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Abstract 

 

Normal mixture distribution (NM) is arguably the most important mixture 

models, and also the most challenging technically. It has been successfully 

applied in many fields where the application is still expending. In this paper, 
we provide a tutorial exposition on expectation–maximization (EM) algorithm 

and Gibbs sampler for parameter estimation of unconditional finite Normal 

mixture distribution. Both methods are extremely useful for solving difficult 

computation problems especially in Normal mixture distribution case. 
Practical issues that arise in the use of EM algorithm and Gibb sampler are 

discussed, as well as variants of algorithm and programming that help to deal 

with these challenges. The purpose of this paper is to provide a good 

conceptual explanation of the statistical estimation methods with illustrative 
example so the reader can have a grasp of some of the basic principles and 

techniques. 

 

Keywords: Normal mixture distribution; EM algorithm; Gibbs sampler 
 

 

1. Introduction 

Normal mixture distribution allows for great flexibility in capturing various density 
shapes; however, this same flexibility also turns out to lead to some estimation 

problems in practice. Fitting the parameters of Normal mixture distribution is one of 
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the oldest estimation problems in statistical literature. However, attempts have been 
made to solve this problem. In particular, various estimation methods have been 

proposed to estimate the parameters in mixture models. Maximum Likelihood (ML) 

estimation, by far, is the most popular methods. Another important estimation method 
is the Bayesian approaches. Other techniques are graphical methods, method of 

moments and minimum-distance methods (see [1] for an exhaustive review of these 

methods). 

In this paper, we provide a tutorial exposition on statistical estimation methods using 
the expectation–maximization (EM) algorithm and Gibbs sampler. Practical issues 

that arise in the use of both methods are discussed, as well as variants of algorithm 

and programming that help to deal with these challenges. The purpose of this paper is 

to provide a good conceptual explanation of the basic principles and techniques for 
the statistical estimation methods with illustrative example. We focus on these two 

themes: (1) statistical estimation methods and (2) modelling with unconditional finite 

Normal mixture distribution. 

The paper is structured as follows. We present basic definitions and concepts of 
Normal mixture distribution and explore its distribution properties in Section 2. We 

briefly outline statistical software packages in Section 3. In Section 4, we discuss how 

to determine the number of components k  in the mixtures. Next, in Section 5, we 

review two methods used to estimate the parameters of Normal mixture distribution. 
In section 6, we present a case study as the application. Lastly, Section 7 concludes. 

 

 

2. Unconditional Finite Normal Mixture Distribution 
Normal mixture distribution has gain increasing attention in various disciplines of 

knowledge. The earliest recorded application of Normal mixture distribution was 

undertaken by Simon Newcomb in his study in Astronomy in 1886 followed by Karl 

Pearson in his classic work on Method of Moments in 1894. A good introduction to 
the theory and applications of Normal mixture distribution can be found in [1-5]. 

Some attractive property of Normal mixture distribution is that it is flexible to 

accommodate various shapes of continuous distributions by adjusting its component 

weights, means and variances [6]. Other advantage is they maintain the tractability of 
Normal, have finite higher order moments, plus can capture excess kurtosis [7]. 

Besides, Normal mixture distribution can capture the structural change both in the 

mean and variance and it can be asymmetric [8]. Also, they are able to capture 

leptokurtic, skewed and multimodal characteristics. 

In general, the cumulative distribution function (cdf) of a mixture of k  Normal 

random variable X  can be represented by 
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where, for 1,...,i K  
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If X  is a mixture of K  Normal with pdf in (2.2), then its mean, variance, skewness 
and kurtosis are 
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 (2.3) 

In Normal mixture distribution, each component has its unique mean 
i , standard 

deviation 
i  and weight (sometimes also called as probability or mixing parameter) 

i  [9]. 

 

 

3. Statistical Software Packages 

In this section, we briefly outline a few statistical software packages that capable of 
performing analysis of mixture models. There are many packages which specialize in 

fitting certain mixture models, but the packages we mention here provide a little more 

versatility with respect to the selection of functions they offer. 

