Inverse Perfect Domination in Graphs

Daisy P. Salve and Enrico L. Enriquez

Department of Mathematics,
School of Arts and Sciences,
University of San Carlos,
6000 Cebu City, Philippines.

Abstract

Let G be a connected simple graph. A dominating set $S \subseteq V(G)$ is called a perfect dominating set of G if each $u \in V(G) \setminus S$ is dominated by exactly one element of S. The perfect domination number of G, denoted by $\gamma_p(G)$, is the minimum cardinality of a perfect dominating set of G. Let D be a minimum perfect dominating set of G. A perfect dominating set $S \subseteq (V(G) \setminus D)$ is called an inverse perfect dominating set of G with respect to D. The inverse perfect domination number of G denoted by $\gamma_p^{-1}(G)$ is the minimum cardinality of an inverse perfect dominating set of G. An inverse perfect dominating set of cardinality $\gamma_p^{-1}(G)$ is called γ_p^{-1}-set.

In this paper, we show that every integers k and n with $1 \leq k < n$ is realizable as inverse perfect domination number and order of G respectively. Further, we give the characterization of the inverse perfect dominating set with inverse perfect domination numbers of one and two and give some important results.

AMS subject classification: 05C69.
Keywords: Dominating set, perfect dominating set, inverse perfect dominating set, inverse perfect domination number.

1This research is partially funded by the Office of Research University of San Carlos, Cebu City, Philippines.
1. Introduction

In literature, the concept of domination in graphs introduced by Claude Berge in 1958 and Oystein Ore in 1962 [6] is currently receiving much attention. Following the article of Ernie Cockayne and Stephen Hedetniemi [2], the domination in graphs became an area of study by many researchers. One type of domination in graphs is the perfect domination. This was introduced by Cockayne et al. [1] in the paper Perfect domination in graphs. The Inverse domination in a graph was first found in the paper of Kulli [7] and further read in [3, 5]. Moreover, for the general concepts not mentioned, readers may refer to [4].

Let \(G = (V(G), E(G)) \) be a connected simple graph and \(v \in V(G) \). The neighborhood of \(v \) is the set \(N_G(v) = N(v) = \{ u \in V(G) : uv \in E(G) \} \). If \(S \subseteq V(G) \), then the open neighborhood of \(S \) is the set \(N_G(S) = N(S) = \bigcup_{v \in S} N_G(v) \). The closed neighborhood of \(S \) is \(N_G[S] = N[S] = S \cup N(S) \). A subset \(S \) of \(V(G) \) is a dominating set of \(G \) if for every \(v \in (V(G) \setminus S) \), there exists \(x \in S \) such that \(xv \in E(G) \), i.e., \(N[S] = V(G) \). The domination number \(\gamma(G) \) of \(G \) is the smallest cardinality of a dominating set of \(G \).

A dominating set \(S \subseteq V(G) \) is called a perfect dominating set of \(G \) if each \(u \in V(G) \setminus S \) is dominated by exactly one element of \(S \). The perfect domination number of \(G \), denoted by \(\gamma_p(G) \), is the minimum cardinality of a perfect dominating set of \(G \). Let \(D \) be a minimum dominating set of \(G \). The dominating set \(S \subseteq V(G) \setminus D \) is called an inverse dominating set with respect to \(D \). The minimum cardinality of inverse dominating set is called an inverse domination number of \(G \) and is denoted by \(\gamma^{-1}(G) \). An inverse dominating set of cardinality \(\gamma^{-1}(G) \) is called \(\gamma^{-1} \)-set of \(G \).

Motivated by the definition of inverse dominating set, we define the following variant of inverse domination in graphs. Let \(D \) be a minimum perfect dominating set of \(G \). A perfect dominating set \(S \subseteq (V(G) \setminus D) \) is called an inverse perfect dominating set of \(G \) with respect to \(D \). The inverse perfect domination number of \(G \) denoted by \(\gamma^{-1}_p(G) \) is the minimum cardinality of an inverse perfect dominating set of \(G \). An inverse perfect dominating set of cardinality \(\gamma^{-1}_p(G) \) is called \(\gamma^{-1}_p \)-set.

2. Results

One of the classical result in the domination theory which was introduced by Ore in 1962 state the following theorem:

Theorem 2.1. [6] Let \(G \) be a graph with no isolated vertex. If \(S \subseteq V(G) \) is a \(\gamma \)-set, then \(V(G) \setminus S \) is also a dominating set in \(G \).

