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Abstract 

 

The purpose of this paper is to establish the Hyers-Ulam-Rassias stability of 

the Quadratic functional equations 

f (3x + y) + f (3x – y) = f (x + y) + f (x – y) + 16f (x) 

and f (2x + y) + f (2x −y) = f (x + y) + f (x− y) + 6f (x) 

in Menger Probablistic normed spaces. We investigate the stability of above 

equations using fixed point and direct approach. 

 

Keywords: Hyers-Ulam-Rassias stability, Quadratic functional equations, 

MPN-space. 

 

 

1. Introduction 
One of the interesting question in the theory of non-linear functional analysis involved 

is the stability problem of functional equations as follows: “When is it true that a 

mathematical object satisfying a certain property approximately must be close to an 

object satisfying the property exactly?” The concept of stability problem of functional 

equations originated from a question of S.M. Ulam [18], concerning the stability of 

group homomorphism: 

Let G1 be a group and let G2 be a metric group with metric d (.,.). Given  > 0, does 

there exist a  > 0 such that if a mapping h: G1  G2 satisfies the inequalityd (h (xy), 

h (x)h (y)) <  for all x, y  G1. Then there exists a homomorphism H: G1  G2 with 

d (h (x), H (x)) < ∊ for all x  G1? If the answer is affirmative, we would say that 

equation of homomorphism H (xy) = H (x) H (y) is stable. 

In the next year D.H. Hyres [7] gave a positive answer to the above question for 

additive groups under the assumption that the groups are Banach Spaces. 

Subsequently the result of Hyers [7] was generalized by Th.M. Rassias [19] for linear 

mapping by considering an unbounded Cauchy difference. 

In 1996, Hyers, G. Isac and Th.M. Rassias [6] were the first to provide applications of 

stability theory of functional equations for the proof of new fixed point theorems with 

applications. Stability problems of different type of functional equations have been 

investigated by a number of researchers (see [5], [17], [20]) using fixed point method. 
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The theory of probabilistic normed space was introduced by Serstnev in1963 ([1], 

[2]). In [4] Alsina, Schweizer and Sklar gave a new definition of probabilistic normed 

spaces which includes Serstnev’s as a special case and leads naturally to the 

identification of the principle class of probabilistic normed spaces, the Menger spaces. 

The notions of probabilistic metric spaces was introduced by K. Menger [12]. The 

idea of Menger was to use distribution function instead of non-negative real numbers 

as values of the metric. We know only Menger proposed the probabilistic concept of 

distance by replacing the number d (p, q) as distance between points (p, q) by a 

distribution function F (p, q). This idea leads to large development of probalistic 

analysis ([3], [13]). 

The functional equations 

f (3x + y) + f (3x – y) = f (x + y) + f (x – y) + 16f (x)  (1.1) 

andf (2x + y) + f (2x −y) = f (x + y) + f (x− y) + 6f (x)  (1.2) 

are called quadratic functional equations, since the function f (x)= 2cx  is a solution of 

these quadratic functional equations. In 2011, H.A.Kenary et. al.[10] proved the 

generalized Hyers-Ulam-Rassias stability of quadratic functional equation (1.1) using 

fixed point method. Further in 2011, W.G.Park [21] investigated the stability of 

approximate additive mappings and approximate quadratic mappings in 2-Banach 

spaces. 

In 2002, I. S. Chang and H. M. Kim[11] established the general solution and proved 

the stability of quadratic functional equation (1.2). In 2013, M. Kumar et.al. [15] 

proved the Hyers-Ulam-Rassias stability of quadratic functional equations (1.1) and 

(1.2) in 2-Banach spaces. 

 

 

2. Preliminaries 

This section, adopt some definitions and preliminaries of Menger Probabilistic space, 

fixed point approach etc. 

 

Definition 2.1 [9]: A function F: R  [0, 1] is called a distribution function if it is 

non-decreasing and left continuous, with 1)t(FSup
Rt

 and 
t R
Inf F(t) 0 . 

