡) ∈ 𝑹+
2 , (47)

𝑤(𝑚+1)(𝑥, 0) = 𝑤0(𝑥) 𝑥 > 0, (48)

lim
𝑥→∞

𝑤(𝑚+1) (𝑥, 𝑡) = 0 𝑡 > 0, (49)

𝑤(𝑚+1)(0, 𝑡) = 0 𝑡 > 0.

 4.21 

 

Making use of Lemmas 4. 3–4. 4, we already have the solution to (4. 21) on a time 

interval (0, 𝑇) with an arbitrary 𝑇 > 0, and the estimate 
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∥ 𝑤(𝑚+1) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹+×(0,𝑇))

 

≤ 𝐶0(∥ 𝑤0 ∥𝑊21+𝑙(𝑹+)+ ‖𝜙(𝑥)∫ exp(
𝑡

0

− Λ(𝑡 − 𝜏))
𝜕𝑤(𝑚)

𝜕𝑥
(0, 𝜏) d𝜏‖

𝑊2
𝑙,
𝑙
2(𝑹+×(0,𝑇))

) 

holds with 𝐶0 > 0 depending only on constant parameters due to the representation of 

the solutions. Take a positive constant 𝑀 > 0 such that 

𝐶0 ∥ 𝑤0 ∥𝑊21+𝑙(𝑹2) +∥ 𝑤(𝑚) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹2×(0,𝑇𝑚−1))

≤ 𝑀. 

 

Then, by virtue of the inequality 

‖𝜙(𝑥)∫ exp(
𝑡

0

− Λ(𝑡 − 𝜏))
𝜕𝑤(𝑚)

𝜕𝑥
(0, 𝜏) d𝜏‖

𝑊2
𝑙,
𝑙
2(𝑹+×(0,𝑇))

 

≤ 𝐶𝑇
2−𝑙

2 ∥ 𝜙 ∥𝑊2𝑙(𝑹+)∥ 𝑤(𝑚) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹+×(0,𝑇))

 

if we take 𝑇′ ∈ (0, 𝑇] small enough so that 

𝑇′
2−𝑙

2 ∥ 𝜙 ∥𝑊2𝑙(𝑹+)∥ 𝑤(𝑚) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹+×(0,𝑇

′))

+ 𝐶0 ∥ 𝑤0 ∥𝑊21+𝑙(𝑹+)≤ 𝑀 

holds, the sequence {𝑤(𝑚)} is bounded in 𝑊2
2+𝑙,

2+𝑙

2 (𝑹𝑇′
2 ) with 𝑇′ independent of 𝑚. 

Next, we consider the problem for �̃�(𝑚+1) ≡ 𝑤(𝑚+1) − 𝑤(𝑚) obtained by subtracting 

(4. 21) from itself with 𝑚 replaced by 𝑚 − 1. 

{
 
 

 
 (
𝜕

𝜕𝑡
− 𝐿)�̃�(𝑚+1) =

𝛼𝛬𝜙(𝑥)

2
∫ exp(
𝑡

0

− Λ(𝑡 − 𝜏))
𝜕�̃�(𝑚)

𝜕𝑥
(0, 𝜏) d𝜏(𝑥, 𝑡) ∈ 𝑹+

2 ,

�̃�(𝑚+1)(𝑥, 0) = 0 𝑥 > 0,

lim
𝑥→∞

�̃�(𝑚+1) (𝑥, 𝑡) = 0 𝑡 > 0,

�̃�(𝑚+1)(0, 𝑡) = 0 𝑡 > 0,

 

 

In the similar manner as above, by taking 𝑇′′ ∈ (0, 𝑇′] small enough, we obtain 

∥ �̃�(𝑚+1) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹+×(0,𝑇

′′))

< 𝜖′ ∥ �̃�(𝑚) ∥
𝑊2
2+𝑙,

2+𝑙
2 (𝑹+×(0,𝑇

′′))

