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Abstract

An attempt is made to obtain the Finite Element Solutions to steady state and tran-
sient state heat conduction problems using the hybrid of Block-Pulse functions and
Lagrange interpolation polynomial. This method can be used to obtain accurate
results. The finite element results are compared with the corresponding results ob-
tained using quadrature methods and found to be in good agreement.
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1. Introduction

Finite Element Method (FEM) is a computer-aided numerical technique used to solve
wide range of problems in engineering and sciences, wherein, the variables are related
by means of algebraic, differential and integral equations. The method is very efficient
in dealing with complex geometries and unstructured domains. As the complexity in-
creases, the integration procedure to calculate the elements of the stiffness and mass
matrices associated with the finite element equations becomes more complicated. Usu-
ally, Gaussian quadrature method is used as a standard tool for determining the elements
of these matrices.

Siraj-ul-Islam et al. [1], considered a comparative study of quadrature rule based on
Haar Wavelet and Hybrid function of block-pulse and Legendre polynomial for finding
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the approximate value of the definite integrals and extended the procedure for the nu-
merical solution of double and triple integrals with variable limits. They have concluded
that the main advantage of the hybrid method is its efficiency, simple applicability, faster
convergence than the Haar Wavelet and that the order of the block-pulse functions and
Legendre polynomial can be adjusted to obtain highly accurate solution. In their paper,
Uma et al. [2] considered Hybrid of Block-Pulse function using Lagrange basis polyno-
mial for the evaluation of general double and triple integrals with variable limits which
shows better accuracy than the Haar Wavelet. They have considered variable weights for
their study in contrast with the constant weights considered in Siraj-ul-Islam et al. [1].
This approach is summarized in Section 2.

Marzban et al. [3] proposed a numerical method based on the Hybrid function approx-
imations for solving nonlinear initial-value problems with applications to Lane-emden
type equations. They utilized the properties of block-pulse functions and Lagrange in-
terpolating polynomials to reduce the nonlinear initial-value problem to a system of
non-algebraic equations, and obtained accurate results. The same method was also used
to provide accurate results for solving nonlinear integro-differential equations such as in
Volterra’s population model [4] and Volterra-Fredholm equation [5], and also for varia-
tional problems in Marzban et al. [6].

Motivated by these, the present paper attempts to consider the Hybrid function based
on the Block-Pulse function and Lagrange basis polynomial for the numerical integration
technique instead of the quadrature method for obtaining accurately the finite element
solutions. They are illustrated using a few examples on heat transfer problems in 1-D,
2-D and 3-D for steady state and transient problems and the results are presented. The
method is easy to implement and computationally very attractive.

The structure of the paper is as follows: Section 2 gives the short description of
the hybrid of the block-pulse and Lagrange polynomials. Section 3 provides the finite
element results for the heat transfer applications obtained using hybrid functions. Finally,
conclusions are drawn in Section 4.

2. Preliminaries

2.1. Block-Pulse Function

A set of block-pulse function φn(t), n = 1, 2, . . . , N defined on the interval [0, 1) are
denoted as

φn(t) =
{

1 tn−1 ≤ t ≤ tn
0 Otherwise

(2.1)

Here
[
tn−1, tn) denotes the nth partition and N represents the number of partitions of

[0, 1).
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2.2. Hybrid functions of Block-Pulse and Lagrange basis polynomials

A set of hybrid functions snm(t), n = 1, 2, . . . N, m = 0, 1, . . . M − 1, on the interval
[0, 1) are denoted as

snm(t) =

 Lm(2Nt − 2n + 1) t ∈

[
n − 1

N
,

n

N

]
0 Otherwise

(2.2)

Here the Lagrange basis polynomial, Lm(t) is denoted by

Lm(t) =
M−1∏

i=0,i �=m

t − τi

τm − τi

(2.3)

with τi, i = 0, 1, . . . , M − 1, being the roots of the Legendre polynomial of order M,
with the Kronecker delta property

Lm(τi) = δmi =
{

1 i = m

0 i �= m
(2.4)

It may be noted that M denotes the number of interior points in each partition of the
interval (0, 1].

As the block-pulse functions and Lagrange interpolating polynomials are complete
and orthogonal, the set of hybrid functions {snm(t)} is a complete orthogonal set in the
Hilbert Space L2 [0, 1).