The R programming language has a few packages available for analyzing and 
implementing mixture models [10]. The “mclust” package [11] is pretty much 

standard for mixture models. One of the most powerful is “mixtools” [12], which, in 

addition to classic mixtures of parametric densities, handles mixtures of regressions 

and non-parametric mixtures. The “FlexMix” package [13] is very good at handling 
complicated situations. Otherwise, user can also do their programming and write own 

coding using R. The ability to read, understand, modify and write simple pieces of 

code is an essential skill for nowadays modern data analysis. Fortunately, writing 

code is not actually very hard, especially in R. 

 

 

4. Number of Components 

Determining the number of components k  is a major issue in mixture modelling. Two 

commonly employed techniques in determining the numbers of components k  are the 

information criterion and parametric bootstrapping of the likelihood ratio test statistic 



3690  Zetty Ain Kamaruzzaman and Zaidi Isa 

values [14]. Majority of the estimation techniques assume that the number of 

components k , in the mixture is known at a priori where it is known before the 

estimation of parameters is attempted [2]. 

However, according to [12], these two techniques, likelihood approaches and 

Bayesian approaches can be used in assessing the number of components k  when it is 

not known at a priori. In this case, there are few Bayesian procedures; one method is 

the Dirichlet process [15]. 
Other techniques are calibration checking, cross-validation and hypothesis testing 

[16]. For cross-validation, we need to do simple data-set splitting, where a randomly-

selected half of the data is used to fit the model, and half to test. The basic idea is to 

split a data set into train and test. We fit the model using the training points, and then 
calculate the log-likelihood of the test points under the model. We pick the number of 

component which maximizes the likelihood of the data. 

We should choose the minimum number of component. For example, if a two-

component Normal mixture distribution seems good, we should not consider using 
more components as by going to three, four, etc. components, we improve the in-

sample likelihood but we could expose ourselves to the danger of over-fitting. 

Besides, having so many parameters is not always desirable. It can lead to estimation 

problems and over-fitting the data can lead to specification problems. 
 

 

5. Parameter Estimation 

There are varieties of method for parameter estimation of finite mixture models. In 
this paper, we focus on the EM algorithm and Gibbs sampler. 

 

5.1 EM Algorithm 

The maximum likelihood method (MLE) is the most commonly preferred method for 
the estimation problem of Normal mixture distribution. Unfortunately, the MLEs have 

no closed forms; hence they have to be computed iteratively. However, the 

computation becomes straightforward using the expectation-maximization (EM) 

algorithm. 
The earliest literature related to an EM-type algorithm appears in [17] with estimation 

of parameters of a mixture of two univariate Normal distribution. The formulation of 

EM algorithm is first introduced by [18]. The convergence and other basic properties 

of the EM algorithm under general conditions were established in their literature. 
The EM algorithm is widely used as it is an easy and implementable method as well as 

a popular tool for simplifying difficult maximum likelihood problems plus has shown 

great performance in practice where it has the ability to deal with missing data, 

unobserved variables and mixture density problems. The EM algorithm will find the 
expected value as well as the current parameter estimates at the E step and maximizes 

the expectation at the M step. By repeating the E and M step, the algorithm will 

converge to a local maximum of the likelihood function. Various EM-type algorithms 

can be found in the literature (for example, see [5] and [19] for references). 

Denote   the parameters of the function to be optimized. The algorithm consists of 

iterating between two steps, the E-step and the M-step. In the Expectation (E) step, the 
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current estimates of the parameters are used to assign responsibilities according to the 
relative density of the training points under each model. Next, in the Maximization (M) 

step, these responsibilities are used in weighted maximum-likelihood fits to update the 

estimates of the parameters. The E-step is repeated, updated with a new value as the 

current value of   and then the M-step again provides a further updated value for  . 

Thus, the algorithm proceeds, iterating between the E-step and the M-step until 

convergence is achieved. 

[20] introduce a simple procedure of the EM algorithm for the special case of Normal 
mixture distribution. 

 

Algorithm 1. HTF EM-Algorithm [20] 

1. Take initial guesses for the parameters 2 2

1 1 2 2
ˆ ˆ ˆ ˆ ˆ, , , ,      

2. Expectation (E) Step: Compute the responsibilities 
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3. Maximization (M) Step: Compute the weighted means and variances 
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 (5.2) 

4. Iterate steps 2 and 3 until convergence 

For initial guess for the parameters, usually we take ˆ 0.5  , take two ix  randomly as 

the initial guesses for 1̂  and 2̂ , and take  
22 2

1 2 1
ˆ ˆ

N

ii
x x N 


   . Details refer 

[20]. 

