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Abstract

Normal mixture distribution (NM) is arguably the most important mixture
models, and also the most challenging technically. It has been successfully
applied in many fields where the application is still expending. In this paper,
we provide a tutorial exposition on expectation—maximization (EM) algorithm
and Gibbs sampler for parameter estimation of unconditional finite Normal
mixture distribution. Both methods are extremely useful for solving difficult
computation problems especially in Normal mixture distribution case.
Practical issues that arise in the use of EM algorithm and Gibb sampler are
discussed, as well as variants of algorithm and programming that help to deal
with these challenges. The purpose of this paper is to provide a good
conceptual explanation of the statistical estimation methods with illustrative
example so the reader can have a grasp of some of the basic principles and
techniques.
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1. Introduction

Normal mixture distribution allows for great flexibility in capturing various density
shapes; however, this same flexibility also turns out to lead to some estimation
problems in practice. Fitting the parameters of Normal mixture distribution is one of
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the oldest estimation problems in statistical literature. However, attempts have been
made to solve this problem. In particular, various estimation methods have been
proposed to estimate the parameters in mixture models. Maximum Likelihood (ML)
estimation, by far, is the most popular methods. Another important estimation method
is the Bayesian approaches. Other techniques are graphical methods, method of
moments and minimum-distance methods (see [1] for an exhaustive review of these
methods).

In this paper, we provide a tutorial exposition on statistical estimation methods using
the expectation—maximization (EM) algorithm and Gibbs sampler. Practical issues
that arise in the use of both methods are discussed, as well as variants of algorithm
and programming that help to deal with these challenges. The purpose of this paper is
to provide a good conceptual explanation of the basic principles and techniques for
the statistical estimation methods with illustrative example. We focus on these two
themes: (1) statistical estimation methods and (2) modelling with unconditional finite
Normal mixture distribution.

The paper is structured as follows. We present basic definitions and concepts of
Normal mixture distribution and explore its distribution properties in Section 2. We
briefly outline statistical software packages in Section 3. In Section 4, we discuss how
to determine the number of components k in the mixtures. Next, in Section 5, we
review two methods used to estimate the parameters of Normal mixture distribution.
In section 6, we present a case study as the application. Lastly, Section 7 concludes.

2. Unconditional Finite Normal Mixture Distribution

Normal mixture distribution has gain increasing attention in various disciplines of
knowledge. The earliest recorded application of Normal mixture distribution was
undertaken by Simon Newcomb in his study in Astronomy in 1886 followed by Karl
Pearson in his classic work on Method of Moments in 1894. A good introduction to
the theory and applications of Normal mixture distribution can be found in [1-5].
Some attractive property of Normal mixture distribution is that it is flexible to
accommodate various shapes of continuous distributions by adjusting its component
weights, means and variances [6]. Other advantage is they maintain the tractability of
Normal, have finite higher order moments, plus can capture excess kurtosis [7].
Besides, Normal mixture distribution can capture the structural change both in the
mean and variance and it can be asymmetric [8]. Also, they are able to capture
leptokurtic, skewed and multimodal characteristics.

In general, the cumulative distribution function (cdf) of a mixture of k Normal
random variable X can be represented by

F(x) = ZK:ﬂCD(X?T’uj @2.1)

where @ is the cdf of N (0,1). Therefore its probability density function (pdf) is
K

f(x)=z77i¢(X;ﬂi!ai) (2.2)
i=1
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where, for i =1,...,K
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If X is a mixture of K Normal with pdf in (2.2), then its mean, variance, skewness
and kurtosis are

K
H= Z”iﬂi
i=1
K
o’ :Z”i (Ui2 +ﬂi2)_ﬂ2
i=1 (2.3)
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In Normal mixture distribution, each component has its unique mean g, standard
deviation o, and weight (sometimes also called as probability or mixing parameter)

z; [9].

3. Statistical Software Packages

In this section, we briefly outline a few statistical software packages that capable of
performing analysis of mixture models. There are many packages which specialize in
fitting certain mixture models, but the packages we mention here provide a little more
versatility with respect to the selection of functions they offer.

The R programming language has a few packages available for analyzing and
implementing mixture models [10]. The “mclust” package [11] is pretty much
standard for mixture models. One of the most powerful is “mixtools” [12], which, in
addition to classic mixtures of parametric densities, handles mixtures of regressions
and non-parametric mixtures. The “FlexMix” package [13] is very good at handling
complicated situations. Otherwise, user can also do their programming and write own
coding using R. The ability to read, understand, modify and write simple pieces of
code is an essential skill for nowadays modern data analysis. Fortunately, writing
code is not actually very hard, especially in R.

