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Abstract: 
 

An analysis of the effect of free convection on the flow of a dusty viscous 
fluid is presented under the assumption that the suction velocity is constant 
and normal to the wall and the wall temperature is spanwise cosinusoidal. The 
governing equations are the Navier Stoke’s equation for the momentum, 
Energy Equations and Continuity equations for both fluid phase and particle 
phase. These equations are converted to coupled ordinary differential 
equations by multi parameter perturbation techniques. On solving these 
equations the velocity and temperature for both fluid phase and particle phase 
are obtained. They are discussed and shown through graphs. The skin friction 
coefficient and the rate of heat transfer are presented numerically. 
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Nomenclature 
( )−*** ,, wvu   Velocity components at a point  

0v -  Suction velocity 
l -  wavelength  
υ -  Kinematic coefficient of viscosity 
g-  Acceleration due to gravity 
ρ-  density  
β-  coefficient of volume expansion  
μ-  coefficient of viscosity 
κ-  Thermal conductivity  
Cp-  Specific heat at constant pressure 
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∞U -  Free stream velocity  

0θ -  constant temperature 
*
wθ -  wall temperature  
*θ -  Temperature at any point 

Nm =   ρp-density of the particle  
Cs-  Specific heat of the fluid 
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1. Introduction 
The concept of the flow and heat transfer of dusty fluids has important applications in 
the fields of fluidization, combustion, use of dust in gas cooling system, centrifugal 
separation of particles from fluid, petroleum industry, purification of crude oil, 
electrostatic precipitation and polymer technology. Also, heat transfer in porous 
medium in a two-phase fluid occurs in a number of technological applications such as 
thermal energy storage, geothermal systems, porous medium heat pipes, food drying, 
porous insulation moisture transport and post-accident analysis of liquid-cooled 
nuclear reactors. 
There has been numerous work in the literature on the free convection effects on the 
dusty fluid. Ramamurthy [7], studied the free convection effects on the Stoke’s 
problem for an infinite plate in dusty fluid, taking into consideration the cases of (i) 
the plate being started impulsively from rest and (ii) the plate being uniformly 
accelerated using laplace transform techniques. Venkatraman and Kannan[5], 
investigated the flow past an infinite vertical isothermal plate taking into account the 
viscous dissipative heat. Helmy[6] obtained an analytical solution for the free 
convection of a dusty conducting fluid. T. S. Zhao et. al [13] got numerical solution of 
a buoyancy induced flow and phase change heat transfer in a vertical porous channel 
heated symmetrically along its vertical walls. 
Most of these studies are based on constant properties like constant temperature. In 
the present work, an analysis has been carried out to study the free convection effects 
on a dusty viscous fluid past a vertical porous plate assuming that the temperature is 
cosinusoidal 
 
 
Mathematical Formulation 
Let the wall be the −**xz plane and the *y -axis be normal to it and the positive 
direction of *x -axis be vertically upwards. Let the wall be uniformly porous and the 
suction velocity normal to it be 0v . Let ( )*** ,, wvu  be the components of velocity of 
the liquid at any point ( )*** ,, zyx . Since 0

* vv =  throughout, *w  is independent of *z  
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and we assume that 0* =w  throughout. Let the fluid velocity parallel to the *x -axis at 
infinity be ∞U  and the spanwise cosinusoidal wall temperature *

wθ  be, 

⎟
⎠
⎞

⎜
⎝
⎛ +=

l
z

w
πεθθ cos10

*         (1) 

 
where ε  is a small positive number. Applying Boussinesq approximation, the 
momentum, Energy Equations and continuity equations for the fluid in non 
dimensional form, are given by 
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Boundary Conditions 

( )zuuuy p πεθθ cos1    ,0:0 00 +====    (8) 
0    ,1: ====∞→ ppuuy θθ  

 
 
Multi Parameter Perturbation method 
Very often, a mathematical problem cannot be solved exactly, If the exact solution is 
available, it exhibits such an intricate dependency in the parameters that it is hard to 
use as such. It may be the case, however, that a parameter can be identified, say ‘ε ’ 
such that the solution is available and reasonably simple for ‘ε ’ = 0. By perturbation 
method, a reasonably accurate solution can be applied even for positive small values 
of ε . Here perturbation has been done with two parameters ε  and the Eckert number 
Ec. 

