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Abstract

A geometric-arithmetic progression of primes is a set of k primes (denoted by GAP-
k) of the form p1r

j +jd for fixed p1, r and d and consecutive j , i.e, {p1, p1r + d,

p1r
2 + 2d, p1r

3 + 3d, . . . }. We study the conditions under which, for k ≥ 2,
a GAP-k is a set of k primes in geometric-arithmetic progression. Computational
data (along with the MATHEMATICA codes) containing progressions up to GAP-
13 is presented. Integer sequences for the sets of differences d corresponding to
the GAPs of orders up to 12 are also presented.

AMS subject classification: 11B39, 33C05, 11N13.
Keywords: Primes, primes in arithmetic progression, primes in geometric-arithmetic
progression, integer sequences.

1. Introduction

Primes in arithmetic progression (denoted by AP-k, k ≥ 3) refers to k prime numbers
that are consecutive terms of an arithmetic progression. For example, 5, 11, 17, 23, 29
is an AP-5, a five-term arithmetic progression of primes with the common difference 6.
In this example of five primes in arithmetic progression, the primes are not consecutive
primes. CPAP-k denotes k consecutive primes in arithmetic progression. An example of
CPAP-3 is 47, 53, 59 with the common difference 6. Primes in arithmetic progression
have been extensively studied both analytically (see the comprehensive account in [3])
and numerically (see, [6, 7]). The largest known sequences contain up to 26 terms, i.e,
AP-26 and 10 consecutive primes i.e, CPAP-10 (see [1, 8] for the AP-k records and [1, 9]
for the CPAP-k records).
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The geometric-arithmetic progression refers to

a, ar + d, ar2 + 2d, ar3 + 3d, . . . . (1.1)

The sequence in (1.1) is not be confused with the arithmetic-geometric progression, a,
(a+d)r , (a+2d)r2, (a+3d)r3, . . . , whose terms are composite by construction. Primes
in geometric-arithmetic progression is a set of k primes (denoted by GAP-k) that are the
consecutive terms of a geometric-arithmetic progression in (1.1). For example 3, 17, 79
is a 3-term geometric-arithmetic progression (i.e, a GAP-3) with a = p1 = 3, r = 5
and d = 2. An example of GAP-5 is, 7, 47, 199, 911, 4423, with p1 = 7, r = 5 and
d = 12. The first term of the GAP-k is called the start, r the ratio and d the difference.
The special case of GAP-2 shall be discussed separately.

For r = 1, GAP-k reduces to AP-k; in this sense, GAP-k is a generalization of the
AP-k. It is possible to generate GAPs with p1 = 1, in which a case the first term of the
sequence is 1 and has to be excluded when computing the order (k) as 1 is excluded from
the set of primes. Example of one such GAP-5 with p1 = 1, r = 7 and d = 720 is 1,
727, 1489, 2503, 5281, 20407. One can also have GAPs with p1 = r; an example for a
GAP-5, is 5, 139, 353, 967, 3581, with p1 = r = 5 and d = 114. There can be GAPs
with composite r; an example of such a GAP-3 is 7, 107, 1579 with p1 = 7, a composite
r = 15 and d = 2; and an example for GAP-5 is 11, 919, 14543, 473227, 16509011
with p1 = 11, a composite r = 35 and d = 534. Relevant examples are presented in
Table-1 and Table-2 respectively.

In this section, we shall state the theorems. The proofs of these theorems with the
related discussions and analysis shall be done in the next Section-2. The conjectures and
open problems shall be presented in the third and concluding section. Following are the
statements of the theorems:

Theorem 1.1. Let GAP-k denote the set of k primes forming the sequence
{
p1r

j + jd
}k−1
j=0,

for fixed p1, r and d, where d and r are positive integers, and k is an integer > 1. Then it
is necessary that d is even; p1 is an odd-prime coprime to d; r is an odd-number coprime
to d. When p1 �= 1 and r �= 1, the maximum possible order-k of the set is lesser of the
two fixed numbers p1 and the smallest prime factor of r . When r = 1, the maximum
order of the set is p1. When p1 = 1, the maximum order of the set is less than the
smallest prime factor of r .

