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Abstract 

 

Market risk analysis using Value-at-Risk (VaR) and conditional Value-at-Risk 

(CVaR) have become a popular concept in financial risk management 

nowadays. At the same time, statistical distributions also play a vital role in 

market risk analysis. This paper presents the concepts, methods and tools with 

the use of statistical distribution in risk estimation and validation. In this 

paper, we estimate the unconditional stock market returns distribution, Value-

at-Risk (VaR) and conditional Value-at-Risk (CVaR) for monthly rates of 

returns for FTSE Bursa Malaysia Hijrah Shariah Index, FTSE Bursa Malaysia 

EMAS Shariah Index and FTSE Bursa Malaysia ACE Index. First, we present 

the application in empirical finance where we fit our real data based on its 

best-fitting distribution. Next, we present the application of risk analysis 

where we apply the best-fitting distribution to estimate the Value-at-Risk 

(VaR) and conditional Value-at-Risk (CVaR). Lastly, we evaluate the model 

validation for both risk measures. 
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1. Introduction 

Due to rapid globalization, financial risk management analysis has become a 

relatively important discipline and an increasingly vital aspect to both financial 

institutions and practitioners. The increased focus on financial risk management 

analysis thus led to the development of various techniques, methods and tools to 

measure the risks. There are several types of risk in financial markets, for example, 

market risk. Market risk are risks due to changing markets, market prices and the 

uncertainty of future returns due to fluctuations of financial asset quantities such as 

stock prices. 

One of the fundamental issues in the financial risk management analysis is to 

characterize the returns distribution. A good approximation for the unconditional 

returns distribution is very significant for risk construction. Therefore, the first step in 

financial risk management analysis is to find a suitable model for asset returns. Once 

the returns are successfully modeled, hence, the risk measures can be constructed. 

Thus, specification of the distribution function is very crucial and plays a vital role to 

measure risk accurately. 

Note that risk assessment tools at financial institutions strongly rely on the shape of a 

return distribution. A serious estimation bias could happen when one ally with a 

wrongly distributional assumptions. Imagine the hazardous if we apply it to risk 

measurement and risk management. For example, it might lead to a hefty loss in 

capital management. Also, one tends to seriously underestimate or perhaps 

overestimate the actual risk. 

Thus, in this paper, first, we estimate the unconditional stock market returns 

distribution for three Bursa Malaysia monthly series, where we fit our real data based 

on its best-fitting distribution. We then provide empirical computation of Value-at-

Risk (VaR) and conditional Value-at-Risk (CVaR) using the best-fitting distribution 

for Malaysia stock returns. Next, we perform model validation for both risk measures. 

 

 

2. Stylized Facts of Malaysia Stock Market Returns 

In this section, we present the stylized facts of three FTSE Bursa Malaysia Index 

Series. The index description, index identifier and starting date of each index are 

summarized in Table 1. The data are obtained from DATASTREAM database. 

 

Table 1. List of FTSE Bursa Malaysia Index 

 
Index description Index identifier Period 

A. Tradable Index   

1. FTSE Bursa Malaysia Hijrah Shariah Index FBMHS Feb 2007 – July 2012 

B. Benchmark Index   

1.  FTSE Bursa Malaysia EMAS Shariah Index FBMS Oct 2006 – July 2012 

2. FTSE Bursa Malaysia ACE Index FBMMES July 2007 – July 2012 

Notes: 

 FTSE Bursa Malaysia Hijrah Shariah Index: This index comprises the 30 

largest Shariah-compliant companies in FTSE Bursa Malaysia Emas Index 
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screened by Yasaar Ltd and the Securities Commission’s Shariah Advisory 

Council (SAC). 

 FTSE Bursa Malaysia EMAS Shariah Index: This index comprises the 

Shariah-compliant constituents of the FTSE Bursa Malaysia Emas Index that 

meet the screening requirements of the Securities Commission’s Shariah 

Advisory Council (SAC). 