( )2
10 εε Offf ++=          (9) 

where f  can be any one of pp and,u,u φφ  and 0u  and 0φ  are functions of y only. 
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Assuming 
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Substituting equation (9) in (7) and comparing the constant term, we get, 
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On solving the above differential equations the following solutions are obtained. 
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Comparing the coefficient of Ec, we get, 
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Solving the above differential equations, the following solutions are obtained. 
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Comparing the coefficient of ε , we get, 
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Solving the above differential equations, the following solutions are obtained. 
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Comparing the coefficient of ε Ec, we get, 
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Solving the above differential equations, the following solutions are obtained. 
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FIG-1 depicts the corrective factor of the temperature of the fluid. When the Reynolds 
number and the Prandtl number increase, the temperature decreases. But at the same 
time it increases with increase in the Grashoff number. It is obvious that dust 
parameters has no effect on the corrective factor of the temperature.. It is obvious 
from FIG-2 that the corrective factor of the temperature of the dust particles behaves 
in the same pattern as that of the fluid. The temperature of the dust particle decreases 
with increase in the Reynolds Number, Prandtl number and temperature relaxation 
parameter. 
It is obvious from FIG-3 that the temperature of the fluid decreases with increase in 
the Reynolds Number, Prandtl number and temperature relaxation parameter. The 
temperature is 1 near the plate, but decreases to zero as it moves away from the plate. 
It is clear from FIG-4 that the temperature of the dust particle is finite near the plate, 
but decreases to zero as y increases. It increases with increase in Reynolds Number, 
Grashoff number and particle mass parameter. The temperature of the dust particles 
decreases within increase in Prandtl number, particle concentration arameter and 
temperature relaxation parameter. 
It is noted from FIG-5 that, as the particle concentration parameter increases the 
corrective factor of the velocity of the fluid decreases. But when the Prandtl number 
increases, the velocity increases upto certain value of y, then crossover occurs and 
decreases thereafter. It increases with increase in Reynolds Number, Grashoff 
number, particle concentration parameter, particle mass parameter and temperature 
relaxation parameter. For all parameters, the velocity increases upto certain value but 
decreases steadily after that to zero as y increases. 
It is noted from FIG-6 that the corrective factor of the velocity of the dust particle is 
finite near the plate, but decreases to zero as y increases. As the Prandtl number 
increases, the velocity of the dust particle steadily decreases to zero. For the increase 
in other parameters, there is increase and then steady decrease. 
It is seen from FIG-7 that the velocity of the fluid increases when there is increase in 
Reynolds number, but decreases as particle concentration parameter and time 
relaxation parameter increase. It starts from zero near the plate and decreases to 1 and 
become steady there after as y increases. 
It is observed from FIG-8 that, increase in Prandtl number decreases the velocity of 
the fluid, whereas increase in Grashoff number and particle mass parameter increases 
the velocity of the fluid. 
It is noted from FIG-9 that the velocity of the dust particle is finite near the plate, but 
decreases to 1 and become steady there after as y increases. 
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FIG-1 ( ) yversusyψ  
 

 
 

FIG-2 ( ) yversusypψ  
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FIG-3 ( ) yversusyθ  
 

 
 

FIG-4 ( ) yversusypθ  
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FIG-5 ( ) yversusyv0  
 

 
 

FIG-6 ( ) yversusyvp0  
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FIG-7 ( ) yversusyu  
 

 
 

FIG-8 ( ) yversusyu  
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FIG-9 ( ) yversusyu p  
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