The class of all distribution functions F with F (0) = 0 is denoted by D+. 0 is the 

element of D+ defined by 

0 = 
0t0

0t1
 

 

Definition 2.2 [16]: A binary operation *: [0, 1] × [0, 1]  [0, 1] is said to be t-norm 

if it satisfies the following conditions: 

(1) * is commutative and associative; 

(2) * is continuous; 

(3) a * 1 = a for all a  [0, 1]; 

(4) a * b  c * d whenever a  c and b  d for all a, b, c, d  [0, 1]. 
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Definition 2.3 [14]: Let X be a real vector space, F a mapping from X toD+ (for any 

x  X, F (x) is denoted by xF ) and * a t-norm. The triple (X, F, *) is called a Menger 

probabilistic normed space (briefly Menger PN-space). If the following conditions are 

satisfied: 

(1) Fx (0) = 0, for all x  X; 

(2) Fx (0) = 0  iff x = ; 

(3) F x (t) = Fx 
||

t
 for all   R,   0 and x  X; 

(4) Fx+y (t1 + t2)  Fx (t1) * Fx (t2) for all x, y  X and t1, t2 > 0. 

 

Definition 2.4 [8]: Let X be a set. A function d: X × X  [0, ] is called a 

generalized metric on X if it satisfies the following conditions: 

(1) d (x, y) = 0 if and only if x = y for all x, y  X; 

(2) d (x, y) = d (y, x) for all x, y  X; 

(3) d (x, z)  d (x, y) + d (y, z) for all x, y, z  X; 

 

Note that the only substantial difference of the generalized metric from the metric is 

that the range of generalized metric includes the infinity. 

 

Theorem 2.1 [8]: Let (X, d) be a complete generalized metric space and J: X  X be 

a strictly contractive mapping with Lipschitz constant L < 1. Then for all x  X, 

either d (J
n
x, J

n+1
x) =  for all non-negative integers n or there exists a positive 

integer n0 such that 

(1) d (J
n
x, J

n+1
x) <  for all n  n0; 

(2) the sequence {J
n
x} converges to a fixed point y

*
 of J; 

(3) y
*
 is the unique fixed point of J in the set Y = {y  X; d ( 0n

J  x, y) < } 

(4) d (y, y
*
)  

L1

1
 d (y, Jy) for all y  Y. 

 

Definition 2.5 [9]: Let (X, F, *) be a Menger PN-space and let {xn} be a sequence in 

X. Then {xn} is said to be convergent if there exists x  X such that 1)t(Flim
xnx

n
. 

For all t > 0. In this case, x is called the limit of {xn}. 

 

Definition 2.6 [16]: The sequence {xn} in Menger PN-space (X, F, *) is called 

Cauchy if for each  > 0 and  > 0 there exists some n0 such that 
mn xxF  ( ) < 1-  for 

all m, n > n0. 

Clearly, every convergent sequence in Menger PN-space is Cauchy. If each Cauchy 

sequence is convergent sequence in Menger PN-space (X, F, *) then (X, F, *) is called 

Menger-Probabilistic Banach space (briefly, Menger PB-space). 
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3. Main Result 

3.1 Stability of Quadratic Functional Equations Using Fixed Point Approach 

In this section, we prove the Hyers-Ulam-Rassias stability of quadratic functional 

equations in Menger Probabilistic normed space, using fixed point method. 

 

Definition 3.1: Let (X, F, *) be a Menger PN-spaces and (Y, G, *) be a MengerPB-

spaces. A mapping f: X  Y is said to be P-approximately quadratic if 

)t(F*)t(F)st(G yx)x(f16)yx(f)yx(f)yx3(f)yx3(f  (3.2) 

for all t, s > 0. 

 

Theorem 3.1: Let f: X  Y be a P-approximately quadratic functional equation and 

there exist 0 <  < 
1

9
 such that Fx (3t)  F x (t) (3.3) 

Then there exists a unique quadratic mapping J: X  Y such that 

Gf (x) – J (x) (t) = Fx
3

91
 (3.4) 

for all x ∊ X and t >0. 
 

