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Abstract

The purpose of this paper is to establish the Hyers-Ulam-Rassias stability of
the Quadratic functional equations

fERx+y) +fBx—y)=f(x+y)+f(x-y)+16f(x)

and f (2x+y) +f(2x—y) =f(x +y) + f (x—y) + 6 (X)

in Menger Probablistic normed spaces. We investigate the stability of above
equations using fixed point and direct approach.

Keywords: Hyers-Ulam-Rassias stability, Quadratic functional equations,
MPN-space.

1. Introduction

One of the interesting question in the theory of non-linear functional analysis involved
is the stability problem of functional equations as follows: “When is it true that a
mathematical object satisfying a certain property approximately must be close to an
object satisfying the property exactly?” The concept of stability problem of functional
equations originated from a question of S.M. Ulam [18], concerning the stability of
group homomorphism:

Let G; be a group and let G, be a metric group with metric d (.,.). Given £ > 0, does
there exist a 6 > 0 such that if a mapping h: G; — G satisfies the inequalityd (h (xy),
h (X)h (y)) <& for all X, y € G;. Then there exists a homomorphism H: G; — G, with

d (h (X), H (X)) < € for all x € G1? If the answer is affirmative, we would say that
equation of homomorphism H (xy) = H (X) H (y) is stable.

In the next year D.H. Hyres [7] gave a positive answer to the above question for
additive groups under the assumption that the groups are Banach Spaces.
Subsequently the result of Hyers [7] was generalized by Th.M. Rassias [19] for linear
mapping by considering an unbounded Cauchy difference.

In 1996, Hyers, G. Isac and Th.M. Rassias [6] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems with
applications. Stability problems of different type of functional equations have been
investigated by a number of researchers (see [5], [17], [20]) using fixed point method.
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The theory of probabilistic normed space was introduced by Serstnev in1963 ([1],
[2]). In [4] Alsina, Schweizer and Sklar gave a new definition of probabilistic normed
spaces which includes Serstnev’s as a special case and leads naturally to the
identification of the principle class of probabilistic normed spaces, the Menger spaces.
The notions of probabilistic metric spaces was introduced by K. Menger [12]. The
idea of Menger was to use distribution function instead of non-negative real numbers
as values of the metric. We know only Menger proposed the probabilistic concept of
distance by replacing the number d (p, q) as distance between points (p, q) by a
distribution function F (p, g). This idea leads to large development of probalistic
analysis ([3], [13]).

The functional equations

FRx+y)+f(Bx—-y)=f(x+y)+f(Xx-y)+ 16f(X) (1.2)

andf (2x +y) + f(2x—y) =f(x +y) + f (x—y) + 6 (X) (1.2)

are called quadratic functional equations, since the function f (x)=cx?* is a solution of
these quadratic functional equations. In 2011, H.A.Kenary et. al.[10] proved the
generalized Hyers-Ulam-Rassias stability of quadratic functional equation (1.1) using
fixed point method. Further in 2011, W.G.Park [21] investigated the stability of
approximate additive mappings and approximate quadratic mappings in 2-Banach
spaces.

In 2002, 1. S. Chang and H. M. Kim[11] established the general solution and proved
the stability of quadratic functional equation (1.2). In 2013, M. Kumar et.al. [15]
proved the Hyers-Ulam-Rassias stability of quadratic functional equations (1.1) and
(2.2) in 2-Banach spaces.

2. Preliminaries
This section, adopt some definitions and preliminaries of Menger Probabilistic space,
fixed point approach etc.

Definition 2.1 [9]: A function F: R — [0, 1] is called a distribution function if it is

non-decreasing and left continuous, with Sup F(t) =1 and ItnF1: F(t)=0.
teR €

The class of all distribution functions F with F (0) = 0 is denoted by D.. g is the
element of D. defined by

1 t>0
€=
0 t<0

Definition 2.2 [16]: A binary operation *: [0, 1] x [0, 1] — [0, 1] is said to be t-norm
if it satisfies the following conditions:

@ * |s commutative and associative;

2 * s continuous;

3 a*l=aforalla e [0, 1];

4) a*b<c*dwhenevera<candb<dforalla, b, c,de]0,1].
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Definition 2.3 [14]: Let X be a real vector space, F a mapping from X toD. (for any
x € X, F (x) is denoted by F,) and * a t-norm. The triple (X, F, *) is called a Menger
probabilistic normed space (briefly Menger PN-space). If the following conditions are
satisfied:

(1) Fx (0) =0, forall x € X;

(2 Fx (0) = g, iff x=6;

3)  Fux(t) =Fs (| t

(04
(@) Fyuy (i +1t) > Fy () * F (tp) forall x, y € X and tz, t, > 0.