4. Number of Components

Determining the number of components k is a major issue in mixture modelling. Two
commonly employed techniques in determining the numbers of components k are the
information criterion and parametric bootstrapping of the likelihood ratio test statistic
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values [14]. Majority of the estimation techniques assume that the number of
components k, in the mixture is known at a priori where it is known before the
estimation of parameters is attempted [2].

However, according to [12], these two techniques, likelihood approaches and
Bayesian approaches can be used in assessing the number of components k when it is
not known at a priori. In this case, there are few Bayesian procedures; one method is
the Dirichlet process [15].

Other techniques are calibration checking, cross-validation and hypothesis testing
[16]. For cross-validation, we need to do simple data-set splitting, where a randomly-
selected half of the data is used to fit the model, and half to test. The basic idea is to
split a data set into train and test. We fit the model using the training points, and then
calculate the log-likelihood of the test points under the model. We pick the number of
component which maximizes the likelihood of the data.

We should choose the minimum number of component. For example, if a two-
component Normal mixture distribution seems good, we should not consider using
more components as by going to three, four, etc. components, we improve the in-
sample likelihood but we could expose ourselves to the danger of over-fitting.
Besides, having so many parameters is not always desirable. It can lead to estimation
problems and over-fitting the data can lead to specification problems.

5. Parameter Estimation
There are varieties of method for parameter estimation of finite mixture models. In
this paper, we focus on the EM algorithm and Gibbs sampler.

5.1 EM Algorithm

The maximum likelihood method (MLE) is the most commonly preferred method for
the estimation problem of Normal mixture distribution. Unfortunately, the MLEs have
no closed forms; hence they have to be computed iteratively. However, the
computation becomes straightforward using the expectation-maximization (EM)
algorithm.

The earliest literature related to an EM-type algorithm appears in [17] with estimation
of parameters of a mixture of two univariate Normal distribution. The formulation of
EM algorithm is first introduced by [18]. The convergence and other basic properties
of the EM algorithm under general conditions were established in their literature.

The EM algorithm is widely used as it is an easy and implementable method as well as
a popular tool for simplifying difficult maximum likelihood problems plus has shown
great performance in practice where it has the ability to deal with missing data,
unobserved variables and mixture density problems. The EM algorithm will find the
expected value as well as the current parameter estimates at the E step and maximizes
the expectation at the M step. By repeating the E and M step, the algorithm will
converge to a local maximum of the likelihood function. Various EM-type algorithms
can be found in the literature (for example, see [5] and [19] for references).

Denote 6 the parameters of the function to be optimized. The algorithm consists of
iterating between two steps, the E-step and the M-step. In the Expectation (E) step, the
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current estimates of the parameters are used to assign responsibilities according to the
relative density of the training points under each model. Next, in the Maximization (M)
step, these responsibilities are used in weighted maximum-likelihood fits to update the
estimates of the parameters. The E-step is repeated, updated with a new value as the
current value of ¢ and then the M-step again provides a further updated value for 4.
Thus, the algorithm proceeds, iterating between the E-step and the M-step until
convergence is achieved.

[20] introduce a simple procedure of the EM algorithm for the special case of Normal
mixture distribution.

Algorithm 1. HTF EM-Algorithm [20]
1. Take initial guesses for the parameters 7, &, 67, it,, 65
2. Expectation (E) Step: Compute the responsibilities

71'¢(Xi;,u210-22)

Vi=

_7r¢1(xi;,ul,0'12)+(1—7z)¢2(Xi;,uz,of) (5.1)
fori=1,..,N.
3. Maximization (M) Step: Compute the weighted means and variances
N N
_Zi:l(l_yi)xi o2 _Zi:1(1_7/i)(xi _lul)z
- N ! 1= N !
Zi:l(l_yi) Zi:l(l_yi)
N N 2
o i:Nlj/iXi ot = Zi:17i (;(I — 1) | (5.2)
i=l7/t i=l?/i
N 7i
T= Zi:lﬁ
4. Iterate steps 2 and 3 until convergence

For initial guess for the parameters, usually we take 7 =0.5, take two x. randomly as

the initial guesses for 4, and z,, and take &7 =67 =ZiN:l(xi ~x)* /N . Details refer
[20].