 FTSE Bursa Malaysia ACE Index: This index comprises all the companies 

listed on the ACE Market. 

 

The FTSE Bursa Malaysia Index Series was officially launched on 26 June 2006 

(http://www.bursamalaysia.com). We use one tradable index namely the FTSE Bursa 

Malaysia Hijrah Shariah Index; and two benchmark indices which are FTSE Bursa 

Malaysia EMAS Shariah Index and FTSE Bursa Malaysia ACE Index. All indices are 

based on the Main Market. The series are denominated in Malaysian Ringgit (MYR). 

Monthly series are used in this study. Prior to analysis, the series are analyzed in 

returns, which is the first difference of natural algorithms multiplied by 100 over the 

whole period. This is done to express things in percentage terms. 

Table 2 reports the descriptive statistics for the monthly stock price indices over the 

sample period. All three indices are negatively skewed and have positive excess 

kurtosis except for the FTSE Bursa Malaysia ACE Index. Only FTSE Bursa Malaysia 

ACE Index confirms normality assumption. 

 

Table 2. Statistical properties of Malaysia stock price indices 

 

Statistics FBMHS FBMS FBMMES 

N 64 68 59 

Mean 0.7081 0.7434 -0.5512 

Median 1.5734 1.4448 -0.3938 

Maximum 16.8037 15.2228 16.0750 

Minimum -19.6753 -20.0504 -20.5718 

Std. Dev. 5.6573 5.7194 6.4789 

Skewness -0.7471 -0.8794 -0.1454 

Kurtosis 5.7956 5.4062 3.5938 

Jarque-Bera 26.7939 25.1692 1.0749 

Probability 0.0000 0.0000 0.5842 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

FBMMES: FTSE Bursa Malaysia ACE Index 

 

 

3. Distributional Fitting 

In this section, we present the distributional fitting for all three indices. The statistical 

ranking method used in this routine is the Kolmogorov-Smirnov test. 

Table 3 reports the distributional fitting results. The results also show the 
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Kolmogorov-Smirnov test statistics and p-values of the best-fitting distribution of 

three FTSE Bursa Malaysia indices where the higher the p-value, the better the 

distribution fits the data. From Table 3, Normal mixture distribution is the best-fitting 

distribution for FTSE Bursa Malaysia Hijrah Shariah Index and FTSE Bursa Malaysia 

EMAS Shariah Index. Meanwhile, Normal distribution is the best-fitting distribution 

for FTSE Bursa Malaysia ACE Index. 

 

Table 3. Distributional fitting results 

 

Indices Distribution KS test statistic P-value 

FBMHS Normal mixture 0.0516 0.9923 

FBMS Normal mixture 0.0556 0.9770 

FBMMES Normal 0.0500 0.9980 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

FBMMES: FTSE Bursa Malaysia ACE Index 

 

Table 4 reports number of components, k , in the mixture. We perform cross-

validation to confirm the number of components for the Normal mixture distribution. 

What we do is a simple data-set splitting, where a randomly-selected half of the data 

is used to fit the model, and another half to test. The basic idea is to split a data set 

into train and test. We fit the model using the training points, and then calculate the 

log-likelihood of the test points under the model. We pick the number of component 

which maximizes the likelihood of the data. The boldface entry in Table 4 confirms 

the two-component in the mixture for FTSE Bursa Malaysia Hijrah Shariah Index and 

FTSE Bursa Malaysia EMAS Shariah Index. 