J forallo e R, #0and x € X;

Definition 2.4 [8]: Let X be a set. A function d: X x X — [0, «] is called a
generalized metric on X if it satisfies the following conditions:

D d(x,y)=0ifand only if x =y forall x, y € X;

2 dxy=d(yx) foralx,yeX;,

(3 dxz)<d(xy) +d(y,z)forallxy,zeX;

Note that the only substantial difference of the generalized metric from the metric is
that the range of generalized metric includes the infinity.

Theorem 2.1 [8]: Let (X, d) be a complete generalized metric space and J: X — X be
a strictly contractive mapping with Lipschitz constant L < 1. Then for all x € X,
either d (I"x, J™*x) = « for all non-negative integers n or there exists a positive
integer ng such that

(1)  d @@, I"™*x) <o for all n > no;

2 the sequence {J"x} converges to a fixed point y~ of J;

(3) vy isthe unique fixed point of Jinthe set Y = {y € X; d (J™ X, y) < «o}

(4) d(y,y)< ﬁ d(y,Jy) forally e Y.

Definition 2.5 [9]: Let (X, F, *) be a Menger PN-space and let {x,} be a sequence in
X. Then {xn} is said to be convergent if there exists x € X such that lim F,_ (t)=1.

n—o

For all t > 0. In this case, X is called the limit of {x,}.

Definition 2.6 [16]: The sequence {x,} in Menger PN-space (X, F, *) is called
Cauchy if for each € > 0 and & > O there exists some no such that F, _, (6) < 1-¢ for

allm, n > no.

Clearly, every convergent sequence in Menger PN-space is Cauchy. If each Cauchy
sequence is convergent sequence in Menger PN-space (X, F, *) then (X, F, *) is called
Menger-Probabilistic Banach space (briefly, Menger PB-space).
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3. Main Result

3.1 Stability of Quadratic Functional Equations Using Fixed Point Approach

In this section, we prove the Hyers-Ulam-Rassias stability of quadratic functional
equations in Menger Probabilistic normed space, using fixed point method.

Definition 3.1: Let (X, F, *) be a Menger PN-spaces and (Y, G, *) be a MengerPB-
spaces. A mapping f: X — Y is said to be P-approximately quadratic if

Gf (3x+y)+f (3x—y)—f (x+y)-f (x—y)-16f (x) (t + S) = I:x (t) * I:y (t) (32)
forallt,s>0.

Theorem 3.1: Let f: X — Y be a P-approximately quadratic functional equation and
1
there exist 0 < o < § such that Fy (3t) > Fex (1) (3.3

Then there exists a unique quadratic mapping J: X — Y such that

1-9«x
Gry -9 (1) = Fx( 3 J
(04

forallx e X and t >0.

(3.4)

Proof:Taking y=0and s =5t in (3.2)
Gt (3x) - 18f () (6t) = Fx (1)
Gr (3% -9t (v (3t) = Fx (1) (3.5)

Now, replacing x by % in (3.5), we get

Groo ot %) (3) > F, (1) (3.6)

Using the Definition (2.3) and replacing t by % in (3.6), we obtain

Gro -or( %) (1) 2 Fx (1) (3.7)

for all x € X, t > 0. Let us assume the set P = {m: X — Y: m (0) = 0} and the
generalized metric in P defined by

d (n, m) = inf{c €[0, ©]/Gmx -n (ct) = Fx ()} (3.8)
where inf ¢ = + 0. It is not difficult to prove that (P, d) is complete [see [19], lemma

[2.1]. Now, we suppose a linear mapping T : P — P such thatTn (x) = 9n(%j for all

x € X. We show that T is strictly contractive mapping with the Lipschtiz Constant 9a.
In fact, m, n € P be such that d (m, n) < c. Then we get,

G () —n 0o (Ct) = Fx (1) (3.9)
Whence

Grmx)-Tn (Qact) = Ggm(xj_gn(xj(gad)

3 3
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=G . (o(00h) (3.10)
(50

3 3

> Fy (oct)

