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Abstract

In this paper, we consider the degenerate tangent numbers and polynomials. We
also obtain some explicit formulas for degenerate tangent numbers and polynomials.
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1. Introduction

In [2], L. Carlitz introduced the degenerate Bernoulli polynomials. Recently, Feng
Qi et al. [3] studied the partially degenerate Bernoull polynomials of the first kind
in p-adic field. In this paper, we establish some interesting properties for degenerate
tangent polynomials. Throughout this paper, we always make use of the following
notations: N denotes the set of natural numbers and Z+ = N ∪ {0}, C denotes the
set of complex numbers. The Tangent numbers are defined by means of the following
generating function:

∞∑
n=0

Tn

tn

n! = 2

e2t + 1

(
|t | <

π

2

)
. (1.1)

Ryoo [6] defined Tangent polynomials by multiplying ext on the right side of the Eq.
(1.1) as follows:

∞∑
n=0

Tn(x)
tn

n! = 2

e2t + 1
ext

(
|t | <

π

2

)
. (1.2)

For more theoretical properties of the tangent numbers and polynomials , the readers
may refer to [6, 7]. The notion of introducing of Tangent polynomials is similar to that
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of the generating functions of the Bernoulli polynomials Bn (x) and Euler polynomials
En (x) defined by

∞∑
n=0

Bn (x)
tn

n! = t

et − 1
ext and

∞∑
n=0

En (x)
tn

n! = 2

et + 1
ext ,

see, for details, [1-8] and cited references therein. We recall that the classical Stirling
numbers of the first kind S1(n, k) and S2(n, k) are defined by the relations(see [8])

(x)n =
n∑

k=0

S1(n, k)xk and xn =
n∑

k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x−1) · · · (x−n+1) denotes the falling factorial polynomial
of order n. The numbers S2(n, m) also admit a representation in terms of a generating
function ∞∑

n=m

S2(n, m)
tn

n! = (et − 1)m

m! . (1.3)

We also have ∞∑
n=m

S1(n, m)
tn

n! = (log(1 + t))m

m! . (1.4)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x − λk) (1.5)

for positive integer n, with the convention (x|λ)0 = 1; we may also write

(x|λ)n =
n∑

k=0

S1(n, k)λn−kxk. (1.6)

Note that (x|λ) is a homogeneous polynomials in λ and x of degree n, so if λ �= 0 then
(x|λ)n = λn(λ−1x|1)n. Clearly (x|0)n = xn. We also need the binomial theorem: for a
variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n! . (1.7)

2. On the degenerate tangent polynomials

In this section, we define the degenerate tangent numbers and polynomials, and we
obtain explicit formulas for them. For a variable t , we consider the degenerate tangent
polynomials which are given by the generating function to be

2

(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

Tn,λ(x)
tn

n! . (2.1)
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When x = 0, Tn,λ(0) = Tn,λ are called the degenerate tangent numbers. Note that
(1 + λt)1/λ tends to et as λ → 0.

From (2.1) and (1.7), we note that

∞∑
n=0

lim
λ→0

Tn,λ(x)
tn

n! = lim
λ→0

2

(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑

n=0

Tn(x)
tn

n! .

Thus, we get
lim
λ→0

Tn,λ(x) = Tn(x), (n ≥ 0).

From (2.1) and (1.5), we have

∞∑
n=0

Tn,λ(x)
tn

n! = 2

(1 + λt)2/λ + 1
(1 + λt)x/λ

=
( ∞∑

m=0

Tm,λ

tm

m!

) ( ∞∑
l=0

(x|λ)l
t l

l!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
Tl,λ(x|λ)n−l

)
tn

n! .

(2.2)

Therefore, by (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

Tn,λ(x) =
n∑

l=0

(
n

l

)
Tl,λ(x|λ)n−l .

From (2.1), we can derive the following recurrence relation:

2 = ((1 + λt)2/λ + 1)

∞∑
n=0

Tn,λ

tn

n!

= (1 + λt)2/λ

∞∑
n=0

Tn,λ

tn

n! +
∞∑

n=0

Tn,λ

tn

n!

=
( ∞∑

l=0

(2|λ)l
t l

l!
∞∑

m=0

Tm,λ

tm

m!

)
+

∞∑
n=0

Tn,λ

tn

n!

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
(2|λ)lTn−l,λ + Tn,λ

)
tn

n! .

(2.3)
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By comparing of the coefficients
tn

n! on the both sides of (2.3), we have the following

theorem.

Theorem 2.2. For n ∈ Z+, we have

n∑
l=0

(
n

l

)
(2|λ)lTn−l,λ + Tn,λ =

{
2, if n = 0,

0, if n �= 0.