Proof:Taking y = 0 and s = 5t in (3.2) 

G2f (3x) – 18f (x) (6t)  Fx (t) 

Gf (3x) – 9f (x) (3t)  Fx (t) (3.5) 

Now, replacing x by 
3

x
 in (3.5), we get 

Gf (x) – 9f
3

x  (3t)  
3

xF  (t) (3.6) 

Using the Definition (2.3) and replacing t by 
3

t
 in (3.6), we obtain 

Gf (x) – 9f
3

x  (t)  Fx (t) (3.7) 

for all x  X, t > 0. Let us assume the set P = {m: X  Y: m (0) = 0} and the 

generalized metric in P defined by 

d (n, m) = inf{c [0, ]/Gm (x) – n (x) (ct)  Fx (t)} (3.8) 

where inf  = + . It is not difficult to prove that (P, d) is complete [see [19], lemma 

[2.1]. Now, we suppose a linear mapping T : P  P such thatTn (x) = 9n
3

x
 for all 

x  X. We show that T is strictly contractive mapping with the Lipschtiz Constant 9α. 

In fact, m, n  P be such that d (m, n) < c. Then we get, 

Gm (x) – n (x) (ct)  Fx (t) (3.9) 

Whence 

GTm (x) – Tn (x) (9  ct) = )ct9(G
3

x
n9

3

x
m9
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= )ct(G
3

x
n

3

x
m

 (3.10) 

 )t(F
3

x  

 Fx (t) 

for all x  X, t > 0. Then 

d (Tm, Tn) < 9 c 

This means that 

d (Tm, Tn)  9 d (m, n) (3.11) 

for all m, n  P. It follows from (3.7) that 

d (f, Tf)  3  (3.12) 

Now, using Theorem (2.1) there exist a mapping J: X  Y satisfying the following: 

(a) J is fixed point of T, means 

)x(J
9

1

3

x
J  (3.13) 

for all x  X. The mapping J is unique fixed point of T in the set  = {n  P: d (m, n) 

< }. This implies that J is unique mapping satisfying (3.13) such that there exist c  

[0, ] satisfying 

Gf (x) – T (x) (ct)  Fx (t) for all x  X, t > 0. (3.14) 

(b) d (T
n
f, J)  0 as n   

This means the equality 

)x(J
n3

x
f9lim n

n
for all x  X.  (3.15) 

(c) 
d(f , Jf ) 3

d(f , J)
1 L 1 9

 with f  ψ and so 

)t(F
91

t3
G x)x(J)x(f  (3.16) 

This implies that 

3

91
F)t(G x)x(J)x(f  (3.17) 

Then the inequality (3.4) holds. On the other hand 

n
n nn n n n n n n n n

x y3x y 3x y x y x y x
9 f f f f 16f

3 33 3 3 3 3 3 3 3 3

G t s F (t)*F (s)  (3.18) 

By Definition (2.3) and equation (3.3), we have 

n n

n n

x yx y

3 3

F (t) F (t),F (s) F (s)  

)s(F*)t(F)s(F).t(F
yx

3

y

3

x nn

nn

 for all x  X and t, s > 0.  (3.19) 

Now since 1)s(F).t(Flim
yxn

nn , we have 

1)st(G )x(J16)yx(J)yx(J)yx3(J)yx3(J  (3.20) 

for all x, y  X. This complete the proof. 
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Definition 3.2 Let (X, F, *) be a menger PN-space and (Y, G, *) be a Menger PB-

spaces. A mapping f: X→ Y is said to be P-approximately quadratic if 

f (2x y) f (2x y) f (x y) f (x y) 6f (x) x yG (t s) F (t)*F (s)  (3.21) 

for all t, s > 0. 

Theorem 3.2: Let f:X→Y be a P-approximately functional equation and there exists 

1
0

4
 such that )t(F)t2(F xx  (3.22) 

Then there exists a unique quadratic mapping J:X→Y such that 

f (x) J(x) x

1 4
G (t) F

2   

(3.23) 

for all x ∊ X and t > 0. 