 

5.2 Gibbs Sampler 

Gibbs sampler is a useful simulation method which generates sample from the 
posterior distribution. First, we present the posterior distribution for Normal mixture 

distribution under a conjugate prior. Next, we present the Gibbs sampler for both 

general case and Normal mixture application. 

Calculating the posterior under conjugate prior for Normal mixture distribution is very 
complicated. One way is to introduce the zero-one component indicator vector variable 

into the model to make the calculation easier and the result more straightforward. 

However, there is no difference in parameter estimation result among original Normal 

mixture distribution model, latent model and indicator Normal mixture model through 
the EM algorithm. 

Choosing a proper prior distribution is very important for Bayesian method, since the 
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improper prior may not lead to an analytical tractable form of posterior. Specify a 
conjugate prior can guarantee the easily calculable form of the posterior. 

 

Theorem 1. (Conjugacy of the Normal, inverse Gamma and Beta prior for two-
component Normal mixture distribution) In the Normal mixture distribution, a Normal 

prior along with a Normal mixture joint likelihood function produced a Normal 

posterior for the mean parameter; an inverse Gamma prior with the same Normal 

mixture likelihood produced an inverse Gamma posterior for the variance parameter; 
a Beta prior with the same Normal mixture likelihood produced a Beta posterior for 

the mixing parameter. [21] 

For two-component Normal mixture distribution, if suppose the prior distributions are 
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with density functions 
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hence, the posterior distribution of  2, ,i i    is 
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Algorithm 2. Gibbs sampler for two-component Normal mixture distribution [21] 

1. Take initial values 
         

 
 

  0 00 0 0 0 2 2

1 2 1 2, , , ,      , where these 

parameters come from the prior distributions (5.3) 

2. Repeat for 1,2,...t   
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a) For 1,2,...,i N , generate    0,1
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3. Continue Step 2 until the joint distribution of     ,
t t

z   does not change. 

 

Algorithm 3. Gibbs sampler for two-component Normal mixture distribution with 

known variance and mixing parameter [20] 

1. Take initial values       0 0 0
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3. Continue Step 2 until the joint distribution of       1 2, ,
t t t
   does not change. 

 

 

6. Application 

For illustration, in this section, we present a case study as a tutorial exposition on 
expectation–maximization (EM) algorithm and Gibbs sampler for parameter 

estimation of unconditional finite Normal mixture distribution using R programme. 

In this section, we present the tips and tricks on how to estimate the parameters of 

Normal mixture distribution. For illustration, we present a case study using these three 
techniques: (i) manually programming using R (ii) „mclust‟ package in R and (ii) 

„mixtools‟ package in R. Data set used in this case study is the fictitious data from 

[20], which contains 20 data (Appendix A). 
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(i) Manually programming using R 
Different initial guesses will lead to different iterative estimate results where the 

highest maximized likelihood is the best estimates. In section 5.1, we mentioned the 

common way to choose the initial guess for the parameters. [20] run the EM 
algorithm and received a best group of estimate values. The final maximum likelihood 

estimates, according to [20] are 
2 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ0.546, 4.62, 1.06, 0.87, 0.77          

We choose the best estimate values above to evaluate the known parameters of 2 2

1 2,   

and   and also to be the initial guesses for 
1  and 

2 . Next, we run Algorithm 1 and 

Algorithm 3 through R programme with initial guesses 
 0

1 4.62   and 
 0

2 1.06  . 

Table 1 summarize the result of the unknown parameters for the fictitious data set. 
Figure 1 depicts the mean value estimators, while Figure 2 depicts the density plot 

from Gibbs Sampler for the data set. From Table 1, Figure 1 and Figure 2, we find 

these two algorithms get quite a similar iterative estimation results. From Figure 2, the 

EM algorithm estimator, the mean value of the Gibbs sampler estimator and the Gibbs 
sampler estimator with the highest density are very close. However, the EM algorithm 

is faster and stable compared to the Gibbs sampler for this data set. From Figure 1, the 

EM algorithm converged in less than 10 steps, while the Gibbs sampler is still 

fluctuating widely after 200 iterations. 
 