2.3. Function Approximation using Hybrid function

A function f (t) ∈ L2 [0, 1) can be approximated, in terms of the hybrid function, as

f (t) =
∞∑

n=1

∞∑
m=0

cnmsnm(t) (2.5)

In practice

f (t) ≈
N∑

n=1

M−1∑
m=0

cnmsnm(t), n = 1, 2, . . . , N, m = 0, 1, . . . , M − 1 (2.6)

For a fixed N and M, the number of nodes considered for the function approxima-
tion is NM. To find the co-efficients cnm, consider the Gaussian nodes rnm of the

nth subinterval

[
n − 1

N
,

n

N

]
. They are related to the corresponding Gaussian nodes

τm, m = 0, 1, . . . , M − 1 of the interval [−1, 1] by the transformation

rnm = 1

2N
(τm + 2n − 1) (2.7)
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It can be shown that
snm (rni) = δmi (2.8)

and hence
cnm = f (rnm) (2.9)

2.4. Numerical evaluation of single definite integral using Hybrid function

Consider the definite integral ∫ 1

0
f (t)dt (2.10)

Using Eq. (2.6) and Eq. (2.9), we have

∫ 1

0
f (t)dt =

N∑
n=1

M−1∑
m=0

f (rnm)wnm (2.11)

where wnm =
∫ 1

0
snm(t)dt are the weights which can be easily evaluated. It can be

verified that
N∑

n=1

M−1∑
m=0

wnm = 1 (2.12)

Letting t = a + (b − a) s in Eq. (2.10) leads to∫ b

a

f (t) dt = (b − a)

∫ 1

0
f (a + (b − a) s) ds (2.13)

Using Eq. (2.11),

∫ b

a

f (t) dt ≈ (b − a)

N∑
n=1

M−1∑
m=0

f (a + (b − a) rnm) wnm (2.14)

2.5. Numerical evaluation of double definite integral using Hybrid function

Consider the double integral with variable limits of the type∫ b

a

∫ d(s)

c(s)

f (t, s) dt ds (2.15)

Applying Eq. (2.14) to the inner integral by treating the outer integration variable s as
constant, the above equation can be written as,

∫ b

a

∫ d(s)

c(s)

f (t, s) dtds ≈
∫ b

a

(d(s) − c(s))

N∑
n=1

M−1∑
m=0

f (c(s) + (d(s) − c(s))rnm, s)wnmds

(2.16)
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Letting

g(s) = (d(s) − c(s))

N∑
n=1

M−1∑
m=0

f (c(s) + (d(s) − c(s))rnm, s)wnm (2.17)

and again applying Eq. (2.14) to the outer integral leads to

∫ b

a

∫ d(s)

c(s)

f (t, s)dtds ≈
∫ b

a

g(s)ds ≈ (b−a)

N
′∑

p=1

M
′−1∑

q=0

g(a + (b−a)rpq)wpq (2.18)

In the above equation, N
′
represents the number of partitions of the outer interval and M

′

denotes the order of Legendre polynomial in each partition. The total number of nodes
considered in the t and s directions are NM and N

′
M

′
respectively.

2.6. Numerical evaluation of definite triple integral using Hybrid function

The procedure considered in the above double integral can be extended to obtain the
following result for the triple integral with variable limits.

∫ b

a

∫ d(s)

c(s)

∫ l(s,t)

k(s,t)

f (u, t, s)dudtds ≈ (b − a)

N
′′∑

v=1

M
′′−1∑

j=0

h(a + (b − a)rvj )wvj (2.19)

where

h(s) = (d(s) − c(s))

N
′∑

p=1

M
′−1∑

q=0

g(c(s) + (d(s) − c(s))rpq, s)wpq (2.20)

and

g(s, t) = (k(s, t) − l(s, t))

N∑
n=1

M−1∑
m=0

f (k(s, t) + (l(s, t) − k(s, t))rnm, s, t)wnm (2.21)

Here, the total number of nodes considered in the u, t and s directions are NM, N
′
M

′

and N
′′
M

′′
respectively.

3. Results and Discussions

A few examples of the finite element results on the heat transfer from Reddy [7, 8] are
considered for a comparison study. While quadrature methods are used in obtaining
finite element solutions, we considered finite element results using the present hybrid of
block-pulse function and Lagrange polynomial.
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3.1. 1D Linear Transient Problem

A fin of unit length is initially kept at 10C. The left end of the fin is maintained at 00C

while the right end is insulated with unit thermal energy stored in the area of the fin.
Assuming the thermal conductivity over the area to be unity, the governing differential
equation for the temperature distribution u(x, t) can be written as

∂u

∂t
− ∂2u

∂x2
= 0 (3.1)

defined in the domain, 0 < x < 1. The boundary conditions are given by u(0, t) = 0,
∂u

∂x
(1, t) = 0 with the initial condition u(x, 0) = 1. The decoupled formulation of

the Finite Element Model is considered wherein the shape function is a function of
spatial co-ordinates and the nodal variable is the function of time. In the decoupled
formulation over a typical element e, the solution variable ue in the weak formulation of
the differential equation is approximated by

ue =
n∑

i=1

Ne
i (x)ue

i (t) (3.2)

where Ne
i is the shape function at the ith node of an element e with n nodes. Keeping

the time variable t constant, the finite element model is derived the same as in the steady
state problems known as semi-discretized finite element method.