Proof: Putting y = 0 and s =3t in (3.21), we have 

2f (2x) 8f (x) xG (4t) F (t)  (3.24) 

)t(F)t2(G x)x(f4)x2(f
 (3.25) 

Replacing x by
2

x
 in (3.25), we have 

x x
f (x) 4f ( )

2 2

G (2t) F (t)  (3.26) 

Using the Definition (2.3) and replacing t by 
2

t
 in (3.26), we have 

xx
f (2x) 4f

2

G (t) F (t)  (3.27) 

for all 0t,Xx . 

Let us assume the set P = {m: X  Y: m (0) = 0} and the generalized metric in P 

defined by 

d (n, m) = inf{c [0, ]/Gm (x) – n (x) (ct)  Fx (t)} (3.28) 

where inf  = + . It is not difficult to prove that (P, d) is complete [see [19], lemma. 

2.1]. Now, we suppose a linear mapping T: P  P such that Tn (x) = 4n
x

2
 for all 

x  X. We show that T is strictly contractive mapping with the Lipschtiz Constant 4α. 

In fact, m, n  P be such that d(m, n) < C. Then we get, 

Gm (x) – n (x) (ct)  Fx (t) (3.29) 

Whence 

GTm (x) – Tn (x) (4  ct) = 
x x

4m 4n
2 2

G (4 ct)  

= 
x x

m n
2 2

G ( ct)  (3.30) 

 x

2

F ( t)  

 Fx (t) 
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for all x  X, t > 0. Then 

d (Tm, Tn) < 4 c 

This means that 

d (Tm, Tn)  4 d (m, n) (3.31) 

for all m, n  P. It follows from (3.27) that 

d (f, Tf)  2  (3.32) 

Now, using Theorem (2.1) there exist a mapping J: X  Y satisfying the following: 

(a) J is fixed point of T, means 

x 1
J J(x)

2 4
 (3.33) 

for all x  X. The mapping J is unique fixed point of T in the set  = {n  P: d (m, n) 

< }.This implies that J is unique mapping satisfying (3.33) such that there exist c  

[0, ] satisfying 

Gf (x) – T (x) (ct)  Fx (t) for all x  X, t > 0.  (3.34) 

(b) d (T
n
f, J)  0 as n   

This means the equality 

n

nn

x
lim 4 f J(x)

2
 for all x  X.  (3.35) 

(c) 
d(f , Jf ) 2

d(f , J)
1 L 1 4

 with f  ψ and so 

f (x) J(x) x

2 t
G F (t)

1 4
 (3.36) 

This implies that 

f (x) J(x) x

1 4
G (t) F

2
 (3.37) 

Then the inequality (3.23) holds. On the other hand 

n
n nn n n n n n n n n

x y2x y 2x y x y x y x
4 f f f f 6f

2 22 2 2 2 2 2 2 2 2

G t s F (t)*F (s)  (3.38) 

Using Definition (2.3) and equation (3.3), we have 

n n

n n

x yx y

2 2

F (t) F (t),F (s) F (s)  

n n

n n

x y x y

2 2

F (t).F (s) F (t)*F (s)  for all x  X and t, s > 0.  (3.39) 

Now since 1)s(F).t(Flim
yxn

nn , we have 

J(2x y) J(2x y) J(x y) J(x y) 6J(x)G (t s) 1 (3.40) 

for all x, y  X. This complete the proof. 

 

3.2 Stability of Quadratic Functional Equations (1.1) and (1.2) Using Direct 

Approach 

Theorem 3.3: Let (X, F, *) be a Menger PN-space and (Y, G, *) be a Menger PB-

space. A mapping f: X  Y be a P-approximately quadratic if 
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f (3x y) f (3x y) f (x y) f (x y) 16f (x) x yG (t s) F (t)*F (t)  

for all x, y X and t, x ∊ [0,∞).  (3.41) 

Then there exists a unique quadratic mapping Q: X  Y such that 

Q(x) f (x) xG (t) F (t), x, y X and t >0. (3.42) 

Proof: Put y=0 and s = 5t in (3.41) to obtain 

2f (3x) 18f (x) xG (6t) F (t)  

f (3x) 9f (x) xG (3t) F (t)   (3.43) 

Replacing x by 3
n
x in (3.43), we see that 

n 1 n nf (3 x) 9f (3 x) 3 x
G (3t) F (t).  