 

with 𝜖′ < 1 , and therefore the sequence {𝑤(𝑚)}𝑚=0
∞  forms a Cauchy sequence in 

𝑊2
2+𝑙,

2+𝑙

2 (𝑹+ × (0, 𝑇
′′)). Thus, the limit 𝑤 = lim

𝑚→∞
𝑤(𝑚) exists, which is the desired 

solution. Up to now, we have constructed the local-in-time solution 𝑤. Actually, 𝑇′′ 
is determined independently of the data, and we can construct the global solution by 

the continuation argument [15]. Uniqueness of the global solution is obvious, and we 

omit the proof of it. Thus, we have the unique existence of a global solution 𝑤 ∈

𝑊2
2+𝑙,

2+𝑙

2 (𝑹+
2 ) to (2. 1). 

 

We shall then show it has additional regularity in 𝑡 and actually belongs to 

𝐶∞(𝑹+;𝑊2
2+𝑙(𝑹+)). 
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This is derived by substituting (4. 20) into the representation of 𝑤 in the statement of 

Theorem 4. 1. Consequently, again due to (4. 20), 𝑅 ∈ 𝐶∞(𝑹+) holds. This completes 

the proof of Theorem 4. 1. Corollary 4. 1 is derived directly from Theorem 4. 1. By 

making use of (2.1), it is easily seen that 

∫ (
∞

0

𝑢 + 𝑣)(𝑥, 𝑡) d𝑥 + ∫ 𝑤𝜙

∞

0

(𝑥) d𝑥 = 1 − 𝑅(𝑡) ∀𝑡 > 0 

holds. When (𝜙, 𝑤0) in (2.1) is replaced with (𝛿(𝑥 − 𝑙), 𝛿(𝑥 − 𝑥0)), if we assume 

𝑥0 = 0, which means 𝑅(0) = 1, which is inconsistent with (4. 4). Thus, 𝑥0 > 0 is a 

necessary condition. 

 

 

Stationary solution 
In this section, we provide the explicit form of the stationary solution to (2. 1) with 

sufficient conditions for its existence. 

 

Explicit representation of stationary solution 

The following is the second main result of this paper: In addition to the assumptions in 

Theorem 4. 1, let us assume the following conditions: 

(i) ∫ 𝑅
∞

0
(𝑡) d𝑡 < ∞; 

(ii) The solution 𝑤𝜙(𝑥) to (4. 17) satisfies 𝑤𝜙(𝑥) ∈ 𝐶(𝑹+)⋂ 𝐿2 (𝑹+); 

(iii) The spacial Laplace transform of 𝜙 , denoted by �̃̃�(𝜂) , is continuously 

differentiable at 𝜂 = 0, and the derivative has a finite negative value at 𝜂 = 0: 
𝑑

𝑑𝜂
�̃̃�(𝜂)|𝜂=0 = −𝑑 < 0. 

(iv) Then, the solution 𝑤(𝑥, 𝑡) in Theorem 4. 1 converges to a function 𝑤𝜙(𝑥) as 

𝑡 → ∞. When 𝜙(𝑥) is a function in an ordinary sense, condition (iii) above is 

equal to the condition ∫ 𝑥
∞

0
𝜙(𝑥) d𝑥 = 𝑑,  which implies that the mean 

distance of the reflection from the point 𝑥 = 0 exists and equals 𝑑. When 𝜙 

is the Dirac’s delta function, (iii) is satisfied by 𝜙 = 𝛿(𝑥 − 𝑑). 
 

Proof. We calculate the stationary solution by using the well known formula of the 

Laplace transform 

lim
𝑡→∞

𝑓 (𝑡) = lim
𝑠→0

𝑠 𝑓(𝑠). 