Theorem 1.2. [Factors of d]

1. The values of the differences d for each of the minimal GAP-k, k ≥ 5 are multiples
of a k-dependent factor denoted along with the order k by (k : . . . #), where # is
the primorial. They are (5 : 3#),
(6 − 7 : 3#),
(8 − 11 : 5#),
(12 − 13 : 7#),
(14 − 17 : 5#),
(18 : 7#),
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(19 : 11#),
(20 − 23 : 11#),
(24 − 29 : 13#),
(30 − 31 : 13#),
(32 − 37 : 19 ∗ 11#),
(38 − 41 : 13#),
(42 : 17#),
(43 : 19#),
(44 − 47 : 23 ∗ 17#),
(48 − 53 : 17#),
(54 : 29 ∗ 13#),
(55 − 58 : 29 ∗ 19 ∗ 13#),
(59 : 29 ∗ 19#),
(60 − 61 : 31 ∗ 19 ∗ 13#),
(62 − 67 : 31 ∗ 19#),
(68 − 71 : 17#),
(72 − 73 : 37 ∗ 23 ∗ 17#),
(74 − 79 : 23#),
(80 − 83 : 41 ∗ 19#),
(84 − 89 : 31 ∗ 23#),
(90 − 97 : 23#),
(98 − 99 : 23#),
(100 − 101 : 31 ∗ 23#),
(102 − 103 : 23#) respectively.

2. The values of the differences d for all minimal GAP-k, k ≥ 5 are multiples of
(3#).

3. The values of the differences d for all minimal GAP-k, k ≥ 8 are multiples of
(5#).

4. The values of the differences d for all minimal GAP-k, k ≥ 18 are multiples of
(7#).

5. The values of the differences d for all minimal GAP-k, k ≥ 19 are multiples of
(11#).

6. The values of the differences d for all minimal GAP-k, k ≥ 38 are multiples of
(13#).

Theorem 1.3. Let
{
p1r

j + jd
}p′−1
j=0 be a GAP-p′ of order p′, where p′ is smaller of

the two primes p1 and r1 the smallest prime factor of r . Then the infinite sequence{
p1r

j + jd
}∞
j=p′ does not have any GAPs of order ≥ p′.
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Theorem 1.1 summarizes the conditions on a geometric-arithmetic progression to
be a candidate for GAP-k. While Theorem 1.1 restricts the values of the differences d

for any GAP-k (k ≥ 3) to be even, Theorem 1.2 provides additional restrictions on the
values of the differences d for minimal GAPs of a given order. Further restrictions on
the order of the GAP are provided by Theorem 1.3.

2. Proofs of the Theorems

The following three subsections have the proofs of the theorems along with discussion
and analysis, starting with Theorem 1.1.

2.1. Proof of Theorem-1

When d is odd, the alternate terms of the sequence
{
p1r

j + jd
}k−1
j=0, take even values.

Hence, d cannot be odd. When p1r
j is even then again the alternate terms of the sequence

are even. So, it is necessary that d is even and p1r
j is odd, ensuring that all the terms of

the sequence are odd, a prerequisite for them to be prime. The first term of the sequence
is p1. So, p1 is necessarily an odd-prime. Since, p1r

j is odd it is necessary that r is also
odd. For p1r

j + jd to be prime it is necessary that p1 and r are both coprime to d. This
proves the theorem except for the part related to the order of the set.

First we consider the scenario p1 �= 1 and r �= 1. The (p1 +1)th term of the sequence
(obtained for j = p1) is p1r

p1 +p1d, which is composite. Hence, k ≤ p1. Let r1 be the
smallest prime factor of r . The (r1 + 1)th term of the sequence (obtained for j = r1) is
p1r

r1 + r1d = p1r
r1
1 (r/r1)

r1 + r1d, which is composite. Hence k ≤ r1. When r = 1 and
p1 �= 1, the sequence simplifies to {p1 + jd}, whose (p1 +1)th term is p1 +p1d, which
is composite. Hence, k ≤ p1. When p1 = 1 and r �= 1, the sequence becomes rj + jd,
whose first term is 1 (for j = 0) and the (r1 + 1)th term is rr1 + r1d = r

r1
1 (r/r1)

r1 + r1d,
which is composite. Since, number 1 is not among the primes, k ≤ (r1 − 1). The case
p1 = 1 and r = 1 is trivial and generates only one GAP (uniquely fixed with d = 2),
which is the GAP-3, 3, 5, 7. This completes the proof of the theorem. �

For every integer, j ≥ 2, there exists a prime p such that j < p < 2j (see for
instance, [4]). The elements of GAPs (r �= 1) grow faster than 2j . Consequently, GAPs
cannot have consecutive primes as its members. Hence, we do not have consecutive
primes in geometric-arithmetic progression.