The semi-discretized finite element equations of a typical element e can be obtained
in the form

[Me] {u̇} + [Ke] {u} = 0 (3.3)

where

Ke
ij =

∫ xb

xa

∂Ne
i

∂x

∂Ne
j

∂x
dx (3.4)

Me
ij =

∫ xb

xa

Ne
i Ne

j dx (3.5)

are the elements of the matrices [Ke] and [Me] respectively.
Here, [Ke] and [Me] are referred as conduction matrix and mass matrix respectively

and both the matrices are independent of time. xa and xb are the left and right node of
the element e. Using the α - family of approximation for time, the fully discretized finite
element equation can be obtained as{

α�t[Ke] + [Me]} {ue
}
s+1 = {[Me] − �t(1 − α)[Ke]} {ue

}
s

(3.6)

{
ue
}
s

and
{
ue
}
s+1 represents the elemental nodal values at time s and s+1 respectively.

The elements Eq. (3.4) and Eq. (3.5) of the elemental matrices [Ke] and [Me] are
obtained using the Hybrid functions.
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Table 1: The values of N and M taken for different types of elements.

[Ke] [Me]
Linear N = 1; M = 1 N = 1; M = 2

Quadratic N = 1; M = 2 N = 1; M = 3
Cubic N = 1; M = 3 N = 1; M = 4

Table 2: A comparison of the finite element solutions for different meshes at x=1 obtained
using the present hybrid functions with exact solution for �t = 0.05 and α = 0.5.

Time 2L 4L 2Q 4Q 1C 2C 4C Exact
0 1 1 1 1 1 1 1 1

0.05 1.0359 0.9951 0.9942 0.9928 0.9178 0.9905 0.9925 0.9969
0.1 0.9279 0.9588 0.9551 0.9549 0.9663 0.947 0.9533 0.9493

0.15 0.8169 0.8639 0.8831 0.8725 0.8269 0.8646 0.87 0.8642
0.2 0.7176 0.7557 0.7633 0.7731 0.7551 0.765 0.7713 0.7723

0.25 0.6301 0.6759 0.6933 0.6855 0.6592 0.6801 0.6839 0.6854
0.3 0.5533 0.5906 0.6006 0.607 0.5872 0.5991 0.6054 0.6068

0.35 0.4858 0.5251 0.5394 0.5358 0.517 0.5331 0.5346 0.5367
0.4 0.4266 0.4608 0.471 0.4741 0.4579 0.4664 0.4729 0.4745

0.45 0.3746 0.4083 0.4201 0.4188 0.4042 0.4182 0.4178 0.4194
0.5 0.3289 0.3592 0.3687 0.3701 0.3574 0.3628 0.3693 0.3708

0.55 0.2888 0.3176 0.3275 0.3273 0.3158 0.3279 0.3264 0.3277
0.6 0.2536 0.2798 0.2883 0.289 0.2792 0.2824 0.2884 0.2897

0.65 0.2227 0.2472 0.2555 0.2556 0.2467 0.2569 0.2549 0.2561
0.7 0.1955 0.218 0.2253 0.2258 0.218 0.22 0.2253 0.2264

0.75 0.1717 0.1924 0.1995 0.1996 0.1927 0.2011 0.1991 0.2001
0.8 0.1508 0.1697 0.1761 0.1764 0.1703 0.1715 0.176 0.1769

0.85 0.1324 0.1498 0.1557 0.1559 0.1505 0.1574 0.1555 0.1563
0.9 0.1162 0.1322 0.1375 0.1378 0.133 0.1337 0.1375 0.1382

0.95 0.1021 0.1166 0.1216 0.1218 0.1176 0.123 0.1215 0.1222
1 0.0896 0.1029 0.1074 0.1076 0.1039 0.1044 0.1074 0.1080

Table 1 shows the values of M and N chosen for calculating the elements of [Ke] and
[Me], although the values of N and M may be chosen independently of each other.

The Finite Element Solutions at x = 1 for linear (L), quadratic (Q) and cubic (C)

elements were obtained using Hybrid functions and compared with the exact solution
(T able 2). When α is taken as 0.5 and �t as 0.05, the solutions are comparable up to
two decimal places. Tables 3, 4 and 5 represents the finite element solutions for the
temperature distribution of 12 linear elements, 6 quadratic elements and 4 cubic elements
over the rectangular domain with spacings �x = 1/12 and �t = 0.05 for the α = 0.5.

Fig. 1 (a) presents the comparison between forward scheme (α = 0), backward
scheme (α = 1) and Crank-Nicolson scheme (α = 0.5) for 2 linear and 1 quadratic
finite elements. The exact solution is also presented in the same graph. We can infer
that better approximation is obtained by Crank-Nicolson scheme than that of forward
and backward scheme. The convergence of the finite element solution with increasing
number of elements is obvious.