 

Table 4. Log-likelihoods of the 10 fold cross-validation for Normal mixture 

distribution 

 

k FBMHS FBMS 

1 -98.2017 -114.0325 

2 -94.9708 -111.3669 

3 -97.7560 -113.8726 

4 -98.7322 -125.7174 

5 -95.0923 -118.4525 

6 -98.7117 -135.2373 

7 -100.3097 -134.3250 

8 -100.5387 -144.9777 

9 -99.5476 -144.2491 

10 -106.3629 -123.1648 

Notes: 

k is the number of components 
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FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

 

Meanwhile, for parameter estimation of Normal mixture distribution, we use the 

maximum likelihood method via the EM algorithm as introduced by [1]. The results 

are summarized in Table 5. The low-variance component has a higher probability to 

occur for FTSE Bursa Malaysia EMAS Shariah Index. However, it is vice versa for 

FTSE Bursa Malaysia Hijrah Shariah Index. The FTSE Bursa Malaysia EMAS 

Shariah Index indicates that the first normal is a low mean high variance regime while 

the second normal is a high mean low variance regime. The FTSE Hijrah Shariah 

Index indicates that the first normal is a low mean low variance regime. Meanwhile, 

the weights indicate that the second regime is more prevalent regime for both indices. 

 

Table 5. Summary of five parameters two-component Normal mixture 

distributions model using EM algorithm 

 

Indices Estimation Method Statistics 
1  2  1  2  

2

1  
2

2  

FBMHS Maximum Likelihood 

Estimation 

Estimate 0.0542 0.9458 -14.1710 1.5609 16.3816 18.9557 

 Estimate log-likelihood: 

-196.1613 

Std Err. 32.1024  0.3702 1.7367 0.0644 0.2673 

  Ratio 0.0017  -38.2793 0.8988 254.3727 70.9155 

  95%LCL -0.0231  -21.7681 0.3363 -23.9713 10.7323 

  95%UCL 0.1315  -6.5740 2.7856 56.7345 27.1790 

FBMS Maximum Likelihood 

Estimation 

Estimate 0.0694 0.9306 -12.8641 1.7576 21.7568 18.1808 

 Estimate 

log-likelihood: 

-209.0633 

Std Err. 28.6035  0.3682 1.7912 0.0544 0.2773 

  Ratio 0.0024  -34.9378 0.9812 399.9412 65.5636 

  95%LCL -0.0264  -21.2779 0.5218 -28.2487 10.0970 

  95%UCL 0.1652  -4.4504 2.9935 71.7622 26.2646 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

 

 

4. Risk Analysis 

In this section, we present the application in risk analysis where we provide empirical 

computation of Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) using the 

best-fitting distribution for Malaysia stock returns. 

Value-at-Risk (VaR) is the anticipated loss from an adverse market movement with a 

specified probability over a particular period of time. It is a loss that we are fairly sure 

will not be exceeded if the current portfolio is held over some period of time [2]. 

Meanwhile, conditional Value-at-Risk (CVaR) can be interpreted as the expected loss 

(in present value terms) given that the loss exceeds the value at risk [2]. 
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As a risk measure, Value-at-Risk (VaR) has its drawbacks [2]. Value-at-Risk (VaR) 

does not measure the extent of exceptional loses where it states a level of loss that we 

are reasonably sure will not be exceeded. It tells us nothing about how much could be 

lost if Value-at-Risk (VaR) is exceeded. The conditional Value-at-Risk (CVaR) risk 

metric is more informative than Value-at-Risk (VaR). It tells us how much we expect 

to lose, given that the Value-at-Risk (VaR) is exceeded. Conditional Value-at-Risk 

(CVaR) gives a fuller description of the risks of a portfolio than just reporting the 

Value-at-Risk (VaR) alone. 

For Value-at-Risk (VaR), the formula for the 100 %  h -month VaR, as a percentage 

of the portfolio value, when the portfolio’s returns are i.i.d. normally distributed with 

expectation h  and standard deviation h  is as follows 

 1

, 1h h hVaR        (4.1) 

where   is the standard Normal distribution function. 