This motivate us to introduce a variant of domination in graphs, the inverse perfect domination in graphs. Theorem 2.1 guarantees the existence of \(\gamma^{-1}_p \)-set in some graph \(G \). Since the inverse perfect dominating set of any graph \(G \) of order \(n \) cannot be \(V(G) \), it follows that \(\gamma^{-1}_p(G) \neq n \) and hence \(\gamma^{-1}_p(G) < n \).
Since $\gamma_p^{-1}(G)$ does not always exist in a connected nontrivial graph G, we denote by $\mathcal{P}(G)$ be a family of all graphs with inverse perfect dominating set. Thus, for the purpose of this study, it is assumed that all connected nontrivial graphs considered belong to the family $\mathcal{P}(G)$. From the definitions, the following result is immediate.

Remark 2.2. Let G be a connected graph of order $n \geq 4$. Then

(i) $1 \leq \gamma_p^{-1}(G) < n$.

(ii) $D \cap S = \emptyset$ where D is a γ_p-set and S is a γ_p^{-1}-set of G.

The next result says that the value of the parameter γ_p^{-1} ranges over all positive integers.

Theorem 2.3. Given positive integers k and n such that $n \geq 2$ and $1 \leq k < n$, there exists a connected nontrivial graph G with $|V(G)| = n$ and $\gamma_p^{-1}(G) = k$.

Proof. Let H be a connected graph of order k and let D of order k be a collections of graphs I with $\gamma(I) = 1$ and $r = \sum_{I \in D} |V(I)|$.

If $V(G) = \bigcup_{v \in V(H), I \in D} V(v + I)$ and $n = k + r$, then the set $D = V(H)$ is a γ_p-set and the set $S = \bigcup_{x \in V(I), I \in D} \{x\}$, where $\{x\}$ is a dominating set of I, is a γ_p^{-1}-set of G.

Thus, $\gamma_p(G) = |D| = k$ and $\gamma_p^{-1}(G) = |S| = |D| = k$.

Moreover,

$$|V(G)| = \sum_{v \in V(H), I \in D} |V(v + I)| = |V(H)| + \sum_{I \in D} |V(I)| = k + r = n.$$

This proves the assertion.

Corollary 2.4. Let H be a connected graph of order k and let D of order k be a collections of graphs I with $\gamma(I) = 1$ and $r = \sum_{I \in D} |V(I)|$. If $V(G) = \bigcup_{v \in V(H), I \in D} V(v + I)$ of order n then $2\gamma_p^{-1} \leq n$.
Proof. Suppose that \(V(G) = \bigcup_{v \in V(H), I \in \mathcal{D}} V(v + I) \) of order \(n \). Then by proof of Theorem 2.3, \(\gamma_p^{-1}(G) = k \). Now,

\[
\begin{align*}
\sum_{I \in \mathcal{D}} |V(I)|
&= \sum_{I \in \mathcal{D}} |\{x\} \cup (V(I) \setminus \{x\})| \\
&= \sum_{I \in \mathcal{D}} |\{x\}| + \sum_{I \in \mathcal{D}} |V(I) \setminus \{x\}| \\
&= k + \sum_{I \in \mathcal{D}} |V(I) \setminus \{x\}|
\end{align*}
\]

\[\geq k.\]

Note that \(r = k \) if each graph \(I \) is trivial. Moreover, in view of the proof in Theorem 2.3, \(n = k + r \geq k + k = 2k = 2\gamma_p^{-1}(G). \) ■

Now, consider a path \(P_n = [x_1, x_2, \ldots, x_n] \). If \(n = 3k - 1 \) for some \(k \in \mathbb{N} \), then the sets \(D = \{x_{3j-1} : j = 1, 2, \ldots, \frac{n+1}{3}\} \) and \(S = \{x_{3j-2} : j = 1, 2, \ldots, \frac{n+1}{3}\} \) are \(\gamma_p \)-set and \(\gamma_p^{-1} \)-set. Thus, \(\gamma_p^{-1}(G) = \frac{n+1}{3} \). If \(n = 3k - 2 \) for some \(k \in \mathbb{N} \setminus \{1\} \), then the sets \(D = \{x_{3j-2} : j = 1, 2, \ldots, \frac{n+2}{3}\} \) and \(S = \{x_{3j-1} : j = 1, \ldots, \frac{n-1}{3}\} \cup \{x_n-1\} \) are \(\gamma_p \)-set and \(\gamma_p^{-1} \)-set. Thus, \(\gamma^{-1}(G) = \frac{n-1}{3} + 1 = \frac{n+2}{3} \). Thus the following remark holds.