It follows 

n 1 n

n 1

xf (3 x) 9f (3 x)
G (3 t) F (t).  

Whence 

n 1 n

n 1 n

n 1

xf (3 x) f (3 x)

9 9

G (3 t) F (t).  

If n > m > 0, then 

n m

n m

n
k 1

f (3 x) f (3 x)
k m 1

9 9

G 3 t  

k k 1
n
k m 1 k k 1

n
k 1

f (3 x) f (3 x)
k m 1

9 9

G 3 t  (3.44) 

k k 1

k k 1

n
k 1

xf (3 x) f (3 x)
k m 1

9 9

G 3 t F (t).  

Let c > 0 and  be given. Since x
k
lim F (t) 1, there is some t0 > 0 such that Fx (t0)  1 – 

. Fix some t > t0. The convergence of the series n 1

n 1 3 t  shows that there exists 

some n0  0 such that for each n > m  n0, the inequality n k 1

k m 1 3 t c  holds. It 

follows that, 

n m n m

n m n m

n k 1

k m 1 0 x 0f (3 x) f (3 x) f (3 x) f (3 x)

9 9 9 9

G (c) G 3 t F (t ) 1 . 

Hence 
n

n

f (3 x)

9
 is a Cauchy sequence in (Y, G, *). Since (Y, G, *) is a MengerPB-

space, this sequence converges to some Q (x)  Y. Hence, we can define a mapping 

Q: X  Y such that n

n

f (3 x)n Q(x)
9

lim G (t) 1.  Moreover, if we put m = 0 in (3.44) we 

observe that 

n

n

n k 1

k 1 xf (3 x)
f (x)

9

G 3 t F (t).  

Therefore, 
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n

n

x n k 1f (3 x)
f (x)

k 19

t
G (t) F .

3
 (3.45) 

Next we will show that Q is quadratic. Let x, y  X, then we have 

Q(3x y) Q(3x y) Q(x y) Q(x y) 16Q(x)G (t)  

n n

n n

f (3 (3x y)) f (3 (3x y))
Q(3x y) Q(3x y)

9 9

t t
G *G

6 6
 

n n n

n n n

f (3 (x y)) f (3 (x y)) f (3 x)
Q(x y) Q(x y) 16 16Q(x)

9 9 9

t t t
*G *G *G

6 6 6
 

n n n n n

n n n n n

f (3 (3x y)) f (3 (3x y)) f (3 (x y)) f (3 (x y) f (3 x)
16

9 9 9 9 9

t
*G

6
. 

In above inequality, we can see that the first five terms on the right hand side of the 

above inequality tend to 1 as n  , t   and the sixth term, by (3.41) is greater 

than or equal to n n

n n n n

x y3 x 3 y

9 t 9 t 3 t 3 t
F *F F *F

12 12 12 12
, which tends to 1 as 

n . Therefore Q(3x y) Q(3x y) Q(x y) Q(x y) 16Q(x).  Now, we 

approximate the difference between f and Q. For every x  X and t > 0, by (3.45) for 

large enough n, we obtain 

n n

n n

Q(x) f (x) xf (3 x) f (3 x)
Q(x) f (x)

9 9

t t
G (t) G *G F (t).

2 2
 

Let Q´ be another quadratic function from X to Y which satisfies (3.42). We have 

)t(F
2

t
G*

2

t
G)t(G x)x´(Q)x(f)x(f)x(Q)x´(Q)x(Q  

for each t > 0. Therefore, we can say that the mapping Q = Q´. 