Theorem 1.1 tells us the necessary conditions on p1, r and d, for a geometric-
arithmetic progression to be a candidate for GAP-k. The theorem is nonconstructive,
giving no clues for a recipe to generate the GAP-k. A recipe is required to choose ‘good’
triplets (p1, r, d) in order to generate GAP-k with larger values of k, and GAPs of a
given order with large number of digits.

GAP-2 is a pair of primes of the form (p1, p1r + d) and consequently structurally
much simpler than the larger GAP-k. For GAP-2, theorem 1.1 simplifies to the condition
that, p1r and d are coprime. For example, with p1 = 2, r = 6 and d = 5, we
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have (2, 17); with p1 = 3, r = 2 and d = 1, (3, 7); and p1 = 7, r = 100 and
d = 211, (7, 911) respectively. In the world of primes, titanic is 1000+ digits [1].
Example of a titanic GAP-2 is obtained with p1 = M4253, r = 7 and d = 1422
as (M4253, 7M4253 + 1422). Here, M4253 = 24253 − 1 is the 19th Mersenne prime
containing 1281 digits. Mersenne primes were chosen, as they are well-known and
easy to express [10, 11]. Pairs of primes with specific properties have been extensively
studied. For instance, Sophie Germain primes have the form (p, 2p + 1). With r = 1
the GAP-2 further simplifies to the pair (p, p + d). Prime pairs such as twin primes,
(p, p+2); cousin primes, (p, p+4); sexy primes, (p, p+6), among others have been
extensively studied [1].

A GAP-k is said to be minimal if the minimal start p1 and the minimal ratio r are
equal, i.e, p1 = r = p, where p is the smallest prime ≥ k. Such GAPs have the

form
{
p ∗ pj + jd

}k−1
j=0. Minimal GAPs with different differences, d do exist. For

example, the minimal GAP-5 (p1 = r = 5) has the possible differences, 84, 114,
138, 168, . . . and the minimal GAP-6 (p1 = r = 7) has the possible differences, 144,
1494, 1740, 2040, . . .. A minimal GAP-k is further said to be absolutely minimal if the
difference d is minimum. All the GAPs up to k = 12 in Table-1 are absolutely minimal.
Computationally obtained lower bounds of d in search for higher-order minimal GAPs
are also presented in Table-1. In the context of the absolutely minimal GAPs, it is
interesting to note that the absolutely minimal GAP-9 and the absolutely minimal GAP-
10 occur for the same value of d = 903030 = 31 ∗ 971 ∗ (5#) = 30101 ∗ (5#), where
n# is the primorial, 2 · 3 · 5 · · · p, where p ≤ n. For example, 10# = 2 · 3 · 5 · 7 = 210.
Consequently, GAP-9 is a complete subset of GAP-10 (in this particular instance, since
they have the same d). An individual GAP-9 occurs for a higher d = 1004250 =
(52) ∗ 13 ∗ 103 ∗ (5#) = 33475 ∗ (5#). This is analogous to the situation of AP-4 and
AP-5 with the minimal start (which is 5). The corresponding sequence is {5 + jd}. For
d = 6 (which is the minimum difference), the AP-4 and AP-5 are 5, 11, 17, 23, and 5, 11,
17, 23, 29 respectively. The next AP-4 and AP-5 again occur at d = 12. The individual
AP-4 occurs only at d = 18, which is 5, 23, 41, 59.

A given pair of start p1 and ratio r , in general generates a GAP-k of a certain order k

for different values of the difference d. In this note, we shall focus on the set of differences
corresponding to the minimal GAPs. The minimal GAP-2,