Remark 2.5. Let \(G = P_n \in \mathcal{P}(G) \). Then

\[
\gamma_p^{-1}(P_n) = \begin{cases}
\frac{n+1}{3}, & \text{if } n = 3k - 1 \text{ for some } k \in \mathbb{N} \\
\frac{n+2}{3}, & \text{if } n = 3k - 2 \text{ for some } k \in \mathbb{N} \setminus \{1\}.
\end{cases}
\]

It is worth noting that if the order of \(G = P_n \) is a multiple of 3, then we cannot find an inverse perfect dominating set in \(G \). Thus, the following remark holds.

Remark 2.6. Let \(G = P_n \). Then \(G \notin \mathcal{P}(G) \) if \(n = 3k \) where \(k \in \mathbb{N} \).

Next, consider a path \(C_n = [x_1, x_2, \ldots, x_n, x_1] \). If \(n = 3k \) for some \(k \in \mathbb{N} \), then the sets \(D = \{x_{3j-2} : j = 1, 2, \ldots, \frac{n}{3}\} \) and \(S = \{x_{3j-1} : j = 1, 2, \ldots, \frac{n}{3}\} \) are \(\gamma_p \)-set and \(\gamma_p^{-1} \)-set of \(G \). Thus, \(\gamma_p^{-1}(G) = \frac{n}{3} \). If \(n = 3k + 1 \) for some \(k \in \mathbb{N} \), then
Inverse Perfect Domination in Graphs

the sets \(D = \left\{ x_{3j-2} : j = 1, 2, \ldots, \frac{n+2}{3} \right\} \) and \(S = \left\{ x_{3j-1} : j = 1, \ldots, \frac{n-1}{3} \right\} \cup \{x_{n-1}\} \) are \(\gamma_p \)-set and \(\gamma_p^{-1} \)-set of \(G \). Thus, \(\gamma^{-1}(G) = \frac{n-1}{3} + 1 = \frac{n+2}{3} \). If \(n = 6k + 2 \) for some \(k \in \mathbb{N} \), then the sets \(D = \left\{ x_{3j-2} : j = 1, 2, \ldots, \frac{n+4}{6} \right\} \cup \left\{ \frac{n+10}{6}, \frac{n+16}{6}, \ldots, \frac{n+4}{3} \right\} \) and \(S = \left\{ x_{3j-1} : j = 1, 2, \ldots, \frac{n-2}{6} \right\} \cup \{x_{n-1}\} \) are \(\gamma_p \)-set and \(\gamma_p^{-1} \)-set of \(G \). Thus, \(\gamma^{-1}(G) = \frac{n+1}{3} + 1 = \frac{n+4}{3} \). Thus the following remark holds.

Remark 2.7. Let \(G = C_n \in \mathcal{P}(G) \). Then

\[
\gamma_p^{-1}(C_n) = \begin{cases}
\frac{n}{3}, & \text{if } n = 3k \text{ for some } k \in \mathbb{N} \\
\frac{n+2}{3}, & \text{if } n = 3k + 1 \text{ for some } k \in \mathbb{N} \\
\frac{n+4}{3}, & \text{if } n = 6k + 2 \text{ for some } k \in \mathbb{N}
\end{cases}
\]

It is worth mentioning that if the order of \(G = C_n \) is \(n = 6k - 1 \) where \(k \in \mathbb{N} \), then we cannot find an inverse perfect dominating set in \(G \). Thus, the following remark holds.

Remark 2.8. Let \(G = C_n \). Then \(G \notin \mathcal{P}(G) \) if and only if \(n = 6k - 1 \) where \(k \in N \).

Further observation shows that some special graphs have no inverse perfect dominating set. The following remark holds.

Remark 2.9. Let \(F_n = K_1 + P_{n-1} \) and \(W_n = K_1 + C_{n-1} \). Then \(F_n, W_n \notin \mathcal{P}(G) \) if the order \(n \geq 5 \).