3
> Fy (1)
forall x e X, t>0. Then
d (Tm, Tn) < 9ac
This means that

d(Tm, Tn) <9 ad (M, n) (3.11)
for all m, n € P. It follows from (3.7) that
d (f, Tf) < 3a (3.12)

Now, using Theorem (2.1) there exist a mapping J: X — Y satisfying the following:
@ J is fixed point of T, means

X 1
J(E) = §J(x) (3.13)

for all x € X. The mapping J is unique fixed point of T in the set v = {n € P: d (m, n)
< oo}. This implies that J is unique mapping satisfying (3.13) such that there exist ¢
[0, o] satisfying

Gry-T (Ct) > F (t) forall x € X, t>0. (3.14)

(b) d(Tf,J)>0asn— o

This means the equality

lim 9”f(3inj =J(x) forall x € X. (3.15)
d(f,Jf) 3a .
C d(f,J) < < with f and so
(© (f,J) L 1 eq ey
3ot
G — |>F (t 3.16
f(x)—J(x)(l_gaj x( ) ( )

This implies that

1-9a
Gf(x)—J(x)(t)ZFx[ 30(. )
Then the inequality (3.4) holds. On the other hand
G t+s >F, (t)*F, (s) (3.18)
nlef 3% 3x X X X X y
NG G A Gr (3 s w
By Definition (2.3) and equation (3.3), we have
F (1) 2F, (1.F, (5)2F, (s)

(3.17)

3" 3"
F. (D.F, (5)= Fanx(t)*Fany(s) forall x e Xandt,s>0. (3.19)
3" 3"

Now since lim Fanx(t).Fqny(s) =1, we have

G 3x4y) 3 (3xoy)-I(xry)dx-y)-16300 (E+S) =1 (3.20)
for all x, y € X. This complete the proof.
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Definition 3.2 Let (X, F, *) be a menger PN-space and (Y, G, *) be a Menger PB-
spaces. A mapping f: X— Y is said to be P-approximately quadratic if

C;f (2x+y)+f (2x—y)—f (x+y)—f (x=y)—6f (x) (t + S) 2 Fx (t) * Fy (S) (3-21)
forallt,s>0.
Theorem 3.2: Let :X—Y be a P-approximately functional equation and there exists
1
O<a< 2 such that F, (2t) > F , (t) (3.22)
Then there exists a unique quadratic mapping J:X—Y such that
1-4a

G t)=F 3.23

f(x)—J(x)( ) x( 20( ) ( )

forall x € Xandt>0.
Proof: Putting y =0 and s =3t in (3.21), we have
GZf(Zx)—8f(x) (4t) = Fx (t) (3-24)

Gy (2x)-ar () (21) = F, (1) (3.25)

X
Replacing x byE in (3.25), we have
(2) = F, (1) (3.26)

f(x)—4f(§) .

Using the Definition (2.3) and replacing t by % in (3.26), we have
G (1) =F (1) (3.27)
f(2x)—4f(§)

forall xeX, t>0.

Let us assume the set P = {m: X — Y: m (0) = 0} and the generalized metric in P
defined by

d (n, m) = inf{c [0, ©)/Gm x -nx (Ct) > Fx (1)} (3.28)
where inf ¢ = + co. It is not difficult to prove that (P, d) is complete [see [19], lemma.

2.1]. Now, we suppose a linear mapping T: P — P such that Tn (x) = 4n(§j for all

x € X. We show that T is strictly contractive mapping with the Lipschtiz Constant 4a.
In fact, m, n € P be such that d(m, n) < C. Then we get,

G () —n 0o (Ct) = Fx (1) (3.29)
Whence

Gtm () -Tn (x) (4 o Ct) = GAm(X]—m(X] (40(Ct)

(5103

=G (acct) (3.30)
> Fi(oct)

> Ff (t)
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forallx e X,t>0. Then
d(Tm, Tn) <4oac
This means that

d (Tm, Tn) <4od (m, n) (3.31)
for all m, n € P. It follows from (3.27) that
d(f, Tf) < 2o (3.32)

Now, using Theorem (2.1) there exist a mapping J: X — Y satisfying the following:
@ J is fixed point of T, means

x) 1

for all x € X. The mapping J is unique fixed point of T in the set w = {n € P: d (m, n)
< «}.This implies that J is unique mapping satisfying (3.33) such that there exist ¢
[0, o] satisfying

Gf(x),T(X) (ct)>Fx (t) forall x € X, t>0. (3.34)