Table 1. The unknown parameters for the fictitious data 

 

Estimation method Algorithm Unknown parameter 

  
1  2  

EM algorithm Algorithm 1 4.6379 1.0686 

Gibbs sampler Algorithm 3 4.4360 0.9130 
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Figure 1. Mean value estimators for the fictitious data 
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Figure 2. Density plots from Gibbs sampler for the fictitious data 
 

 

4.2 4.4 4.6 4.8 5.0

0
2

4
6

Gibbs Sampler Simulation for the Fictitious Data

D
e

n
s
it
y
 o

f 
m

u
1

Gibbs Sampler Mean

EM Estimator

0.8 1.0 1.2 1.4

0
2

4
6

8

Gibbs Sampler Simulation for the Fictitious Data

D
e

n
s
it
y
 o

f 
m

u
2

Gibbs Sampler Mean

EM Estimator



Statistical Estimation Methods for Unconditional Finite 3697 

Meanwhile, Table 2 reports the 95% confidence interval for 
1  and 

2  using the t-

test to get the two-side confidence interval and Figure 3 depicts the box plot from 
Gibbs sampler for the fictitious data. Both show similar results. 

 

Table 2. The 95% confidence interval for unknown parameters 

 

Unknown parameter 95% confidence interval 

1  (4.6356,4.6691) 

2  (1.0534,1.0807) 

 

 
Figure 3. Box plot from Gibbs sampler for the fictitious data 

 

 

(ii) ‘mclust’ package in R 

This package implements the methodology by [22]. In this package, a Bayesian 
information criterion (BIC) is applied to choose the form of the mixture model. The 

best part is this package will report the best model for the data set instantaneously. 

The best model using „mclust‟ package for fictitious data set is an equal variance with 

two components. Table 3 reports the parameter estimates for the data set. 
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Table 3. Parameter estimates using ‘mclust’ package 

 

Parameter Estimates 

1  0.5544 

2  0.4456 

1  4.6552 

2  1.0827 

2 2

1 2   0.9026 

Note: Best model: an equal variance with two components 

 

 
 

(iii) ‘mixtools’ package in R 

We could code up the EM algorithm for fitting mixture model from scratch, but 

instead we can just use „mixtools‟ package. This package provides a set of functions 
for analyzing a variety of finite mixture models [23]. This package is based on EM 

algorithm or EM-like ideas. 

Table 4 reports the parameters of Normal mixture distribution, number of iterations 

and overall log-likelihood using this package. From Table 4, the EM algorithm 
converged in 7 steps. Figure 4 depicts the calibration plot for two component Normal 

mixture distribution. It does look satisfactory. 

 

Table 4. Estimation results using ‘mixtools’ package 

 

Parameter Component 

 1 2 

  0.5496 0.4504 
  1.0635 4.6300 

  0.8876 0.9228 

Number of iterations 7  

Log-likelihood estimates -38.9180  
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Figure 4. Calibration plot for the two component Normal mixture distribution 

 
 

6.1 Discussion 

The EM algorithm and Gibbs sampler are both good methods for parameter 

estimation. In our case study, they get similar results. The EM algorithm needs no 
prior information, faster and stable. Gibbs sampler is more complicated in computing 

and the selection of the prior parameter is important. However, the statistical software 

packages as illustrated in the case study can help user to deal with challenges in 

estimating and modelling using Normal mixture distribution. 
 

 

7. Conclusion 

In this paper, we provide a tutorial exposition on statistical estimation methods using 
the expectation–maximization (EM) algorithm and Gibbs sampler. First, we present 

basic definitions, concepts and distributional properties of Normal mixture 

distribution. We also briefly outline some statistical software packages particularly in 

R that can be used to estimate the parameter of Normal mixture distribution and 
determine the number of component in the mixture. Lastly, we present an illustrative 

example using the basic principles through few techniques as well as discuss some 

practical issues that arise in the use of both statistical estimation methods. 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Theoretical CDF

E
m

p
ir

ic
a

l 
C

D
F



3700  Zetty Ain Kamaruzzaman and Zaidi Isa 

Acknowledgment 
The authors want to thank anonymous referees whose comments, suggestions and 

corrections led to a considerably improvement of this paper. 

 

 

References: 

 

[1] Titterington, D.M., Smith, A.F.M., and Makov, U.E., 1985, Statistical 
Analysis of Finite Mixture Distributions, John Wiley & Sons, New York. 