Since \(\gamma_p(G) \) is the order of the minimum perfect dominating set of \(G \), it follows that \(\gamma_p(G) \leq \gamma_p^{-1}(G) \). The following remark holds.

Remark 2.10. Let \(G \) be a connected nontrivial graph. Then \(\gamma_p(G) \leq \gamma_p^{-1}(G) \).

Suppose that \(\gamma(G) = 1 \) where \(G \) is nontrivial. Let \(S = \{x\} \) be a \(\gamma \)-set of \(G \). Since every \(u \in V(G) \setminus S \) is dominated by exactly one element in \(S \), it follows that \(S \) is a minimum perfect dominating set of \(G \), that is, \(\gamma_p(G) = \gamma(G) \). Moreover, if \(G \in \mathcal{P}(G) \), then it can be verified that \(\gamma_p^{-1}(G) = 1 \), that is, \(\gamma(G) = \gamma_p(G) = \gamma_p^{-1}(G) \). Thus, for \(G \in \mathcal{P}(G) \), the following remark holds.

Remark 2.11. Let \(G \) be a connected nontrivial graph. Then \(\gamma(G) = \gamma_p(G) = \gamma_p^{-1}(G) = 1 \).
Theorem 2.12. Let G be a connected graph of order $n \geq 2$. Then $\gamma_p^{-1}(G) = 1$ if and only if $G = K_1 + H$ where $\gamma(H) = 1$.

Proof. Suppose that $\gamma_p^{-1}(G) = 1$. Let $S = V(K_1)$ be a γ_p^{-1}-set of G. Set $V(H) = V(G) \setminus S$. Since $\gamma_p(G) \leq \gamma_p^{-1}(G) = 1$ by Remark 2.10, it follows that $\gamma_p(G) = 1$. Let $D = \{x\}$ be a γ_p-set of G. Since $D \cap S = \emptyset$ by Remark 2.2, it follows that $D \subset V(H)$, that is, $\gamma(H) = 1$. Therefore, $G = K_1 + H$ where $\gamma(H) = 1$.

For the converse, suppose that $G = K_1 + H$ where $\gamma(H) = 1$. Clearly, $\gamma_p(G) = 1$. Let $D = V(K_1)$ be a γ_p-set of G and $S = \{x\}$ be a dominating set in H. Then, S is also a minimum dominating set of G and S is a perfect dominating set of G by definition. Since $S \cap D = \emptyset$, it follows that $S \subseteq (V(G) \setminus D)$, that is, S is a γ_p^{-1}-set in G. Hence, $\gamma_p^{-1}(G) = 1$.

The following results are direct consequences of Theorem 2.12.

Corollary 2.13. Let G be a connected graph of order $n \geq 3$. Then $\gamma_p^{-1}(G) = 1$ if and only if $G = K_2 + H$ for a subgraph H.

Suppose that $\gamma(H_1) = 1 = \gamma(H_2)$. Let $S_1 = \{a\}$ and $S_2 = \{b\}$ be dominating sets of H_1 and H_2 respectively. Then the graph $G = H_1 + H_2$ may be expressed as $G = (\langle S_1 \rangle + J) + (\langle S_2 \rangle + I)$ where $V(J) = V(H_1) \setminus S_1$ and $V(I) = V(H_2) \setminus S_2$. Thus, $G = (S_1) + (S_2 + J + I) = K_1 + H$ where $\gamma(H) = 1$. Thus the following result is a direct consequence of Theorem 2.12.

Corollary 2.14. Let G and H be connected graphs. Then $\gamma_p^{-1}(G + H) = 1$ if and only if $\gamma(G) = 1 = \gamma(H)$.

Remark 2.15. If G is a complete graph of order $n \geq 2$, then $\gamma_p^{-1}(G) = 1$.

The following lemmas and remark are needed for the characterization of inverse perfect domination number equal to two.

Lemma 2.16. If $D = \{x, y\}$ is a perfect dominating set of G, then $N(x) \cap N(y) = \emptyset$ and $N[x] \cup N[y] = V(G)$.