(b) d(T,J) >0asn—wx

This means the equality

lim 4”f[2X—nj:J(x) forall x e X. (3.35)
d(f,Jf) 2o .
C d(f,J) < < with f and so
R B =Y
2ot
Gf(x)—.](x) (m) >F (1) (3.36)
This implies that
1-4a

G t)>F 3.37

f(x)—.](x)( ) x( 20( ) ( )
Then the inequality (3.23) holds. On the other hand

G t+s F, ()*F, () (3.38)

A GGG s 7
Using Definition (2.3) and equation (3.3), we have
F, ()2F, (1).F, (s) = Fany(s)

2" 2"
F.(D.F, (s)= Fanx(t)*Fany(s) forall x e Xandt,s>0. (3.39)
2" 2"

Now since lim Fanx(t).Fqny(s) =1, we have

G 2xay) e (2x-y)-dxay)-d(xy) 6300 (E+S) =1 (3.40)
for all x, y € X. This complete the proof.

3.2 Stability of Quadratic Functional Equations (1.1) and (1.2) Using Direct
Approach
Theorem 3.3: Let (X, F, *) be a Menger PN-space and (Y, G, *) be a Menger PB-

space. A mapping f: X — Y be a P-approximately quadratic if
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G; (3x+y)+F (3x—y)—F (x-+y)—F (X=y)-16F (x) (t+s)=F (H)* Fy (t)

for all x,y e Xand t, x € [0,). (3.41)
Then there exists a unique quadratic mapping Q: X — Y such that
G- 00 (1) = F (1), VX,y e Xand t >0. (3.42)

Proof: Put y=0 and s = 5t in (3.41) to obtain

GZf(Sx)—le(x) (6t) 2 Fx (t)

Gt (3x)-0t (x) (3t) = F (1) (3.43)
Replacing x by 3"x in (3.43), we see that

Gf(3“+1x)-9f(3n X) (30) > F3"x (t).

It follows
Gf(3"*1x)—9f (3"x)
Whence

G

(3"t) > F. (t).

3" > F ().

f(3™x) f(3"x) (
9n+1 9n
If n>m>0, then

k-1t
Gf(3"x) f(SmX)( Z 3 j

gm k=m+1

—k-1
f@mmmﬂ£§%3 q (3.44)

zE:mﬂ[ gk gk_1
—k-1
- H f(3*x) f(3*x) 3 t >F (t)
k=m+1 ok okt

Let ¢ > 0 and & be given. Since II(im F (t) =1, there is some to > 0 such that Fy (to) > 1 —

e. Fix some t > to. The convergence of the series >~ 3"t shows that there exists

some np > 0 such that for each n > m > ny, the inequality > .3 't<c holds. It

follows that,

k= m+l

3 M, >F (t,) >1-¢.

f@%) (3" (c)= Gf(3"x)7f(3"‘x) k m+1
9" gm 9" 9qm

Hence {f(z_nx)} is a Cauchy sequence in (Y, G, *). Since (Y, G, *) is a MengerPB-

space, this sequence converges to some Q (X) € Y. Hence, we can define a mapping
Q: X > Y such that IlmG (t) =1. Moreover, if we put m = 0 in (3.44) we
()

f(an

observe that
N 3kt > E (1).

£(3"x)
gn

Therefore,

—-f(x)
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t
N ) 349
9" k=1

Next we will show that Q is quadratic. Let X, y € X, then we have

GQ(3><+y)+Q(3><—y)—Q(X+y)—Q(X—y)—16Q(X) (t)

t t
2G (3" (3x+y)) (_j*G (3" (3x-y)) (_)
QExy)— e 6 QEx-y)-T 6

“G g L t
fEx+y) é:+y»—Q(x+y) 6 & (xy) éf’y))fo(xfy) 6 16f(znx)—16Q(x) 6

*

t
(3" (3x+y)) F(8"(3x-y) f(3"(x+y)) f(3"(x-y) 16f(3“><) (GJ
9" 9" 9" 9" 9"

In above inequality, we can see that the first five terms on the right hand side of the
above inequality tend to 1 as n — oo, t — oo and the sixth term, by (3.41) is greater

than or equal to F, ot *F, ot =F, St *F, St , Which tends to 1 as
(12 ) vl 12 12 ) 7l 12

n—o. Therefore QBXx+Yy)+QBx—y)=0Q(X+Yy)+Q(Xx—-y)+16Q(x). Now, we

approximate the difference between f and Q. For every x € X and t > 0, by (3.45) for
large enough n, we obtain

t t
Cavr-ien() Go( 0-1EX (2]*Gf(3nx) H(x )(2)2 5
Let Q" be another quadratic function from X to Y which satisfies (3.42). We have

t *
GQ(X)—Q'(x)(t)ZGQ(X)—f(X)(Ej Gf(X)Q(X)( ) F.(0)

for each t > 0. Therefore, we can say that the mapping Q = Q".