Normal mixture distribution can be used to estimate Value-at-Risk (VaR), capturing 

both leptokurtosis and skewness in returns distribution. To estimate the Normal 

mixture Value-at-Risk (VaR), we can apply a numerical algorithm to solve the 

following expression 

       1 1

1 1 1 2 2 21 .P Y x P Y x                (4.2) 

Since iY  are Normal variables, we know its quantiles. Specifically, we know 

everything in the expression (probabilities, means and volatilities) except the mixture 

quantile, x . Hence, the mixture quantile can be backed out from (4.2) using an 

iterative approximation method [2]. Finally, we find the Normal mixture VaR by 

settingVaR x   . 

For conditional Value-at-Risk (CVaR), let the random variable X  denote a 

portfolio’s h -month return. If  2~ ,h hX N    then 

    1 1

,h h hCVaR X          (4.3) 

where   and   denote the standard Normal density and distribution functions. 

Hence,  1   is the   quantile of the standard Normal distribution and 

  1   is the height of the standard Normal density at this point. 

Meanwhile, the Normal mixture conditional Value-at-Risk (CVaR) is as follows 

  
2 2

1 1

1 1

.i i i i i

i i

CVaR x        

 

    (4.4) 

Table 6 reports the Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) for all 

three indices. These two risk measures are calculated using parametric linear model 

over a 1-month horizon, at the 0.1%, 1%, 5% and 10% significance levels. 
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Table 6. Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) estimates 

 

Index Distribution Significance   VaR (RM) CVaR (RM) 

FBMHS Normal 0.1% 2,254.00 22,981.00 

 mixture 1% 1,749.00 2,068.00 

  5% 311.00 1,465.00 

  10% 819.00 1,765.00 

FBMS Normal 0.1% 2,158.00 22,958.00 

 mixture 1% 1,629.00 4,814.00 

  5% 1,019.00 1,324.00 

  10% 663.00 1,043.00 

FBMMES Normal 0.1% 938.50 988.60 

  1% 714.22 782.52 

  5% 514.13 605.63 

  10% 407.46 515.27 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

FBMMES: FTSE Bursa Malaysia ACE Index 

 

 

5. Risk Model Validation 

In this section, we present approaches to Value-at-Risk (VaR) and conditional Value-

at-Risk (CVaR) model validation through out-of-sample forecast evaluation 

techniques that are commonly termed as back-test. Note that, failure of a back-test 

indicates model misspecification and/or there are large estimation errors. We back-

test our risk models using the [3] test for unconditional coverage and a method for 

back-testing conditional Value-at-Risk (CVaR) due to [4]. 

Test for unconditional coverage test of the null hypothesis that the actual number of 

violations is equal to the expected number of violations. While back-testing 

conditional Value-at-Risk (CVaR) test the null hypothesis that the conditional Value-

at-Risk (CVaR) does not consistently understate the true potential for losses beyond 

the Value-at-Risk (VaR). At the end of each risk horizon, we calculate the actual 

profits/losses for the stocks. An exceedance occurs if the loss is greater than the 

estimate Value-at-Risk (VaR) for the risk horizon. These exceedances are the inputs 

to the standard tests of unconditional coverage and back-testing conditional Value-at-

Risk (CVaR). 

An unconditional coverage test, introduced by [3], is a test of the null hypothesis that 

the indicator function, which follow an iid Bernoulli process, has a constant success 

probability equal to the significance level of the Value-at-Risk (VaR),  . The test 

statistics for unconditional coverage is a likelihood ratio statistic given by 

 
 

0
1

01

exp exp 2

1

1
; 2ln ~ .

1

n
n

nn

obs obs

LR LR
 


 


 


 (5.1) 
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where 
exp : the expected proportion of exceedances; obs : the observed number of 

exceedances (that lie in the prescribed interval of the distribution); 1n : the observed 

number of exceedances (the number of violations: the number of returns that lie inside 

the interval); n : the sample size of the back-test; 0n : the number of returns with 

indicator 0 (good returns: the number of returns that lie outside the interval). Note that 

0 1n n n  , 
exp   and 1

obs

n

n
  . The asymptotic distribution of 2ln LR  is chi-

squared with one degree of freedom. 