[2] Everitt, B.S., and Hand, D.J., 1981, Finite Mixture Distributions, Chapman 

and Hall, London. 

[3] McLachlan, G.J., and Basford, K.E., 1988, Mixture Models: Inference and 
Applications to Clustering, Marcel Dekker, New York. 

[4] Lindsay, B.G., 1995, “Mixture Models: Theory, Geometry and Applications,” 

NSF-CBMS Regional Conference Series in Probability and Statistics, Institute 

of Mathematical Statistics, Hayward, CA, 5. 
[5] McLachlan, G., and Peel, D., 2000, Finite Mixture Models, John Wiley & 

Sons, New York. 

[6] Tan, K., and Chu, M., 2012, “Estimation of Portfolio Return and Value at Risk 

Using a Class of Gaussian Mixture Distributions,” Int. J. Bus. Finance Res., 
6(1), pp.97-107. 

[7] Tsay, R.S., 2005, Analysis of Financial Time Series, Wiley Series in 

Probability and Statistics, New Jersey, pp.15-16. 

[8] Knight, J., and Satchell, S., 2001, Return Distributions in Finance, 
Butterworth-Heinemann, Quantitative Finance Series, Oxford. 

[9] Subramanian, S., and Rao, U.S., 2007, “Sensex and Stylized Facts: An 

Empirical Investigation,” Soc. Sci. Res. Net., id. 962828. 

[10] Everitt, B.S., and Hothorn, T., 2010, A Handbook of Statistical Analyses 
Using R, Taylor & Francis, London, pp.139-159. 

[11] Fraley, C., Raftery, A.E., and Wehrens, R., 2006, mclust: Model-based Cluster 

Analysis, URL http://www.stat.washington.edu/mclust. 

[12] Young, D.S., 2008, “An Overview of Mixture Models,” Statist. Surveys, 0, 
pp.1-24. 

[13] Leisch, F., 2004, “FlexMix: A General Framework for Finite Mixture Models 

and Latent Class Regression in R,” J. Statistical Software, 8, pp.1-18. 

[14] McLachlan, G.J., 1987, “On Bootstrapping the Likelihood Ratio Test Statistic 
for the Number of Components in a Normal Mixture,” Appl. Statist., 36, 

pp.318-324. 

[15] Ferguson, T.S., 1973, “A Bayesian Analysis of Some Nonparametric 

Problems,” Ann. Statist., 1(2), pp.209-230. 
[16] Shalizi, C., Lecture 20, Mixture Examples and Complements, Carnegie 

Mellon University. 

[17] Newcomb, S., 1886, “A Generalized Theory of The Combination of 

Observations So As to Obtain the Best Result,” Amer. J. Mathematics, 8, 
pp.343-366. 



Statistical Estimation Methods for Unconditional Finite 3701 

[18] Dempster, A.P., Laird, N.M., and Rubin, D.B., 1977, “Maximum Likelihood 
from Incomplete Data via the EM Algorithm,” J. Royal Statistical Society 

Series B, 39(1), pp.1-38. 

[19] McLachlan, G.J., and Krishnan, T., 1997, The EM Algorithm and Extensions, 
Wiley, New York. 

[20] Hastie, T., Tibshirani, R. and Friedman, J., 2001, The Elements of Statistical 

Learning: Data Mining, Inference and Prediction, Springer Verlag, New York, 

pp.272-282. 
[21] Liang, L., 2009, “On Simulation Methods for Two Component Normal 

Mixture Models Under Bayesian Approach,” U.U.D.M. Project Report 1009: 

17. 

[22] Fraley, C., and Raftery, A.E. 2002, “Model Based Clustering, Discriminant 
Analysis and Density Estimation,” J. Amer. Statistical Assoc., 97, pp.611-631. 

[23] Benaglia, T., Chauveau, D., Hunter, D.R, and Young, D.S., 2009, “Mixtools: 

An R Package for Analyzing Finite Mixture Models,” J. Statistical Software, 

32(6), pp.1-29. 
 

 

APPENDIX A 

 
Fictitious data set [22] pp.273 

 

Data 

-0.39 

0.12 

0.94 

1.67 

1.76 

2.44 

3.72 

4.28 

4.92 

5.53 

0.06 

0.48 

1.01 

1.68 

1.80 

3.25 

4.12 

4.60 

5.28 

6.22 
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