By (2.1), we have

∞∑
n=0

Tn,λ(x + 2)
tn

n! +
∞∑

n=0

Tn,λ

tn

n!

= 2

(1 + λt)2/λ + 1
(1 + λt)(x+2)/λ + 2

(1 + λt)2/λ + 1
(1 + λt)x/λ

= 2(1 + λt)x/λ

= 2
∞∑

n=0

(x|λ)n
tn

n! .

(2.4)

By comparing of the coefficients
tn

n! on the both sides of (2.4), we have the following

theorem.

Theorem 2.3. For n ∈ Z+, we have

Tn,λ(x + 2) + Tn,λ(x) = 2(x|λ)n.

By (2.1), we get

∞∑
n=0

Tn,−λ(−x)
tn

n! = 2

(1 − λt)−2/λ + 1
(1 − λt)x/λ

= 2

(1 − λt)2/λ + 1
(1 − λt)(x+2)/λ

=
∞∑

n=0

(−1)nTn,λ(x + 2)
tn

n! .

(2.5)

By comparing of the coefficients
tn

n! on the both sides of (2.5), we have the following

theorem.

Theorem 2.4. For n ∈ Z+, we have

Tn,−λ(−x) = (−1)nTn,λ(x + 2),
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In particular,
Tn,−λ = (−1)nTn,λ(2).

For d ∈ N with d ≡ 1(mod2), we have

∞∑
n=0

Tn,λ(x)
tn

n! = 2

(1 + λt)2/λ + 1
(1 + λt)x/λ

= 2

(1 + λt)2d/λ + 1
(1 + λt)x/λ

d−1∑
l=0

(−1)l(1 + λt)2l/λ

=
∞∑

n=0

(
dn

d−1∑
l=0

(−1)lTn,λ/d

(
2l + x

d

))
tn

n! .

(2.6)

By comparing coefficients of
tm

m! in the above equation, we have the following theorem:

Theorem 2.5. For d ∈ N with d ≡ 1 (mod 2) and n ∈ Z+, we have

Tn,λ(x) = dn

d−1∑
l=0

(−1)lTn,λ/d

(
2l + x

d

)
.

In particular,

Tn,λ = dn

d−1∑
l=0

(−1)lTn,λ/d

(
2l

d

)
.

From (2.1), we have

∞∑
n=0

Tn,λ(x + y)
tn

n! = 2

(1 + λt)2/λ + 1
(1 + λt)(x+y)/λ

= 2

(1 + λt)2/λ + 1
(1 + λt)x/λ(1 + λt)y/λ

=
( ∞∑

n=0

Tn,λ(x)
tn

n!

) ( ∞∑
n=0

(y|λ)n
tn

n!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
Tl,λ(x)(y|λ)n−l

)
tn

n! .

(2.7)

Therefore, by (2.7), we have the following theorem.

Theorem 2.6. For n ∈ Z+, we have

Tn,λ(x + y) =
n∑

k=0

(
n

k

)
Tk,λ(x)(y|λ)n−k.
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From Theorem 2.6, we note that Tn,λ(x) is a Sheffer sequence.

By replacing t by
eλt − 1

λ
in (2.1), we obtain

2

e2t + 1
ext =

∞∑
n=0

Tn,λ(x)

(
eλt − 1

λ

)n
1

n!

=
∞∑

n=0

Tn,λ(x)λ−n

∞∑
m=n

S2(m, n)λm tm

m!

=
∞∑

m=0

(
m∑

n=0

Tn,λ(x)λm−nS2(m, n)

)
tm

m! .

(2.8)

Thus, by (2.8) and (1.2), we have the following theorem.

Theorem 2.7. For n ∈ Z+, we have

Tm(x) =
m∑

n=0

λm−nTn,λ(x)S2(m, n).

By replacing t by log(1 + λt)1/λ in (1.2), we have

∞∑
n=0

Tn(x)
(
log(1 + λt)1/λ

)n 1

n! = 2

(1 + λt)2/λ + 1
(1 + λt)x/λ

=
∞∑

m=0

Tm,λ(x)
tm

m! ,
(2.9)

and

∞∑
n=0

Tn(x)
(
log(1 + λt)1/λ

)n 1

n! = =
∞∑

m=0

(
m∑

n=0

Tn,λ(x)λm−nS1(m, n)

)
tm

m! . (2.10)

Thus, by (2.9) and (2.10), we have the following theorem.

Theorem 2.8. For n ∈ Z+, we have

Tm,λ(x) =
m∑

n=0

λm−nTn(x)S1(m, n).
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