Note that the temporal Laplace transform of Γ1(𝑥, 𝑡) is provided by 

Γ̃1(𝑥, 𝑠) = {

1

𝛼𝑟
exp( (

𝛽

𝛼
− 𝑟)𝑥) (𝑥 ≥ 0),

1

𝛼𝑟
exp( (

𝛽

𝛼
+ 𝑟)𝑥)) (𝑥 < 0),

 

with 𝑟 defined in Section 4, 

𝑟 = √
2

𝛼
(𝑠 +

𝛽2

2𝛼
). 
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It is obvious that 

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 0 ∀𝑥 > 0 

holds. Next, we consider lim
𝑡→∞

𝑣 (𝑥, 𝑡). Note that 

𝑠�̃�(𝑥, 𝑠) = −
2𝑠(�̃�(𝑠) − 𝐿𝑡[𝐵𝑢|𝑥=0](𝑠))

𝛼𝑟 + 𝛽
exp( (

𝛽

𝛼
− 𝑟)𝑥), 

where 

𝐵𝑢 = Λ𝐵[Γ1 ∗ (𝑅𝜙
∗)] + 𝐵[Γ1 ∗𝑥 (𝑤0 − 𝑤𝑑)

∗]. 
Using the representation of Γ̃1(𝑥, 𝑠) above, we have 

𝐿𝑡[𝐵𝑢|𝑥=0](𝑠) = {
𝛼

2
(
𝛽

𝛼
+ 𝑟) − 𝛽}(Λ�̃�(𝑠)𝐶1(𝑠) + 𝐶2(𝑠)). 

Thus, we have 

lim
𝑠→0

𝑠 𝑣(𝑥, 𝑠) = −2 lim
𝑠→0

𝛼𝑟 − 𝛽

2𝛼
exp(

2𝛽𝑥

𝛼
) 

× {𝑠�̃�(𝑠) − 𝑅(0) + Λ�̃�(𝑠) −
𝛼𝑟 − 𝛽

2
(Λ�̃�𝐶1(𝑠) + 𝐶2(𝑠))}. 

It is easily seen that 

lim
𝑠→0

𝐶1 (𝑠) = −
1

𝛽
, 

lim
𝑠→0

𝐶2 (𝑠) =
1

𝛽
(1 − ∫ 𝑤𝜙

𝑹+

(𝑥) d𝑥), 

hold, which leads to 

lim
𝑠→0

𝑠 𝑣(𝑥, 𝑠) =
2𝛽

𝛼
exp(

2𝛽𝑥

𝛼
)(𝑅∞ − 1 +∫ 𝑤𝜙

𝑹+

(𝑥) d𝑥) = 0. 

Here, we have made use of the formula 

lim
𝑠→0

𝑠 𝑓(𝑠) = lim
𝑡→∞

𝑓 (𝑡), 

and 𝑅(0) = 0. This is the desired result.   

The result above implies lim
𝑡→∞

𝑤 (𝑥, 𝑡) = 𝑤𝜙(𝑥), which coincides the existing results. 

 

 

Boundedness of solution 
We finally verify that the solution is non-negative, which has to be satisfied since it 

represents the probability distribution function at each time. The following proposition 

guarantees that if (2. 1) has a solution of sufficient regularity, it is non-negative at each 

time under some assumptions on data. Let 𝑇 ∈ (0,∞]  and 𝑙 > 1  be arbitrarily 

provided. Then it satisfies 𝑤(𝑥, 𝑡) ≥ 0 ∀(𝑥, 𝑡) ∈ 𝑹+
2 . 

 

Proof. Due to (4. 1), we have 

lim
𝑡→0

𝑅 (𝑡) = lim
𝑡→0

𝑑

𝑑𝑡
𝑅(𝑡) = 0, 

lim
𝑡→0

𝐷𝑡
2 𝑅(𝑡) = +∞. 