Fig. 1 (b) provides a comparison of the temperature distribution over the spatial
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variable x at t=1 obtained from the data of Tables 3- 5. It is clear that slight discrepancies
may exist as the order of element is increased for fixed spatial nodes.

Table 3: The finite element solutions for the temperature distribution of 12 linear elements
with �t = 0.05 and α = 0.5.

Time/x 0 0.0833 0.1667 0.25 0.3333 0.4167 0.5 0.5833 0.6667 0.75 0.8333 0.9167 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1

0.05 0 -0.2302 0.2783 0.5766 0.7516 0.8542 0.9144 0.9496 0.9702 0.982 0.9887 0.992 0.993
0.1 0 0.4472 0.2813 0.3469 0.4808 0.6153 0.7267 0.8109 0.8707 0.9111 0.9366 0.9506 0.955
0.15 0 -0.119 0.2699 0.4014 0.4738 0.5436 0.6178 0.6902 0.7541 0.8054 0.8422 0.8642 0.8715
0.2 0 0.2935 0.1499 0.2538 0.3795 0.4805 0.5584 0.621 0.6726 0.7145 0.7456 0.765 0.7715
0.25 0 -0.0685 0.237 0.2965 0.3445 0.4093 0.4788 0.5419 0.5939 0.6338 0.6619 0.6786 0.6841
0.3 0 0.2121 0.0957 0.2079 0.307 0.3767 0.4318 0.4802 0.5228 0.5581 0.5842 0.6002 0.6055
0.35 0 -0.0435 0.199 0.2206 0.2604 0.3188 0.3765 0.4253 0.4645 0.4948 0.5166 0.5299 0.5344
0.4 0 0.1593 0.0639 0.1714 0.2447 0.293 0.3346 0.3737 0.4083 0.4363 0.4566 0.4688 0.4728
0.45 0 -0.0302 0.1638 0.1642 0.2001 0.2505 0.2958 0.3326 0.3623 0.3859 0.4032 0.4139 0.4175
0.5 0 0.1223 0.043 0.1408 0.1929 0.227 0.2599 0.2916 0.3193 0.3411 0.3566 0.3659 0.369
0.55 0 -0.0226 0.1337 0.1221 0.1553 0.1972 0.2319 0.2596 0.2825 0.3011 0.3148 0.3233 0.3261
0.6 0 0.0952 0.0285 0.1153 0.151 0.1758 0.2024 0.228 0.2496 0.2664 0.2784 0.2857 0.2881
0.65 0 -0.0179 0.1089 0.0907 0.1213 0.1553 0.1814 0.2024 0.2203 0.235 0.2459 0.2525 0.2547
0.7 0 0.075 0.0182 0.0942 0.1175 0.1362 0.1579 0.1783 0.1951 0.208 0.2173 0.223 0.2249
0.75 0 -0.0149 0.0886 0.0671 0.0953 0.1222 0.1416 0.1578 0.1719 0.1836 0.192 0.1971 0.1988
0.8 0 0.0596 0.0109 0.0769 0.0911 0.1056 0.1234 0.1394 0.1524 0.1624 0.1697 0.1741 0.1756
0.85 0 -0.0127 0.0722 0.0493 0.0751 0.096 0.1104 0.123 0.1342 0.1434 0.15 0.1539 0.1552
0.9 0 0.0476 0.0057 0.0628 0.0704 0.0819 0.0965 0.109 0.119 0.1267 0.1325 0.136 0.1372
0.95 0 -0.0111 0.059 0.036 0.0594 0.0754 0.0861 0.0959 0.1048 0.112 0.1171 0.1202 0.1212

1 0 0.0384 0.0021 0.0514 0.0542 0.0637 0.0755 0.0852 0.0929 0.0989 0.1034 0.1062 0.1071

Table 4: The finite element solutions for the temperature distribution of 6 quadratic
elements with �t = 0.05 and α = 0.5.

Time/x 0 0.0833 0.1667 0.25 0.3333 0.4167 0.5 0.5833 0.6667 0.75 0.8333 0.9167 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1