 

Theorem 3.4: Let (X, F, *) be a Menger PN-space and (Y, G, *) be a Menger PB-

space. A mapping f: X  Y be a P-approximately quadratic if 

f (2x y) f (2x y) f (x y) f (x y) 6f (x) x yG (t s) F (t)*F (s)  

x, y X and t, x∊[0, ∞) . (3.46) 

Then there exists a unique quadratic mapping Q: X  Y such that 

Q(x) f (x) xG (t) F (t), x, y X  and t > 0. (3.47) 

Proof: Put x = y and s = 3t in (3.46) to obtain 

2f (x) 8f (x) xG (4t) F (t)  

)t(F)t2(G x)x(f4)x2(f  (3.48) 

Replacing x by 2
n
x in (3.48), we see that 

).t(F)t2(G x)x2(f4)x2(f n1n  

It follows 
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).t(F)t2(G x

1n

)x2(f4)x2(f n1n  

Whence 

).t(F)t2(G x

1n

4

)x2(f

4

)x2(f
n

n

1n

1n  

If n > m > 0, then 
n

1mk

1k

4

)x2(f

4

)x2(f
t2G

m

m

n

n  

n

1mk

1k

4

)x2(f

4

)x2(f
t2G

1k

1k

k

k
n

1mk

 (3.49) 

n

1mk

x

1k

4

)x2(f

4

)x2(f
).t(Ft2G

1k

1k

k

k  

Let c > 0 and  be given. Since 

,1)t(Flim x
1mk

there is some t0 > 0 such that Fx (t0)  1 – . Fix some t > t0. The 

convergence of the series n 1

n 1 2 t  show that there exists some n0  0 such that for 

each n > m  n0, the inequality n k 1

k m 1 2 t c  holds. It follows that, 

n m n m

n m m

n k 1

k m 1 0 x 0f (2 x) f (2 x) f (2 x) f (2 x)

4n4 4 4

G (c) G 2 t F (t ) 1 . 

Hence 
n

n

4

)x2(f
 is a Cauchy sequence in (Y, G, *). Since (Y, G, *) is a Menger PB-

space, this sequence converges to some Q (x)  Y. Hence, we can define a mapping 

Q: X  Y such that n

n

f (2 x)n Q(x)
4

lim G (t) 1.  Moreover, if we put m = 0 in (3.49) we 

observe that 

n

n

n k 1

k 1 xf (2 x)
f (x)

4

G 2 t F (t).  

Therefore, 

.
2

t
F)t(G

1kn

1k

x
)x(f

4

)x2(f
n

n  (3.50) 

Next we will show that Q is quadratic. Let x, y  X, then we have 

Q(2x y) Q(2x y) Q(x y) Q(x y) 6f (x)G (t)  

n n

n n

f (2 (2x y)) f (2 (2x y))
Q(2x y) Q(2x y)

4 4

t t
G *G

6 6
 

n n n

n n n

f (2 (x y)) f (2 (x y) f (2 x)
2Q(x y) 2Q(x y) 6 6Q(x)

4 4 4

t t t
*G *G *G

6 6 6
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n n n n n

n n n n n

f (2 (2x y)) f (2 (2x y)) f (2 (x y)) f (2 (x y) f (2 x)

4 4 4 4 4

t
*G

6
. 

We can see that the first five terms on the right hand side of the above inequality 

tend to 1 as n  , t   and the sixth term, by (3.46) is greater than or equal to 

10

t2
F*

10

t2
F

10

t4
F*

10

t4
F

n

y

n

x

n

y2

n

x2 nn , which tends to 1 as n  . Therefore 

Q(2x y) Q(2x y) Q(x y) Q(x y) 6Q(x).  Next we approximate the 

difference between f and Q. For every x  X and t > 0, by (3.50) for large enough n, 

we have 

n n

n n

Q(x) f (x) xf (2 x) f (2 x)
Q(x) f (x)

4 4

t t
G (t) G *G F (t).

2 2
 

Let Q´ be another quadratic function from X to Y which satisfies (3.47). We have 

)t(F
2

t
G*

2

t
G)t(G x)x´(Q)x(f)x(f)x(Q)x´(Q)x(Q  

for each t > 0. Therefore, we can say that Q = Q´. 
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