Therefore, for 𝜖 > 0  sufficiently small, 𝑅(𝑡) > 0  holds on (0, 𝜖] . Now let us 

assume 𝑅(𝑡) vanishes on (𝜖,∞), and 
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𝑡0 ≡ min{ 𝑡 ∈ (𝜖,∞)|𝑅(𝑡) = 0}. 
By virtue of (4. 20), we then have 

𝜕𝑤

𝜕𝑥
(0, 𝑡) ≤ 0 

on a certain interval [𝑡1, 𝑡2] ∈ [𝜖, 𝑡0]  with 𝑡2 < 𝑡0 . Then, since lim
𝑥→∞

𝑤 (𝑥, 𝑡) = 0 , 

there exists a point (𝑥3, 𝑡3) ∈ (0,∞) × [𝑡1, 𝑡2]  where 𝑤(𝑥, 𝑡)  takes its negative 

minimum value in this region. Now the condition 𝑙 > 1 and Theorem 4. 1 lead to 

𝑤(𝑥, 𝑡) ∈ 𝐶∞(𝑹+;𝑊2
3+𝛼(𝑹+))⋂𝐶 (𝑹+

2 ) 

with a certain 𝛼 > 0. Then, thanks to the Sobolev embedding theorem [6] [21], we 

may deal with it as a regular function, to which the maximum principle [6] is applicable. 

At (𝑥3, 𝑡3), 
𝜕𝑤

𝜕𝑡
≤ 0, 

𝜕𝑤

𝜕𝑥
= 0, 𝐷𝑥

2𝑤 ≥ 0. 

This and (2. 1)1 imply 𝑅(𝑡3) ≤ 0, which contradicts the definition of 𝑡0. From these 

considerations, we have 𝑅(𝑡) > 0  on (0,∞) , that is, ∫ 𝑤
∞

0
(𝑥, 𝑡) d𝑥 ≤ 1.  Then, 

applying the maximum principle again, 𝑤(𝑥, 𝑡) ≥ 0 holds on 𝑹+
2 .   

Thanks to Proposition 6. 1, we are able to see that the solution to (2. 1) is non-negative 

without any lengthy calculations. 

 

Appendix: About Compatibility condition 

This appendix focuses on the compatibility condition of initial boundary value 

problems in a usual sense [19]. Let us consider a general form of the initial boundary 

value problem of the partial differential equation of parabolic type: 

{
 
 

 
 (
𝜕

𝜕𝑡
− 𝐿)𝑤 = 𝑓 (𝑥, 𝑡) ∈ 𝑹+

2 ,

𝐵𝑤(𝑡)|𝑥=0 = 𝑔 𝑡 ∈ 𝑹+,

𝑤(𝑥, 0) = 𝑤0 𝑥 ∈ 𝑹+,
lim
𝑥→+∞

𝑤 (𝑥, 𝑡) = 0 𝑡 ∈ 𝑹+.

 

 

The desired condition consist in the fact that the derivatives 

𝐷𝑡
𝑘𝑤|𝑡=0(𝑥) (𝑘 = 0,1,2, … ), 

which are determined for 𝑡 = 0  by the equation and initial condition, satisfy the 

boundary condition at 𝑥 = 0. Let us introduce the notations 

𝑤(𝑘)(𝑥) =
𝜕𝑘𝑤

𝜕𝑡𝑘
|𝑡=0(𝑥) (𝑘 = 0,1,2, … ). 

 

They are determined recursively as follows: 

𝑤(0)(𝑥) = 𝑤0(𝑥),  𝑤(𝑘)(𝑥) = 𝐿𝑤(𝑘−1)(𝑥) + 𝐷𝑡
𝑘𝑓|𝑡=0(𝑥), 

(𝑘 = 1,2, … ). 
Then, we say that the compatibility conditions of order 𝑚 with 𝑚 ≥ 0 are fulfilled if 

𝐵𝑤(𝑘)|𝑥=0 = 𝐷𝑡
𝑘𝑔|𝑡=0 (0 ≤ 𝑘 ≤ 𝑚) 

hold. 
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