Proof. Suppose that $N(x) \cap N(y) \neq \emptyset$. Let $a \in N(x) \cap N(y)$. Then, $a \in N(x)$ and $a \in N(y)$. This implies that $a \in V(G) \setminus D$ is dominated by x and y contrary to the fact that D is a perfect dominating set of G. Thus, $N(x) \cap N(y) = \emptyset$. Suppose that $N[x] \cup N[y] \neq V(G)$. Then there exists $z \in V(G)$ such that $z \notin N[x] \cup N[y]$. Thus, $z \notin N[x]$ and $z \notin N[y]$. This implies that z is not dominated by any element of D contrary to the fact that D is a dominating set of G. Thus, $N[x] \cup N[y] = V(G)$.

Lemma 2.17. If $S = \{a, b\}$ is an inverse perfect dominating set of G, then $N(a) \cap
$N(b) = \emptyset$ and $N(a) \cup N(b) = V(G)$.

Proof. Since $S = \{a, b\}$ is also a perfect dominating set of G, the desired result follows by applying Lemma 2.16.

Remark 2.18. If $S = \{a, b\}$ is an inverse perfect dominating set of G, then there always exists $D = \{x, y\}$ such that D is a perfect dominating set of G and vertices x, y, a and b are distinct. (Note that $G \in \mathcal{P}(G)$).

Theorem 2.19. Let G be a connected non-complete graph of order $n \geq 4$. Then $\gamma^{-1}_p(G) = 2$ if and only if $G \neq K_2 + H$ for any subgraph H and there exists distinct vertices x, y, a and b such that $\{x, y\}$ is a dominating set of G, $N(x) \cap N(y) = \emptyset$, $N(a) \cap N(b) = \emptyset$ and one of the following holds.

(i) The vertices x and y are adjacent and

(a) $\gamma((N(x) \setminus \{y\})) = 1$ and $\gamma((N(y) \setminus \{x\})) = 1$; or

(b) $\gamma((N(x) \setminus \{y\})) = 1$ and $\gamma((N(y) \setminus \{x\}) \setminus N(a)) = 1$ and $N(y) \cap N(a) \neq \emptyset$ for some a that dominate $(N(x) \setminus \{y\})$; or

(c) $\gamma((N(x) \setminus \{y\}) \setminus N(b)) = 1$ and $N(x) \cap N(b) \neq \emptyset$ for some b that dominate $(N(y) \setminus \{x\})$ and $\gamma((N(y) \setminus \{x\}) = 1$; or

(d) $\gamma((N(y) \setminus \{x\}) \setminus N(a)) = 1$ and $N(y) \cap N(a) \neq \emptyset$ for some a that dominate $(N(x) \setminus \{y\}) \setminus N(b)$, and $\gamma((N(x) \setminus \{y\}) \setminus N(b)) = 1$ and $N(x) \cap N(b) \neq \emptyset$ for some b that dominate $(N(y) \setminus \{x\}) \setminus N(a)$.

(ii) The vertices x and y are not adjacent and

(a) $\gamma((N(x))) = 1$ and $\gamma((N(y))) = 1$; or

(b) $\gamma((N[y] \setminus N(a)) \cup \{b\}) = 1$ and $N(y) \cap N(a) \neq \emptyset$ for some a that dominate $\langle N(x) \rangle$ and $\gamma((N(x))) = 1$; or

(c) $\gamma((N[x] \setminus N(b)) \cup \{a\}) = 1$ and $N(x) \cap N(b) \neq \emptyset$ for some b that dominate $\langle N(y) \rangle$ and $\gamma((N(y))) = 1$; or

(d) $\gamma((N[x] \setminus N(b)) \cup \{a\}) = 1$ and $N(x) \cap N(b) \neq \emptyset$ for some $b \in N(y)$ and $\gamma((N[y] \setminus N(a)) \cup \{b\}) = 1$ and $N(y) \cap N(a) \neq \emptyset$ for some $a \in N(x)$; or

Proof. Suppose that $\gamma^{-1}_p(G) = 2$. Then $\gamma_p(G) \leq 2$ by Remark 2.10. If $\gamma_p(G) = 1$ then $\gamma^{-1}_p(G) = 1$ by Remark 2.11 contrary to our assumption. Thus, $\gamma_p(G) = 2$. Let $D = \{x, y\}$ be a γ_p-set. Then D is a dominating set of G and $N(x) \cap N(y) = \emptyset$ by Lemma 2.16. Further, let $S = \{a, b\}$ be a γ^{-1}_p-set. Then S is a dominating set of G and $N(a) \cap N(b) = \emptyset$ by Lemma 2.17. Moreover, vertices x, y, a and b are distinct by Remark 2.18, that is $D \cap S = \emptyset$. Let $a \in N(x)$ and $b \in N(y)$. Consider the following cases.
Case 1. Suppose that \(xy \in E(G) \).