5.2 Gibbs Sampler

Gibbs sampler is a useful simulation method which generates sample from the
posterior distribution. First, we present the posterior distribution for Normal mixture
distribution under a conjugate prior. Next, we present the Gibbs sampler for both
general case and Normal mixture application.

Calculating the posterior under conjugate prior for Normal mixture distribution is very
complicated. One way is to introduce the zero-one component indicator vector variable
into the model to make the calculation easier and the result more straightforward.
However, there is no difference in parameter estimation result among original Normal
mixture distribution model, latent model and indicator Normal mixture model through
the EM algorithm.

Choosing a proper prior distribution is very important for Bayesian method, since the
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improper prior may not lead to an analytical tractable form of posterior. Specify a
conjugate prior can guarantee the easily calculable form of the posterior.

Theorem 1. (Conjugacy of the Normal, inverse Gamma and Beta prior for two-
component Normal mixture distribution) In the Normal mixture distribution, a Normal
prior along with a Normal mixture joint likelihood function produced a Normal
posterior for the mean parameter; an inverse Gamma prior with the same Normal
mixture likelihood produced an inverse Gamma posterior for the variance parameter;
a Beta prior with the same Normal mixture likelihood produced a Beta posterior for
the mixing parameter. [21]

For two-component Normal mixture distribution, if suppose the prior distributions are

H ‘O-iz ~N [éguo-_lzj
n;

o ~|G(V2 SZZJ (5.3)
7~ Be(a, B)

with density functions

p(”‘ d Zj]“(“iz); eXp[_#/ni(“i —éﬁ)z}
fa ool

p (7r|a, ,B) oc 77 (1 ﬂ)ﬁ_l
hence, the posterior distribution of (4,07, ) is

n+z Nn+7

Giz Xz~ 1G V+Z 1[ ZZ“( i )Z_i_ﬂifi(ii(Z _é)zl (5.4)

7|x,z ~ Be(z,+a,7,+ ,)

= — N
where Z, :ZiN::LZij and X, (2) == 7;X.

Algorithm 2. Gibbs sampler for two-component Normal mixture distribution [21]
1.  Take initial values 6’(0)=(7z(°),uf°),u§°),(af)(o),(022)(0)), where these

parameters come from the prior distributions (5.3)
2. Repeat for t =1,2,...
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a) For i=12,..,N, generate z" €{0,1} with

(1)
2" ~ Ber 7 s (%)
(1_”(t)>§0.91 (Xi)+7z'(t)g092 (Xi)
b) For j=1,2, generate parameters as follows

A~ Be(?z(t) +a, 7" + ﬂz)

3. Continue Step 2 until the joint distribution of (z(t),e“)) does not change.

Algorithm 3. Gibbs sampler for two-component Normal mixture distribution with
known variance and mixing parameter [20]

1.  Takeinitial values 6" =(,ui(0),,u£0))
2. Repeat for t=1,2,...

a)  Fori=12..,N,generate A’ €{0,1} with Pr(a! =1)=7, (9(‘))
b) Set

DA DD W

DV R WY

(t+1)

and generate £ ~ N(4,67), 1" ~N(,,63)

3. Continue Step 2 until the joint distribution of (A“),ﬂf‘),yg‘)) does not change.

6. Application

For illustration, in this section, we present a case study as a tutorial exposition on
expectation—-maximization (EM) algorithm and Gibbs sampler for parameter
estimation of unconditional finite Normal mixture distribution using R programme.

In this section, we present the tips and tricks on how to estimate the parameters of
Normal mixture distribution. For illustration, we present a case study using these three
techniques: (i) manually programming using R (ii) ‘mclust’ package in R and (ii)
‘mixtools’ package in R. Data set used in this case study is the fictitious data from
[20], which contains 20 data (Appendix A).
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(1 Manually programming using R

Different initial guesses will lead to different iterative estimate results where the
highest maximized likelihood is the best estimates. In section 5.1, we mentioned the
common way to choose the initial guess for the parameters. [20] run the EM
algorithm and received a best group of estimate values. The final maximum likelihood
estimates, according to [20] are

#=0.546, 1, =4.62, j1, =1.06,67 =0.87,6; =0.77
We choose the best estimate values above to evaluate the known parameters of &7, o>
and 7 and also to be the initial guesses for s and g,. Next, we run Algorithm 1 and

Algorithm 3 through R programme with initial guesses ,ul(o) =4.62 and yg") =1.06.