0.05 0 -0.2036 0.3062 0.5905 0.7579 0.8571 0.9154 0.9499 0.9701 0.9819 0.9885 0.9918 0.9928
0.1 0 0.4164 0.2559 0.3443 0.486 0.6206 0.7309 0.8134 0.872 0.9116 0.9367 0.9504 0.9547
0.15 0 -0.0848 0.297 0.4039 0.4715 0.5435 0.6194 0.6925 0.7563 0.8071 0.8434 0.8651 0.8722
0.2 0 0.2604 0.1261 0.2555 0.3842 0.4824 0.5591 0.6215 0.6736 0.7158 0.7472 0.7666 0.7732
0.25 0 -0.0362 0.2601 0.2952 0.3425 0.4106 0.481 0.5438 0.5954 0.6351 0.6632 0.68 0.6855
0.3 0 0.1822 0.0753 0.2109 0.3096 0.3767 0.4319 0.4811 0.5242 0.5596 0.5857 0.6016 0.607
0.35 0 -0.0154 0.2183 0.2187 0.2604 0.321 0.3783 0.4265 0.4655 0.4959 0.5179 0.5313 0.5359
0.4 0 0.1338 0.0468 0.1742 0.2452 0.2924 0.3349 0.3749 0.4097 0.4377 0.4579 0.4701 0.4741
0.45 0 -0.0066 0.1801 0.1628 0.2018 0.2526 0.2971 0.3334 0.3632 0.3869 0.4044 0.4152 0.4188
0.5 0 0.101 0.0285 0.1428 0.1917 0.2265 0.2606 0.2929 0.3204 0.3422 0.3577 0.3671 0.3702
0.55 0 -0.0031 0.1476 0.1215 0.1582 0.199 0.2326 0.2602 0.2833 0.3021 0.3159 0.3244 0.3272
0.6 0 0.0778 0.0161 0.1164 0.1487 0.1756 0.2033 0.229 0.2505 0.2673 0.2794 0.2867 0.2891
0.65 0 -0.0019 0.1208 0.0907 0.125 0.1565 0.1817 0.2029 0.2211 0.236 0.2468 0.2534 0.2556
0.7 0 0.0607 0.0076 0.0946 0.1145 0.1362 0.1589 0.1792 0.1958 0.2088 0.2182 0.2239 0.2258
0.75 0 -0.0018 0.099 0.0676 0.0994 0.123 0.1418 0.1583 0.1727 0.1844 0.1928 0.1979 0.1996
0.8 0 0.0479 0.0016 0.0767 0.0876 0.1059 0.1243 0.1401 0.1529 0.163 0.1704 0.1749 0.1764
0.85 0 -0.002 0.0813 0.0502 0.0794 0.0964 0.1105 0.1235 0.1349 0.144 0.1506 0.1546 0.1559
0.9 0 0.0381 -0.0024 0.0623 0.0666 0.0825 0.0973 0.1095 0.1194 0.1273 0.1331 0.1366 0.1378
0.95 0 -0.0023 0.067 0.0371 0.0638 0.0755 0.0861 0.0964 0.1054 0.1125 0.1177 0.1207 0.1218

1 0 0.0306 -0.0051 0.0506 0.0503 0.0643 0.0762 0.0856 0.0932 0.0994 0.104 0.1067 0.1076

3.2. 2D Linear Transient Problem

An isotropic unit square slab is subjected to heat conduction with internal heat energy
generation of 1W/m3. The left and the bottom of the slab are insulated while the top
and right side of the slab are maintained at 00C. Initially, the slab is kept at 00C. Taking
the conductivity of the medium to be unity, the governing differential equation for the
temperature distribution T (x, y, t) is

∂T

∂t
−
(

∂2T

∂x2
+ ∂2T

∂y2

)
= 1 (3.7)
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Table 5: The finite element solutions for the temperature distribution of 4 cubic elements
with �t = 0.05 and α = 0.5.

Time/x 0 0.0833 0.1667 0.25 0.3333 0.4167 0.5 0.5833 0.6667 0.75 0.8333 0.9167 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1