Subcase 1. If \(S_a = \{a\} \) is a dominating set of \(N(x) \) and \(S_b = \{b\} \) is dominating set of \(N(y) \), then \(\gamma((N(x) \setminus \{y\})) = 1 \) and \(\gamma((N(y) \setminus \{x\})) = 1 \). This proves (i).

Subcase 2. If \(S_a = \{a\} \) is a dominating set of \(N(x) \) and \(S_b = \{b\} \) is not a dominating set of \(N(y) \), then \(\gamma((N(x) \setminus \{y\})) = 1 \) and \(b \in N(y) \) does not dominate \(N(y) \). This implies that there exists \(d \in N(y) \) such that \(d \notin N(b) \). Since \(S = \{a, b\} \) is a dominating set of \(G \), it follows that \(d \in N(a) \). Thus, \(S_b \) is a dominating set of \(N(y) \), that is, \(\gamma((N(y) \setminus \{x\}) \setminus N(a)) = 1 \). Since \(d \in N(y) \cap N(a) \), \(N(y) \cap N(a) \neq \emptyset \) for some \(a \) that dominate \(N(x) \). This proves (ii).

Subcase 3. If \(S_a = \{a\} \) is not a dominating set of \(N(x) \) and \(S_b = \{b\} \) is dominating set of \(N(y) \). Then \(a \in N(x) \) does not dominate \(N(x) \) and \(b \in N(y) \) does not dominate \(N(y) \). This implies that there exists \(c \in N(x) \) such that \(c \notin N(a) \), and there exists \(d \in N(y) \) such that \(d \notin N(b) \). Since \(S = \{a, b\} \) is a dominating set of \(G \), it follows that \(c \in N(b) \). Thus, \(S_a \) is a dominating set of \(N(x) \setminus \{y\} \setminus N(b) \), that is, \(\gamma((N(x) \setminus \{y\}) \setminus N(b)) = 1 \) and \(S_b \) is a dominating set of \(N(y) \setminus \{x\} \setminus N(a) \), that is, \(\gamma((N(y) \setminus \{x\}) \setminus N(a)) = 1 \). Since \(c \in N(x) \cap N(b) \), \(N(x) \cap N(b) \neq \emptyset \) and since \(d \in N(y) \cap N(a) \), \(N(y) \cap N(a) \neq \emptyset \) for some \(a \) that dominate \(N(x) \) and for some \(b \) that dominate \(N(y) \). This proves (iii).

Case 2. Suppose that \(xy \notin E(G) \).

Subcase 1. If \(S_a = \{a\} \) is a dominating set of \(N(x) \) and \(S_b = \{b\} \) is a dominating set of \(N(y) \), then \(\gamma((N(x))) = 1 \) and \(\gamma((N(y))) = 1 \). This proves (iii).
Since $\gamma_p(G)$ exists, there exists a dominating set of G such that $d \notin N(a)$. Since $S = \{a, b\}$ is a dominating set of G, it follows that $d \notin N(b)$. Thus, S_a is a dominating set of $\langle (N[x] \setminus N(b)) \cup \{a\} \rangle$, that is, $\gamma(\langle (N[x] \setminus N(b)) \cup \{a\} \rangle) = 1$. Since $d \notin N(b)$, $N(x) \cap N(b) \neq \emptyset$ for some b that dominate $\langle N(y) \rangle$. This proves (iic).

Subcase 4. If $S_a = \{a\}$ is not a dominating set of $\langle N(x) \rangle$ and $S_b = \{b\}$ is not a dominating set of $\langle N(y) \rangle$. This implies that there exists $d \in V(G)$ such that $d \notin N(a)$ and there exists $c \in V(G)$ such that $c \notin N(b)$. Since $S = \{a, b\}$ is a dominating set of G, it follows that $d \in N(b)$ and $c \in N(a)$. Thus, S_a is a dominating set of $\langle (N[x] \setminus N(b)) \cup \{a\} \rangle$, that is, $\gamma(\langle (N[x] \setminus N(b)) \cup \{a\} \rangle) = 1$ and S_b is a dominating set of $\langle (N[y] \setminus N(a)) \cup \{b\} \rangle$, that is, $\gamma(\langle (N[y] \setminus N(a)) \cup \{b\} \rangle) = 1$. Since $d \notin N(b)$ and $c \in N(y)$, it follows that $N(x) \cap N(b) \neq \emptyset$ for some $b \in V(G)$ and $N(y) \cap N(a) \neq \emptyset$ for some $a \in V(G)$. This proves (iid).