Table 1 summarize the result of the unknown parameters for the fictitious data set.
Figure 1 depicts the mean value estimators, while Figure 2 depicts the density plot
from Gibbs Sampler for the data set. From Table 1, Figure 1 and Figure 2, we find
these two algorithms get quite a similar iterative estimation results. From Figure 2, the
EM algorithm estimator, the mean value of the Gibbs sampler estimator and the Gibbs
sampler estimator with the highest density are very close. However, the EM algorithm
is faster and stable compared to the Gibbs sampler for this data set. From Figure 1, the
EM algorithm converged in less than 10 steps, while the Gibbs sampler is still
fluctuating widely after 200 iterations.

Table 1. The unknown parameters for the fictitious data

Estimation method | Algorithm | Unknown parameter

H H
EM algorithm Algorithm 1 | 4.6379 1.0686
Gibbs sampler | Algorithm 3 | 4.4360 | 0.9130
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Figure 1. Mean value estimators for the fictitious data
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Figure 2. Density plots from Gibbs sampler for the fictitious data
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Meanwhile, Table 2 reports the 95% confidence interval for x and x4, using the t-

test to get the two-side confidence interval and Figure 3 depicts the box plot from
Gibbs sampler for the fictitious data. Both show similar results.

Table 2. The 95% confidence interval for unknown parameters

Unknown parameter | 95% confidence interval
m (4.6356,4.6691)
U, (1.0534,1.0807)

Gibbs Sampler Simulation for the Fictitious Data

O ooy W O

— OQopI® O

mul mu2

Figure 3. Box plot from Gibbs sampler for the fictitious data

(i)  ‘mclust’ package in R

This package implements the methodology by [22]. In this package, a Bayesian
information criterion (BIC) is applied to choose the form of the mixture model. The
best part is this package will report the best model for the data set instantaneously.
The best model using ‘mclust’ package for fictitious data set is an equal variance with
two components. Table 3 reports the parameter estimates for the data set.
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Table 3. Parameter estimates using ‘mclust’ package

Parameter | Estimates
7, 0.5544
z, 0.4456
m 4.6552
I, 1.0827
ol=c? | 0.9026

Note: Best model: an equal variance with two components

(ili)  ‘mixtools’ package in R

We could code up the EM algorithm for fitting mixture model from scratch, but
instead we can just use ‘mixtools’ package. This package provides a set of functions
for analyzing a variety of finite mixture models [23]. This package is based on EM
algorithm or EM-like ideas.

Table 4 reports the parameters of Normal mixture distribution, number of iterations
and overall log-likelihood using this package. From Table 4, the EM algorithm
converged in 7 steps. Figure 4 depicts the calibration plot for two component Normal
mixture distribution. It does look satisfactory.

Table 4. Estimation results using ‘mixtools’ package

Parameter Component
1 2
Vs 0.5496 | 0.4504
M 1.0635 | 4.6300
o 0.8876 | 0.9228
Number of iterations 7
Log-likelihood estimates | -38.9180
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Figure 4. Calibration plot for the two component Normal mixture distribution

6.1 Discussion

The EM algorithm and Gibbs sampler are both good methods for parameter
estimation. In our case study, they get similar results. The EM algorithm needs no
prior information, faster and stable. Gibbs sampler is more complicated in computing
and the selection of the prior parameter is important. However, the statistical software
packages as illustrated in the case study can help user to deal with challenges in
estimating and modelling using Normal mixture distribution.

7. Conclusion

In this paper, we provide a tutorial exposition on statistical estimation methods using
the expectation—maximization (EM) algorithm and Gibbs sampler. First, we present
basic definitions, concepts and distributional properties of Normal mixture
distribution. We also briefly outline some statistical software packages particularly in
R that can be used to estimate the parameter of Normal mixture distribution and
determine the number of component in the mixture. Lastly, we present an illustrative
example using the basic principles through few techniques as well as discuss some
practical issues that arise in the use of both statistical estimation methods.
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APPENDIX A

Fictitious data set [22] pp.273

Data
-0.39
0.12
0.94
1.67
1.76
2.44
3.72
4.28
4.92
5.53
0.06
0.48
1.01
1.68
1.80
3.25
4.12
4.60
5.28
6.22
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