{
2 ∗ 2j + jd

}1
j=0 is a pair of

primes, (2, 4 + d) ≡ (2, p − 4), where p is any prime. Consequently, d belongs to the
sequence {p − 4}, where {p} is the infinite sequence of primes. Since, the sequence {p}
is infinite, the sequence {p − 4} is also infinite. We shall cite various integer sequences
from The On-Line Encyclopedia of Integer Sequences (OEIS) created and maintained
by Neil Sloane. For example, the sequence of primes, {p} is identified by A000040
in [12]. The infinite sequence {p − 4}: 1, 3, 7, 9, 13, 15, 19, 25, . . ., is A172367 [13].
The integer sequences of the differences d, corresponding to the minimal GAPs of each
order 3 to 12 are presented in [14]-[23]. In general, there are no reasons to believe that
the sequence of the differences d corresponding to any GAP (minimal or non-minimal)
are finite. Analogous sequences for the differences also exist for the primes in arithmetic
progression. See [24]-[25] for the sequences of differences corresponding to the primes
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in arithmetic progression with the minimal start. A study of these integer sequences may
provide a pattern, which will potentially guide us in our search for higher order GAPs
and APs.

From the computed sequences, we note that the set of differences for a given minimal
GAP-k have a common k-dependent multiplicative factor. This factor has been indicated
as (...#) in Table-1. We have included only the common factor. Individual differences d

do have additional factors. For instance, the first difference for the minimal GAP-11 is
443687580 = 2112798(7#) = 14789586(5#). The second difference is not a multiple
of (7#) and hence we have shown the first difference as 14789586(5#) in Table-1.

2.2. Proof of Theorem-2

The proof of the theorem 1.2 is based on modular arithmetic and is presented inAppendix-
A. Factors up to k = 103 are presented in Table-3. In an arithmetic progression (AP-k)
with the minimal start, the pattern of the differences is known to be a multiple of k#,
where k is the largest prime ≤ k (if k is not a prime). If k is a prime than the common
difference is a multiple of (k − 1)# (see [6, 7]). Unlike in the case of the AP-k with
the minimal start, there is no obvious pattern in the case of the minimal GAP-k. The
factor (...#) is not even monotonic. In none of the cases, it has been possible to establish
the factors containing the higher powers of 2, 3, 5, or 7. Theorem 1.2 only gives the
restrictions on the common difference d in order for the generating sequence to be a
candidate for minimal GAP. The existence of the minimal GAP-k, k ≥ 12 is yet to be
established (numerically or otherwise). The extension of the theorem 1.2 to non-minimal
GAPs is also discussed in Appendix-A.

So far, we have considered the GAPs from the sequence
{
p1r

j + jd
}k−1
j=0. The se-

quence,
{
p1r

j + jd
}

can have sets of primes for consecutive j , not necessarily starting

with j = 0. For example, the sequence,
{
5 ∗ 5j + 4j

}j=9
j=7 generates the GAP-3, 390653,

1953157, 9765661. Another example is the sequence,
{
13 ∗ 13j + 156497 ∗ (11#)j

}j=12
j=3

generating the GAP-10, 1084552771, 1446403573, 1812367159, 2231796937, 3346287211,
13496563933, 141112064479, 1795775474737, 23302061711251, 302879444689093.
Such sets, not starting with j = 0, cannot be put in the form

{
P1R

j + jD
}j=k−1
j=0 , where

P1, R and D are derived from p1, r and d.

2.3. Proof of Theorem-3

Theorem 1.1 requires p1 to be an odd-prime and r to be any odd number, p′ ≥ 3. When
r = 1, the GAP is reduced to an AP and we have p′ = p1 ≥ 3. Let us recall that
theorem 1.1 forbids GAPs of orders greater than p′ throughout the interval [j = 0, ∞).
While proving theorem 1.1, we saw that (p1+1)th and the (r1+1)th terms of the sequence,{
p1r

j + jd
}∞
j=0 are composite. The (np1 + 1)th term (where, n = 1, 2, 3, . . .) of the

sequence (obtained for j = np1) is p1r
np1 + np1d. This term is composite and belongs

to the interval [j = p1, ∞). There are only (p1 − 1) terms between any two successive
(np1 + 1)th and (n + 1p1 + 1)th terms. So, the interval [j = p1, ∞) cannot have any
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Table 3: The differences d for the minimal GAP of each order are multiples of a common
factor