Table 7 reports the unconditional coverage test for the series. We perform an 

unconditional coverage test on the 0.1%, 1%, 5% and 10% monthly Value-at-Risk 

(VaR). The back-test is based on 50 observations. We fail to reject at the 1%, 5% and 

10% significance level, the null hypothesis that Normal mixture Value-at-Risk (NM-

VaR) and Normal VaR (N-VaR) model for all three series. For FTSE Bursa Malaysia 

Hijrah Shariah Index, we fail to reject at the 0.1% significance level, the null 

hypothesis that Normal mixture Value-at-Risk (NM-VaR) model is accurate in the 

sense that the total number of exceedances is close to the expected number. 

 

Table 7. Unconditional coverage test 

 

Index Statistics Significance level 

  0.1% 1% 5% 10% 

 n  50 50 50 50 

FBMHS 
0n  49 48 47 45 

(Normal 
1n  1 2 3 5 

mixture 
exp  0.1% 1% 5% 10% 

distribution) 
obs  2% 4% 6% 10% 

 ln(LR) -2.0548 -1.2955 -0.0496 0.0000 

 Test statistics 4.1096 2.5911 0.0992 0.0000 

FBMS 
0n  48 48 45 44 

(Normal 
1n  2 2 5 6 

mixture 
exp  01% 1% 5% 10% 

distribution) 
obs  4% 4% 10% 12% 

 ln(LR) -5.4663 -1.2955 -1.0327 -0.1051 

 Test statistics 10.9327 2.5911 2.0654 0.2102 

FBMMES 
0n  50 50 47 45 

(Normal 
1n  0 0 3 5 

distribution) 
exp  0.1% 1% 5% 10% 

 
obs  0% 0% 6% 10% 

 ln(LR) - - -0.0496 0.0000 
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 Test statistics - - 0.0992 0.0000 

 2

,1  10.8276 6.6349 3.8415 2.7055 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

FBMMES: FTSE Bursa Malaysia ACE Index 

 

Since the Normal linear Value-at-Risk (VaR) model is the best risk model for FTSE 

Bursa Malaysia ACE Index, we perform the bias test for validating this risk model. 

An approximate 99.9%, 99%, 95% and 90% confidence interval for the bias 

parameter is calculated. We use the maximum number of observations in the back-

test, 50T  , hence 2 2*50 10T   . Hence, 

1. the approximate 99.9% confidence interval is 

 
   1 3.89 10,1 3.89 10 0.6109,1.3891    

2. the approximate 99% confidence interval is 

 
   1 2.58 10,1 2.58 10 0.7424,1.2576    

3. the approximate 99% confidence interval is 

 
   1 1.96 10,1 1.96 10 0.8040,1.1960    

4. the approximate 99% confidence interval is 

 
   1 1.64 10,1 1.64 10 0.8355,1.1645    

 

For this test, the bias statistic b̂  is the standard deviation for standardized FTSE Bursa 

Malaysia ACE returns. In this case, ˆ 1.0716b  . According to [2], if we obtain a value 

b̂  that lies below this interval the model may be under-predicting Value-at-Risk 

(VaR), and if b̂  lies above this interval it could indicate that the model over-predicts 

Value-at-Risk (VaR). From the above results, b̂  value lies in the intervals for all four 

approximate confidence interval, meaning that the Normal linear Value-at-Risk (VaR) 

model is the best risk model for FTSE Bursa Malaysia ACE Index. 

[4] develop a methodology for back-testing conditional Value-at-Risk (CVaR) that is 

based on a time series of standardized exceedence residuals, defined as 

1 1, ,

1 1, ,

1

,
ˆ .

0,

t t

t t

t t

Y CVaR
if Y VaR

otherwise




 







 
 

 



 (5.2) 

where ˆ
t  is the forecast of the standard deviation of the return from time t  to time 

1t  . So, the ˆ
t  is the forecast that is made at time t . 