0.05 0 -0.2169 0.2808 0.5678 0.7451 0.8495 0.9109 0.9473 0.9686 0.9809 0.9879 0.9914 0.9925
0.1 0 0.4295 0.2834 0.3656 0.4902 0.6191 0.7274 0.8099 0.8691 0.9093 0.9348 0.9488 0.9533
0.15 0 -0.0982 0.2655 0.3786 0.4664 0.5427 0.6191 0.6914 0.7546 0.805 0.8412 0.8628 0.87
0.2 0 0.2715 0.1569 0.2796 0.3853 0.4799 0.5564 0.6196 0.672 0.7142 0.7454 0.7647 0.7713
0.25 0 -0.0461 0.2285 0.2693 0.3407 0.4109 0.4806 0.5424 0.5937 0.6334 0.6615 0.6783 0.6839
0.3 0 0.1899 0.1054 0.2356 0.309 0.3745 0.4303 0.48 0.5231 0.5583 0.5842 0.6 0.6054
0.35 0 -0.0218 0.1885 0.193 0.26 0.3212 0.3776 0.4252 0.4641 0.4946 0.5166 0.53 0.5346
0.4 0 0.1384 0.0748 0.1986 0.244 0.2908 0.334 0.3741 0.4088 0.4366 0.4567 0.4688 0.4729
0.45 0 -0.0101 0.1527 0.1378 0.202 0.2527 0.2963 0.3323 0.3622 0.386 0.4035 0.4141 0.4178
0.5 0 0.1032 0.0541 0.1666 0.1904 0.2254 0.26 0.2923 0.3196 0.3413 0.3568 0.3661 0.3693
0.55 0 -0.0045 0.1229 0.0974 0.1586 0.1988 0.232 0.2594 0.2826 0.3014 0.3152 0.3236 0.3264
0.6 0 0.0782 0.0392 0.1392 0.1475 0.1749 0.2028 0.2285 0.2499 0.2666 0.2787 0.2859 0.2884
0.65 0 -0.0019 0.0987 0.0679 0.1253 0.1562 0.1813 0.2024 0.2206 0.2354 0.2462 0.2528 0.2549
0.7 0 0.06 0.0282 0.1163 0.1136 0.1359 0.1584 0.1787 0.1952 0.2082 0.2176 0.2233 0.2253
0.75 0 -0.0007 0.0793 0.0461 0.0996 0.1226 0.1416 0.1579 0.1723 0.1839 0.1923 0.1974 0.1991
0.8 0 0.0464 0.0199 0.0972 0.0871 0.1058 0.1237 0.1397 0.1525 0.1626 0.17 0.1745 0.176
0.85 0 -0.0004 0.0639 0.0301 0.0794 0.0959 0.1107 0.1233 0.1346 0.1437 0.1502 0.1542 0.1555
0.9 0 0.0362 0.0137 0.0814 0.0664 0.0825 0.0965 0.1091 0.1191 0.127 0.1328 0.1363 0.1375
0.95 0 -0.0004 0.0516 0.0184 0.0636 0.075 0.0865 0.0963 0.1052 0.1122 0.1174 0.1204 0.1215

1 0 0.0285 0.0091 0.0684 0.0504 0.0645 0.0753 0.0853 0.093 0.0992 0.1037 0.1064 0.1074

defined in the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The boundary conditions are given as
∂T

∂x
(0, y, t) = 0,

∂T

∂y
(x, 0, t) = 0, T (1, y, t) = 0 and T (x, 1, t) = 0 with the initial

condition T (x, y, 0) = 0 ∀ (x, y) defined in the domain.
The decoupled formulation of the Finite Element Model is considered over a typical

element e, in which, the solution variable T e in the weak formulation of the differential
equation Eq. (3.7) is approximated by

T e =
n∑

i=1

ψe
i (x, y)T e

i (t) (3.8)

where ψe
i (x, y) is the shape function at the ith node of an element e with n nodes. Keeping

the time variable t constant, the semi-discretized finite element equation is given by

[Me] {Ṫ }+ [Ke] {T } = {f e
}+ {Qe

}
(3.9)

where

Me
ij =

∫ yb

ya

∫ xb

xa

ψe
i ψe

j dxdy =
∫ 1

0

∫ 1−L2

0
Le

i L
e
j |J |dL1dL2 (3.10)

Ke
ij =

∫ yb

ya

∫ xb

xa

(
∂ψe

i

∂x

∂ψe
j

∂x
+ ∂ψe

i

∂y

∂ψe
j

∂y

)
dxdy

=
∫ 1

0

∫ 1−L2

0

[(
J ∗

11
∂Le

i

∂ξ
+ J ∗

12
∂Le

i

∂η

)(
J ∗

11

∂Le
j

∂ξ
+ J ∗

12

∂Le
j

∂η

)

+
(

J ∗
21

∂Le
i

∂ξ
+ J ∗

22
∂Le

i

∂η

)(
J ∗

21

∂Le
j

∂ξ
+ J ∗

22

∂Le
j

∂η

)]
|J |dL1dL2 (3.11)
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(b) Temperature Distribution at one minute

Figure 1: 1D Linear Transient.

f e
i =

∫ yb

ya

∫ xb

xa

ψe
i dxdy +

∮

e

qnψ
e
i d


=
∫ 1

0

∫ 1−L2

0
Le

i |J |dL1dL2 +
∮


e

qnL
e
i |J |d
 (3.12)

In which, qn is the secondary boundary condition over the boundary 
e of the element
e. And, xa and xb are the left and right end on the x-axis of the element; ya and yb are
the top and bottom on the y-axis of the element. Le

i ,i = 1, 2, 3 are the interpolation
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functions in area co-ordinates. Here, Le
3 = 1 − Le

1 − Le
2 and the Jacobian matrix,

[J ] =




∂x

∂Le
1

∂y

∂Le
1

∂x

∂Le
2

∂y

∂Le
2


 (3.13)

[J ]−1 ≡ [J ∗] =
[

J ∗
11 J ∗

12
J ∗

21 J ∗
22

]
(3.14)

The variable limits in the integrals are evaluated using Hybrid function. The α -
family of time approximation is considered and the fully discretized Finite Element
Equations for the problem is presented as,{

α�t[Ke] + [Me]} {ue
}
s+1 = {[Me] − �t(1 − α)[Ke]} {ue

}
s

+ �t
[
(1 − α)