Order-k Generating Prime p Common Factor
2 2 1
3 3 2
4 5 2
5 5 3#

6–7 7 3#
8–11 11 5#
12–13 13 7#
14–17 17 5#

18 19 7#
19 19 11#

20–23 23 11#
24–29 29 13#
30–31 31 13#
32–37 37 19 ∗ 11#
38–41 41 13#

42 43 17#
43 43 19#

44–47 47 23 ∗ 17#
48–53 53 17#

54 59 29 ∗ 13#
55–58 59 29 ∗ 19 ∗ 13#

59 59 29 ∗ 19#
60–61 61 31 ∗ 19 ∗ 13#
62–67 67 31 ∗ 19#
68–71 71 17#
72–73 73 37 ∗ 23 ∗ 17#
74–79 79 23#
80–83 83 41 ∗ 19#
84–89 89 31 ∗ 23#
90–97 97 23#
98–99 101 23#

100–101 101 31 ∗ 23#
102–103 103 23#
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GAPs of order more than (p1 − 1). The (nr1 + 1)th term (obtained for j = nr1) of the
sequence is p1r

nr1 + nr1d = p1r
nr1
1 (r/r1)

nr1 + r1d. This is also composite. Similar
arguments forbid the GAPs of order more than (r1 − 1) in the interval [j = p1, ∞).
This proves the theorem. In passing we note that, when r = 1, the GAP is reduced to an
AP. Then theorem 1.3 tells us that the sequence, {p1 + jd}∞j=p1

does not have any APs
of order ≥ p1.

3. Final Comments and Suggestions for Future Research

For a given triplet, (p1, r, d), the sequence,
{
p1r

j + jd
}N

j=0, may not always generate

very many primes. For example, the sequence,
{
5 ∗ 3j + 2j

}
, takes prime values for,

j = 0, 1, 7, 29, 49, 83, 436, 536, 1274, . . . . The sequence,
{
7 ∗ 13j + 36j

}1000
j=0 , has

only a single pair (i.e, a GAP-2) for j = 0, 1, which is (7, 127). Similar is the situation
for a wide range of (p1, r, d), making it very hard to find GAPs. GAP-3 and GAP-4
with 159 digits were obtained using the Mersenne primes. Titanic GAP-3 were also
obtained.

Numerical data in this article was computed initially (up to GAP-6 in Table-1), using
the Microsoft EXCEL [2, 26–31]. MS EXCEL has also found applications in specific
problems such as the study of quadratic surfaces in the laboratory [32]; chemical physics
[33]; and resistor networks [34]. The primality of the numbers generated by EXCEL was
checked using the database of primes at The Prime Pages [1] and the Sequence A000040,
from The On-Line Encyclopedia of Integer Sequences (OEIS), created and maintained
by Neil Sloane [12]. For higher orders, we are using the MATHEMATICA [5]. Search for
GAPs with ever larger k and geometric-arithmetic progressions containing larger primes
is in progress.

From theorem 1.1, it is evident that the order, k of any GAP-k does not exceed both
the starting prime p1 and the smallest prime factor of the ratio r . Equipped with this fact
and the numerical data, we have the following two conjectures.

Conjecture 3.1. [Minimal Start] The minimal starting prime, p1 in a GAP-k is the
smallest prime ≥ k.

Conjecture 3.2. [Minimal Start and Minimal Ratio] The minimal starting prime, p1
and minimal ratio, r in a GAP-k is the smallest prime ≥ k and p1 = r .

Computational data in Table-1 supports these conjectures up to k = 12.
Theorem 1.3 is for the restricted case of GAPs, whose order is any prime p′ ≥ 3

and forbids the existence of GAPs of order p′ in the infinite interval [j = p′, ∞).
Moreover, the theorem is silent about the absence (or existence) of GAPs of orders lower
than (p′ − 1) in the interval [j = p1, ∞). It is interesting to note that the ten sequences
{
p ∗ pj + jd

}1000
j=k

, (for k = 3 to 12), for the choice of the absolutely minimal triplets
(p, p, d) in Table-1 do not have any GAPs of order 3 to p respectively. Some of them
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do have one or two GAP-2 in the interval, [j = k, 1000] respectively. This numerical
data provides room for extending the theorem 1.3 to cases, when the order of minimal
GAP is not a prime. This leads to the conjecture.

Conjecture 3.3. [GAP free] Whenever the sequence
{
p ∗ pj + jd

}k−1
j=0 has the minimal

GAP-k, the rest of the infinite sequence,
{
p ∗ pj + jd

}∞
j=k

does not have any GAPs of
orders ≥ 3.

We end this note with several open questions, similar to the ones, which exist for the
primes in arithmetic progression [3].

Problem 3.4. Are there arbitrarily long geometric-arithmetic progressions of primes?