Theorem 3.4: Let (X, F, *) be a Menger PN-space and (Y, G, *) be a Menger PB-
space. A mapping f: X — Y be a P-approximately quadratic if

Gf(2x+y)+f (2x=y)—F (x+y)—F (x=y)-6F (x) (t+s)=F ()* Fy (s)

VX,y € Xand t, xe[0, ). (3.46)
Then there exists a unique quadratic mapping Q: X — Y such that
G000 (1) = F (1), VX, yeX andt>0. (3.47)

Proof: Put x =y and s = 3t in (3.46) to obtain

GZf(x)—8f(x) (4t) 2 Fx (t)

G+ (204t (x) (2t) =F, (1) (3.48)
Replacing x by 2"x in (3.48), we see that

Gf(2”“x)—4f(2"x) (Zt) 2 FX (t)

It follows
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Gf(2"+1x)—4f(2"x) (2"1) > F. (1),
Whence
G 2" =R ().

f(2"x) f(2"x)
4n+1 4n
If n>m >0, then

n
—k-1
Gf(2“x) f(zmx)( 22 tj

40 4m k=m+1
n
-k-1
26 n f(2%x) f(2%x) [ ZZ tj (3-49)
Zk:m+1 4k - 4k71 k=m+1

- H f(2*x) f(2"*x) Q . lt > F (t)

k=m+1 4k 4kt

Let ¢ >0 and ¢ be given. Since
I(IiimlFX(t):l, there is some to > 0 such that Fx (to) > 1 — &. Fix some t > to. The

convergence of the series >, 27"t show that there exists some ng > 0 such that for
27"t <c holds. It follows that,
274, >F (t,)>1-¢.

each n > m > ny, the inequality >}

k=m+1

c;f(2rI x) f(2"x) (C) - C;f(2”>()7f(2'“ X) k m+1
40 4m 4n 4m

Hence {f(i_nx)} is a Cauchy sequence in (Y, G, *). Since (Y, G, *) is a Menger PB-

space, this sequence converges to some Q (X) € Y. Hence, we can define a mapping

Q: X — Y such that I|m Gf(2n 9 (t) =1. Moreover, if we put m =0 in (3.49) we
-Q(x)
observe that

"L 27 > F (1),

f(i:x)if(x)

Therefore,

t
G, @, ®> F(Tj (3.50)

Next we will show that Q is quadratic. Let X, y € X, then we have
G

Q(2x+y)+Q(2x-y)-Q(x+Y)-Q(x-y)-6f (x) (t)

t t
2G f(2" (2x+y)) ( j*G (2" (2x-y) (_)
Q(2x+y)-— YD 6 Qx-y)-—=— 6

W%Q(xw) 6 M 200y \ 6 ”i ) _sq(x) \ 6
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*

t
f(2"(2x+y) F(2"(2xy) f(2"(x+y) FR"(x=y) f(2"%) (6] '
40 4" 4" 4" 4"
We can see that the first five terms on the right hand side of the above inequality
tend to 1 as n — o, t — o and the sixth term, by (3.46) is greater than or equal to

anx(4 tJ*any[A' t]:F{Z t]*F (Zlotj' which tends to 1 as n — co. Therefore

10 10 10 Y
Q(2x+Yy)+Q(2x—-y) =Q(x+Yy)+Q(x-y)+6Q(x). Next we approximate the

difference between fand Q. For every x € X and t > 0, by (3.50) for large enough n,
we have

t t

G t)>G = %G, — > F ().
ot () Qe-IEX) ( 2] ) ( 2 ) ®

Let Q" be another quadratic function from X to Y which satisfies (3.47). We have

t t
GQ(><)—Q'(><) (t) = GQ(X)—f(X)(Ej*Gf(x)—Q'(X)(E) 2 FX (t)

for each t > 0. Therefore, we can say that Q = Q".
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