{
Fe
}
s
+ α

{
Fe
}
s+1

]
(3.15)

Fig. 2 shows the domain as a 2-D mesh divided into 32 linear triangular elements.
The matrices for each element are evaluated using Hybrid functions by taking N =
1, M = 1; N

′ = 1, M
′ = 1 for [Ke]; N = 1, M = 2; N

′ = 1, M
′ = 2 for [Me];

N = 1, M = 2; N
′ = 1, M

′ = 2 for
{
Fe
}
. Table 6 presents a numerical comparison of

the finite element results between the forward scheme (α = 0) and the Crank-Nicolson
scheme (α = 0.5) at each mesh point with the time step �t = 0.05, at a given time t=1.

Figure 2: Finite Element 2-D Mesh

The solutions are comparable with that of the classical quadrature method up to 4
decimal places. Fig. 3 shows a comparison of the finite element solutions of the temporal
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Table 6: Comparison of the finite element results between the schemes of a 2-D mesh at
time t = 1.

Nodes 1 2 3 4 5 6 7 8 9 10
α = 0.5 0.2992 0.2786 0.2277 0.1385 0 0.2786 0.2627 0.2159 0.1319 0
α = 0 0.2993 0.2787 0.2278 0.1385 0 0.2787 0.2628 0.216 0.132 0
Nodes 11 12 13 14 15 16 17 8 19 20
α = 0.5 0.2277 0.2159 0.179 0.1111 0 0.1385 0.1319 0.1111 0.0712 0
α = 0 0.2278 0.216 0.1791 0.1111 0 0.1385 0.132 0.1111 0.0712 0
Nodes 21 22 23 24 25
α = 0.5 0 0 0 0 0
α = 0 0 0 0 0 0

temperature distribution at the mesh points (0.25, 0.25) , (0, 0.5) and (0.5, 0.5) obtained
using the present hybrid function(denoted by ∗) and quadrature method (denoted by
o) by taking α = 0.5 and �t = 0.05. It is clear that the finite elements are in good
agreement with the corresponding results obtained using quadrature method.

Figure 3: Temperature Distribution at certain points

3.3. 2D Nonlinear Steady State Problem

An isotropic rectangular slab of dimension 0.18 x 0.1m is subjected to heat conduction.
The thermal conductivity of the slab material is taken to be a linear function of tem-
perature, i.e. k = k0(1 + βT ); where k0 is the constant thermal conductivity, β the
temperature of thermal conductivity, and T is the temperature. The left side of the slab
is maintained at 500 K and the right side at 300K. There is no internal heat generation in
the slab. The governing differential equation for the temperature distribution T (x, y) is,

− ∂

∂x

[
k0(1 + βT )

∂T

∂x

]
− ∂

∂y

[
k0(1 + βT )

∂T

∂y

]
= 0 (3.16)
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Defined in the domain, 0 < x < 0.18, 0 < y < 0.1 for the boundary conditions

T (0, y) = 500K , T (0.18, y) = 300K , and
∂T

∂y
= 0 at y = 0, b for any x.

The solution variable,
T e =

∑
ψe

i (x, y)T e
i (3.17)

is applied to the weak form of the differential equation Eq. (3.16) to obtain the finite
element equation, which is given by,

[Ke(T )] {T } = {Qe
}

(3.18)

where

Ke
ij =

∫ ∫
�e

{
k0

[
1 + β

(∑
ψe

j T e
j

)][∂ψe
i

∂x

∂ψe
j

∂x
+ ∂ψe

i

∂y

∂ψe
j

∂y

]}
dxdy

=
∫ 1

−1

∫ 1

−1

{
k0

[
1 + β

(∑
ψe

j T e
j

)][(
J ∗

11
∂ψe

i

∂ξ
+ J ∗

12
∂ψe

i

∂η

)(
J ∗

11

∂ψe
j

∂ξ

+J ∗
12

∂ψe
j

∂η

)
+
(

J ∗
21

∂ψe
i

∂ξ
+ J ∗

22
∂ψe

i

∂η

)(
J ∗

21

∂ψe
j

∂ξ
+ J ∗

22

∂ψe
j

∂η

)]}
|J |dξdη

Qe
i =

∮

e

ψe
i vd
 (3.19)

�e and 
e are the domain and boundary of an element e and qn is the secondary boundary
condition. ψe

i represents the shape function at the ith node of an element e with n nodes.
|J | denotes the determinant of the Jacobian, and the Jacobian matrix is given by

[J ] =



∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η


 (3.20)

and

[J ]−1 ≡ [J ∗] =
[

J ∗
11 J ∗

12
J ∗

21 J ∗
22

]
(3.21)

dA ≡ dx dy = |J | dξ dη (3.22)

For the finite element analysis of the temperature distribution, 4 x 4 meshes of four-node
linear rectangular elements were considered (shown in Fig. 4).