Problem 3.5. Are there infinitely many k-term geometric-arithmetic progressions con-
sisting of k primes?

Problem 3.6. Do the prime numbers contain infinitely many geometric-arithmetic pro-
gressions of length k for all k?

Problem 3.7. Are there infinitely many GAP-k for any k?

We conjecture that the answer to all the above questions is in the affirmative!
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Appendix-A: Proof of Theorem 1.2

Theorem 1.1 states that the common factor of all differences of any GAP-k, k ≥ 3 is 2
(i.e, d is even). Theorem 1.2 states additional factors of all the differences d of a given
minimal GAP-k, k ≥ 5. The theorem essentially consists of two parts: part-1 is for the
specific GAP-k with k up to 103; part-2 has global statements giving the common factor
of all differences of any minimal GAP, whose order exceeds a particular number. Its
proof is based on modular arithmetic. As we shall soon see, it suffices to demonstrate
the procedure of proving the statements in a few specific cases of both part-1 and part-
2 respectively. Rest of the statements in the theorem for higher orders can be proved
closely following the procedures established for lower orders. In fact the methodology
presented can be used to derive results and extend the theorem to still higher orders and
importantly to the non-minimal GAPs.

The minimal GAP-5 is defined by the sequence
{
5 ∗ 5j + jd

}4
j=0 and the common

difference d is restricted in such a way that the defining sequence has 5 primes. The first
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four terms of this sequence belong to GAP-4. The residues of this sequence (mod 3)

are {2, 1 + d, 2 + 2d, 1, 2 + d}. Primality requires the second residue 1 + d such that
d �≡ 2 (mod 3) and the fifth residue 2 + d such that d �≡ 1 (mod 3). Consequently,
d ≡ 0 (mod 3). Otherwise, the second and fifth terms in the defining sequence would
be multiples of 3 and not prime. Hence, d is necessarily a multiple of 3. Theorem 1.1
restricts the values of the differences d of any GAP-k, k ≥ 3 to be multiples of 2.
Consequently, the values of the differences for GAP-5 are restricted to be multiples of
(3#). The fifth residue does not belong to GAP-4 and hence the result is not applicable
to GAP-4. The third residue 2 + 2d is degenerate as it gives the same information as the
second residue. Among the five residues, the first was numeric (i.e, free of d) and the
third was degenerate.

The defining sequence for the minimal GAP-7 is
{
7 ∗ 7j + jd

}6
j=0. The correspond-

ing residues (mod 3) are {1, 1 + d, 1 + 2d, 1, 1 + d, 1 + 2d, 1}. Since, GAP-6 is
defined by the same sequence except for the index, its residues are the same as the first
six residues for GAP-7. The second and third residues are sufficient to establish that d is
a multiple of 3 for both GAP-6 and GAP-7. Consequently, the values of the differences
for GAP-6 and GAP-7 are restricted to be multiples of (3#). The residues (mod 5) are
{2, 4 + d, 3 + 2d, 1 + 3d, 2 + 4d, 4, 3 + d}. The first and sixth residues are numeric.
The second, fourth and fifth residues require d �≡ 1 (mod 5), d �≡ 3 (mod 5), and
d �≡ 2 (mod 5) respectively. The third and seventh residues are degenerate. The case,
4 (mod 5) remains unaddressed and hence d need not be multiple of 5.

The presence of numeric and degenerate residues of a given defining sequence hinders
the larger factors. Rest of the results in part-1 of the theorem are proved closely following
the procedure used for GAP-4 to GAP-7. The procedure is straightforward but becomes
laborious as the order-k grows. We have used the MATHEMATICA to compute the
residues [5]. Following are the residues for GAP-7 (mod 5)

In[1]:= Clear[p];
p = 7;
PolynomialMod[{p, p*p + d, p*pˆ2 + 2*d, p*pˆ3 + 3*d,
p*pˆ4 + 4*d, p*pˆ5 + 5*d, p*pˆ6 + 6*d}, 5]

Out[3]= {2, 4 + d, 3 + 2 d, 1 + 3 d, 2 + 4 d, 4, 3 + d}

In part-1 of the theorem, the results are for individual GAP-k, k ≤ 103. We have
demonstrated the procedure up to k = 7 and it is straightforward to extend it to higher
orders. Part-2 onwards the statements are global and the procedure is as follows. The
differences for the minimal GAP-5 are divisible by 3. Since, 5 ≡ 2 (mod 3) the result
is applicable to all those primes > 5, whose residues (mod 3) are 2. The differences
for GAP-7 are divisible by 3 and 7 ≡ 1 (mod 3). The result is again applicable to all
those primes > 7, whose residues (mod 3) are 1. The result was individually proved
for GAP-6 in part-1. The non-zero residues of 3 are {1, 2}. Consequently the differences
for all GAP-k, k ≥ 5 are divisible by (3#) with the factor 2 coming from theorem 1.1.