For the converse, suppose that there exist distinct vertices $x, y, a,$ and b such that $\{x, y\}$ is a dominating set of G, $N(x) \cap N(y) = \emptyset$, $N(a) \cap N(b) = \emptyset$, and (i) or (ii) holds. Let $D = \{x, y\}$ be a dominating set of G. Since $N(x) \cap N(y) = \emptyset$, every vertex $u \in V(G) \setminus D$ is dominated by exactly one vertex in D. This implies that D is a perfect dominating set of G, that is, $\gamma_p(G) \leq |D|$. Since $G \neq K_2 + H$ for any graph H, $\gamma^{-1}_p(G) \neq 1$ by Corollary 2.13. This implies that $\gamma^{-1}_p(G) \geq 2$ and hence D is a γ_p-set of G by Remark 2.10.

Suppose first that x and y are adjacent and that (ia) holds. Let $S_a = \{a\}$ be a dominating set in $\langle N(x) \setminus \{y\} \rangle$ and $S_b = \{b\}$ be a dominating set in $\langle N(y) \setminus \{x\} \rangle$. Then, $N[a] \supseteq N[x] \setminus \{y\}$ and $N[b] \supseteq N[y] \setminus \{x\}$. Thus,

$$N[a] \cup N[b] \supseteq (N[x] \setminus \{y\}) \cup (N[y] \setminus \{x\}) = N[x] \cup N[y] = V(G).$$

Since $N[a] \cup N[b] \subseteq V(G)$, it follows that $N[a] \cup N[b] = V(G)$, that is, $S = \{a, b\}$ is a dominating set of G. Since $N(a) \cap N(b) = \emptyset$, every element $u \in V(G) \setminus S$ is dominated by exactly one element of S. Thus, S is a perfect dominating set in G. Since $x, y, a,$ and b are distinct vertices in G, $D \cap S = \emptyset$, that is, $S \subseteq V(G) \setminus D$ where D is a γ_p-set of G. Thus, S is an inverse perfect dominating set of G with respect to D. Since $2 = \gamma_p(G) \leq \gamma^{-1}_p \leq |S| = 2$, it follows that $\gamma^{-1}_p(G) = 2$.

Next, suppose that (ib) holds. Let $\{a\}$ be a dominating set in $\langle N(x) \setminus \{y\} \rangle$ and $\{b\}$ be a dominating set in $\langle (N(y) \setminus \{x\}) \setminus N(a) \rangle$.

$$N[a] \cup N[b] \supseteq [(N[x] \setminus \{y\}) \cup N(a)] \cup [(N[y] \setminus \{x\}) \setminus N(a)] = (N[x] \setminus \{y\}) \cup (N[y] \setminus \{x\}) = N[x] \cup N[y] = V(G).$$
Since $N[a] \cup N[b] \subseteq V(G)$, it follows that $N[a] \cup N[b] = V(G)$. This implies that $S = \{a, b\}$ is a dominating set of G. By similar arguments above, $\gamma_p^{-1}(G) = 2$.

Similarly, if any of the conditions (ic) or (id) holds, then it can be shown that $\gamma_p^{-1}(G) = 2$.

Further, if x and y are non-adjacent such that (iia), (iib), (icc), or (iid) holds, then by applying similar arguments used in (i), $\gamma_p^{-1}(G) = 2$. The proof is completed. ■

The following result follows immediately from Theorem 2.19.

Corollary 2.20. Let G be a connected graph of order $n \geq 4$. Then $\gamma_p^{-1}(G) = 2$ if $G = K_2 \circ H$ with $\gamma(H) = 1$.

Generally, if $G = H_1 \circ H_2$ where H_1 is a connected graph of order m ($m \geq 1$) and $\gamma(H_2) = 1$, then $\gamma_p^{-1}(G) = m$.

References