The element conductivity matrix, Ke
ij is numerically evaluated by hybrid function

with N = 1, M = 1; N
′ = 1, M

′ = 1. The finite element solution thus obtained are
presented in Table 7 which are the same as those obtained by quadrature method. The
solution converged with less number of iterations when compared with the quadrature
method.

From Table 7 we can infer that the temperature for any y when x = 0 (the left side
of the slab) is 500 K and the temperature when x = 0.18 for any y (the right side of the
slab) is 300K. Inside the slab, the temperature varies steadily.
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Figure 4: 2-D Mesh for the Nonlinear Problem

Table 7: Finite element solution obtained using the present hybrid method

Nodes 1 2 3 4 5 6 7 8 9 10
Temperatures 500 454 406 354 300 500 454 406 354 300

Nodes 11 12 13 14 15 16 17 8 19 20
Temperatures 500 454 406 354 300 500 454 406 354 300

Nodes 21 22 23 24 25
Temperatures 500 454 406 354 300

3.4. 3-D Linear Steady State Problem

An isotropic slab of dimensions 1 x 1 x 10m is considered for the analysis, in which the
left face is maintained at a temperature of 1000C while the bottom, top and right faces
are maintained at 00C. The front and back faces are assumed to be insulated and there
is no internal heat generation (Fig. 5).

Figure 5: Geometry and boundary conditions

Since only temperature boundary conditions are involved, the solution will be inde-
pendent of the conductivity of the medium. The governing differential equation of the
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temperature T (x, y, z) is given by

− ∂

∂x

(
kx

∂T

∂x

)
− ∂

∂y

(
ky

∂T

∂y

)
− ∂

∂z

(
kz

∂T

∂z

)
= g (3.23)

defined in the domain 0 < x < 1, 0 < y < 1, 0 < z < 10; where g is the internal
heat generation, which is equal to zero for this problem. Since isotropic material is
considered, kx, ky, kz are same and is unity. Due to symmetry, a quadrant of the domain
(1 x 0.5 x 5 m) is modeled using a 4 x 2 x 2 mesh of eight-node brick elements (Fig. 6).

Figure 6: 3-D Computational domain

Using the approximate solution,

T e =
∑

ψe
i (x, y, z)T e

i (3.24)

for the weak formulation of the differential equation Eq. (3.23), the finite element
equation is given as

[Ke] {T } = 0 (3.25)

where

Ke
ij =

∫
�e

(
∂ψe

i

∂x

∂ψe
j

∂x
+ ∂ψe

i

∂y

∂ψe
j

∂y
+ ∂ψe

i

∂z

∂ψe
j

∂z

)
dV (3.26)

In which, ψe
i are the shape functions at the ith node of an element e with n nodes and

x =
3∑

i=1

xiψ
e
i (ξ, η, ζ ), y =

3∑
i=1

yiψ
e
i (ξ, η, ζ ), z =

3∑
i=1

ziψ
e
i (ξ, η, ζ ) (3.27)

The transformation from Cartesian co-ordinates to Natural co-ordinates is carried out
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using the relation, 


∂ψe
i

∂x
∂ψe

i

∂y
∂ψe

i

∂z




= [J ]−1




∂ψe
i

∂ξ
∂ψe

i

∂η
∂ψe

i

∂ζ




(3.28)

where the Jacobian matrix is given by,

[J ] =




∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ


 (3.29)

The temperature field obtained using the present hybrid function method is depicted
in Table 8. All the planes parallel to the plane z = 0 have the same temperature
distribution, as the 3-D solution is same as the 2-D solution on assuming that the slab
is infinitely long in the z-direction. The finite element solution obtained (Table 8) was
same as that obtained using the Gauss quadrature method when we take N = 3, M =
2; N

′ = 3, M
′ = 2; N

′′ = 3, M
′′ = 2.

Table 8: Temperature field for the 3-D mesh
Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Temperature 100 0 0 0 0 100 50.7 19.29 7.15 0 100 58.48 27.86 10.09 0
Nodes 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Temperature 100 0 0 0 0 100 50.7 19.29 7.15 0 100 58.48 27.86 10.09 0
Nodes 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Temperature 100 0 0 0 0 100 50.7 19.29 7.15 0 100 58.48 27.86 10.09 0

4. Conclusion

Finite element solutions can be obtained using the hybrid of Block-Pulse function and
Lagrange polynomial. The procedure is illustrated by considering heat conduction prob-
lems of 1-D, 2-D and 3-D; linear and nonlinear; steady state and transient problems.
The present method can be used to obtain accurate results as illustrated in the results
presented. A comparison study with the corresponding finite element solutions obtained
using the traditional Gauss quadrature method shows that the present method is compa-
rable and in good agreement.
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