The non-zero residues of 5 are {1, 2, 3, 4}, and the corresponding 4 primes with
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these residues are {11, 17, 13, 19}. Note, that 7 ≡ 2 (mod 5) but its differences are
not divisible by 5 as seen in part-1. We now individually examine the four generating
sequences for GAP-11, GAP-17, GAP-13 and GAP-19 respectively and conclude that the
differences for each of them are multiples of 5. The factor of (3#) is already established,
so we conclude that all GAP-k, k ≥ 19 have their differences as multiples of (5#).
The inequality k ≥ 19, is refined by using the results in part-1. The factor of (5#)

was established for the lower order GAP-k, k = 8 to k = 18 in part-1. Hence, the
values of the differences d for all minimal GAP-k, k ≥ 8 are multiples of (5#). The set
{11, 17, 13, 19} was only a candidate set. Had the differences for any of the GAP-11,
GAP-17, GAP-13 or GAP-19 failed to be divisible by 5, we would have examined the
GAPs of higher orders, corresponding to that residue.

The non-zero residues of 7 are {1, 2, 3, 4, 5, 6} and the corresponding 6 primes are
{29, 23, 31, 53, 19, 13}. The primes 11 ≡ 4 (mod 7) and 17 ≡ 3 (mod 7) are not
relevant in view of the results in part-1. Following the procedure used for establishing
the factors (3#) and (5#), we conclude that the differences d for all minimal GAP-k,
k ≥ 18 are multiples of (7#).

The candidate set of 10 primes corresponding to the non-zero residues of 11 is
{23, 79, 47, 37, 71, 61, 29, 19, 31, 43}. The differences d for each of the GAPs of these
orders are divisible by (11#). The largest prime in this set is 79 and a spontaneous result
is that all GAP-k, k ≥ 79 have their differences as multiples of (11#). Using the results
from part-1, we refine the inequality and conclude that the differences d for all minimal
GAP-k, k ≥ 19 are multiples of (11#).

The candidate set of 12 primes corresponding to the non-zero residues of 13 is
{53, 41, 29, 43, 31, 71, 59, 47, 61, 101, 89, 103}. The largest prime in this set is 103.
Hence, the results in part-1 are up to k = 103. The candidate set successfully works
and we conclude that the differences d for all minimal GAP-k, k ≥ 38 are multiples of
(13#).

The candidate set of 16 primes corresponding to the non-zero residues of 17 is
{103, 53, 71, 89, 73, 193, 109, 127, 43, 163, 79, 97, 47, 167, 83, 101}. The largest prime
in this set is 193.

The candidate set of 18 primes corresponding to the non-zero residues of 19 is
{191, 59, 79, 61, 43, 101, 83, 103, 199, 67, 163, 107, 89, 109, 167, 149, 131, 37}. The
largest prime in this set is 199.