The test is based on the observation that, if the process dynamics are correct and 

conditional Value-at-Risk (CVaR) is an unbiased estimate of the expectation in the 

tail below the Value-at-Risk (VaR), the standardized exceedance residuals should 

behave as a sample from an iid zero mean process. The null hypothesis is that t  has 
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zero mean, against the alternative that the mean is positive. A positive mean suggests 

that the conditional Value-at-Risk (CVaR) is too low, and underestimation of the 

conditional Value-at-Risk (CVaR) is what we want to guard against. So the test 

statistic is 

 
.t

est se




  (5.3) 

here denoted t  because it looks like a standard t  ratio, where   denotes the sample 

mean of the standardized exceedance residuals. The distribution of the test statistic is 

found using the standard bootstrap simulation introduced by [5]. 

Table 8 reports the exceedances and t ratio on standardized exceedance residuals. It 

summarizes the results, including the values of the conditional Value-at-Risk (CVaR) 

t statistics. We only use those dates for which the Value-at-Risk (VaR) is exceeded in 

the time series while the other observations are simply excluded. 

 

Table 8. Standardized exceedance residuals 

 

Index Statistics Significance level 

  0.1% 1% 5% 10% 

 Exp num of exceedances 0.05 0.5 2.5 5.0 

FBMHS Num of exceedances 1 2 3 5 

(Normal Mean SER -5.6784 -0.9167 -0.2884 -0.1803 

mixture Std dev SER - 1.3572 1.3245 0.9547 

distribution) t  - -0.6755 -0.2177 -0.1889 

FBMS Num of exceedances 2 2 5 6 

(Normal Mean SER -26.8652 -2.0436 -0.1214 0.0497 

mixture Std dev SER 4.8237 1.0430 1.2173 1.0553 

distribution) t  -5.5694 -1.9593 -0.0997 0.0471 

FBMMES Num of exceedances 0 0 3 5 

(Normal Mean SER - - -0.1450 -0.0859 

distribution) Std dev SER - - 0.2356 0.3650 

 t  - - -0.6154 -0.2353 

Notes: 

FBMHS: FTSE Bursa Malaysia Hijrah Shariah Index 

FBMS: FTSE Bursa Malaysia EMAS Shariah Index 

FBMMES: FTSE Bursa Malaysia ACE Index 

 

 

6. Conclusion 

In this paper, we estimate the best-fitting distribution for returns and applied it in 

financial risk management analysis. We estimate the unconditional returns 

distribution, estimate and evaluate Value-at-Risk (VaR) and conditional Value-at-

Risk (CVaR) for monthly series of FTSE Bursa Malaysia Hijrah Shariah Index, 

FTSE Bursa Malaysia EMAS Shariah Index and FTSE Bursa Malaysia ACE Index. 

We conclude that two-component Normal mixture distribution is the best-fitting 
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distribution for FTSE Bursa Malaysia Hijrah Shariah Index and FTSE Bursa Malaysia 

EMAS Shariah Index. Meanwhile, Normal distribution is the best-fitting distribution 

for FTSE Bursa Malaysia ACE Index. Next, we apply the best-fitting distributions 

model to estimate and evaluate the Value-at-Risk (VaR) and conditional Value-at-

Risk (CVaR). We perform model validation for both risk measures using 

unconditional coverage test and back-testing conditional value at risk for model 

evaluation. We may conclude from the above analysis that using the Normal 

distribution can fit the monthly series of FTSE Bursa Malaysia ACE Index well. 

Meanwhile, the two-component Normal mixture distribution model can fit the data 

(FTSE Bursa Malaysia Hijrah Shariah Index and FTSE Bursa Malaysia EMAS 

Shariah Index) well and can perform better in estimating both Value-at-Risk (VaR) 

and conditional Value-at-Risk (CVaR) where it can capture the stylized facts of 

non-normality and leptokurtosis in returns distribution. 
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