The procedure of proving this theorem can be applied to the non-minimal GAPs. The
common factor ...# of the differences d of a GAP-k with the start p1, and ratio r shall
be denoted by (k : p1, r, . . . #). The examples are (3 : 5, 7, 3#),
(3 : 2521 − 1, 19, 3#),
(3 : M4253 = 24253 − 1, 19, 3#),
(3 : M4423 = 24423 − 1, 7, 3#),
(3 : M4423 = 24423 − 1, 19, 3#),
(3 : M4423 = 24423 − 1, 24423 − 1, 3#),
(4 : 11, 35, 2#),
(4 : 2521 − 1, 5, 2#),
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(5 : 17, 13, 3#),
(5 : 47, 231 − 1, 3#),
(5 : M31 = 231 − 1, 31, 5#),
(5 : M521 = 2521 − 1, 11, 5#),
(5 : M521 = 2521 − 1, 521, 5#),
(5 : M607 = 2607 − 1, 5, 3#),
(5 : M607 = 2607 − 1, 7, 3#),
(5 : M607 = 2607 − 1, 11, 5#),
(5 : M607 = 2607 − 1, 13, 3#),
(6 : 19, 13, 3#),
(6 : M31 = 231 − 1, 31, 5#),
(7 : 7, 11, 5#),
(7 : 7, 13, 3#),
(7 : 7, 17, 3#),
(7 : 7, 19, 3#),
(7 : 11, 7, 3#),
(7 : 11, 13, 3#),
(7 : 11, 17, 3#),
(7 : 13, 7, 3#),
(7 : 17, 7, #),
(7 : 19, 7, 3#),
(7 : 19, 23, 3#),
(7 : 23, 19, 3#),
(7 : 99538463, 11, 5#),
(7 : M31 = 231 − 1, 31, 5#),
(7 : M521 = 2521 − 1, 11, 5#),
(8 : 11, 13, 3#),
(8 : 13, 11, 5#),
(8 : 31, 13, 3#),
(8 : M31 = 231 − 1, 31, 5#),
(9 : 11, 13, 5#),
(9 : M31 = 231 − 1, 31, 5#),
(10 : 13, 11, 5#),
(10 : M31 = 231 − 1, 31, 5#),
(11 : 11, 13, 7#)

(11 : 13, 11, 5#),
(11 : 17, 17, 5#),
(11 : 19, 19, 5#),
(11 : 23, 23, 5#),
(11 : 79, 79, 5#),
(11 : 101, 19, 5#),
(11 : 101, 101, 5#),
(11 : 103, 103, 5#),
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(11 : M19 = 219 − 1, 19, 5#),
(11 : 99538463, 11, 5#),
(11 : 99538463, 13, 7#),
(11 : 99538463, 19, 5#),
(11 : M31 = 231 − 1, 31, 5#) and
(11 : M521 = 2521 − 1, 19, 5#).

The choice of the (k : p1, r, ...#) in the above examples includes the cases covered
in Table-2.

Appendix-B: MATHEMATICA Codes

Most of the data in this article was computed using the versatile package MATHEMAT-
ICA [5]. The following program searches for the values of the differences d for the
minimal GAP-5, in the range [0, 1000].
In[1]:= Clear[p]; p = 5;
gapset5d = {};
Do[If[PrimeQ[{p, p*p + d, p*pˆ2 + 2*d, p*pˆ3 + 3*d,

p*pˆ4 + 4*d}] == {True, True, True, True, True},
AppendTo[gapset5d, d]], {d, 0, 10ˆ3}]; gapset5d // Timing

Out[4]= {6.50521*10ˆ-19, {84, 114, 138, 168, 258, 324, 348,
462, 552, 588, 684, 714, 744, 798, 882, 894, 972}}

The output is the set of 17 values of d: {84, 114, 138, . . . , 972}. The above program
(christened runner) picks the values of d but skips the finer details. The following
program (christened walker) gives the complete GAP sets corresponding to each d.

In[5]:= f[n_, m_] := (5)*(5)ˆn + n*m;
Column[Table[{m,

Cases[Table[{f[n, m], f[n + 1, m], f[n + 2, m],
f[n + 3, m], f[n + 4, m]}, {n, 0, 5}],
{a1_, a2_, a3_, a4_, a5_} /;

PrimeQ[{a1, a2, a3, a4, a5}] == {True, True, True,
True, True}]}, {m, 114, 114}]] // Timing

Out[6]= {4.33681*10ˆ-19, {114, {{5, 139, 353, 967, 3581}}}

In the above program we choose the difference 114 and obtained the corresponding
GAP-5: {5, 139, 353, 967, 3581}. As the name goes the walker is much slower than
the runner and hence, not suitable for generating the sequence of differences d. The
runner can be made into an accelerator by replacing {d, 0, 10∧3} with {d, 0, 10∧3, 2}
and confining the search to multiples of 2 (as restricted by theorem 1.1). It can be further
accelerated by the replacement of {d, 0, 10∧3, 2} with {d, 0, 10∧3, 6} and refining the
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search to multiple of (3#) = 6 (as restricted by theorem 1.2). Such replacements are
relevant as the numbers grow. It is straightforward to extend the above programs (for
GAP-5) to higher orders.
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