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Abstract

In this article, we establish L” boundednesss of the Marcinkiewicz integral opera-
tors with rough kernels on R"' x ... x R" under some weak conditions on £ and
h. Our results are essential improvements and extensions of some known results
on Marcinkiewicz integrals.
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1. Introduction

Throughout this article, let n, m > 2, and let Sh-1 (N = n or m) be the unit sphere
in RY which is equipped with the normalized Lebesgue surface measure do = do (-).
Also, let x" = x/|x| for x € R" \ {0}, y' = y/|y| for y € R™ \ {0}. Suppose that p’ is
denoted the exponent conjugate to p; thatis 1/p +1/p’ = 1.
Let Ko (. v) = Q',v)

© Q.nllt, V) = |u|"‘1|v|m_1
R™ x RT, Q is a function on §"~! x §"~! with @ € L'($"~! x §"!) satisfying the
cancellation conditions:

h(|lu|, |v]), where h is a measurable function on

/Sn_l Q&' )do(x) = /sm_1 Q(,y)do(y) =0. (1.1)

Let d # 0 and H,4 be the class of all functions ¢ : (0, oc0) — R which are smooth
and satisty the following growth conditions:

lp(1)| < C1t?, 10" (1)] < Cat¥™2,  Cy?T < /(1) < Cu?T (12)
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for t € (0, 00), where C1, C2, C3 and C4 are positive constants independent of .

For¢ € Ha,, ¥ € Hg, forsomed,, d» # 0, ameasurable function # on S" gl
and an Q satisfying (1.1), we define the Marcinkiewicz integral operator Mg 5. ¢, v
initially for C3° on R"” x R™, by

Ma ngwfx) = (/ f
o Jo

FY (x,y) = / fx=¢ubu’,y — Yy (lvhv) K, v)dudv.  (1.4)

lu|<t J|v|<s

¢y
Fl,s

2 drds)W (13)

(15)3

(x,y)‘

where

When ¢ (¢) = t, ¥ (s) = s, we denote Mg 14,4 by Mg .

The operators Mg 5.4,y have their roots in the classical Marcinkiewicz integral
operators Mg 1 which were introduced by Stein in [19]. The Marcinkiewicz integral
operators have received much attention from many authors due to their powerful role
in dealing with many significant problems arising in such parts of analysis as Poisson
integrals, singular integrals and singular Radon transforms analysis (we refer the readers
to [1, 3, 10, 12, 23, 24, 25] and the references therein), and they can also see [2, 4, 6, 9,
13, 14, 19, 21] for the corresponding results in the one parameter cases.

Before stating our result, we first recall the definition of the block space BL(IO’”)
(S" ! x §"71). The special class of block space B;O’”) (8" ! x S" Yforv > —1 and
q > 1) was introduced by Jiang and Lu in the study of the singular integral operators ( see
[17]), and itis defined as follows: A g-block on §" 1 xS" lisan L4 function b(x, y) that
satisfies (i) supp (b) € 1, (i) |16l ar1xsn1y < 1179, where |I] = o'(I) and
I={x"¢€ sl X" — x| <8} x{y € sm-l 1y = | < B} isacaponS"~!x§m!
for some x{, € s yo € S”~and s, B € (0, 1]. The block space Béo’”)(S”_1 x §"1
is defined by

o0
BO =(Qe L' ' x 8" Q=Y C,b, with M" ({C,}) < oo},
n=1

where each C, is a complex number; each b, is a g-block supported on a cap I, on
S"1 x §"=1 and

MO ((c,)) = i C,] (14102 (11,17)).

0
= inf(M*") ({C,}) : @ =) C,b, and each b, is a g-
u=1
: n—1 m—1 :
block function supported on a cap /, on S x §"7}. Then ||-|| BOV (511 xsm-1) 18 8

Let ” Q ”B;Osv)(sn—l ><Sm—l)
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norm on the space B;O’”) (S"_1 X Sm_l) , and the space (B[(IO’”) (S"_1 X Sm_l) ,

||-||B§o,v>(s,,,1 ><S’"*1)> is a Banach space.

Employing the ideas of [18, 22] pointed out, forany g > 1 and forany v, > v; > —1,
Ur>1Lr(Sn—1 x Sm—l) C B;O,vz)(sn—l x Sm—l) c BéO,vl)(Sn—l x Sm—l).

Our main concern in this work is in dealing with Marcinkiewicz operators Mgq 1, ¢ v
under weak conditions on €2 as well as /. In fact, we will extend some known results (see
[11,25,19]) tothecase 2 € B"?(8"~! x §”~!) forsomeq > landh € A, (RT xR™)
for some y > 1, where A],(R+ x R™) denote the set of all measurable functions 4 on
R™ x R™ such that

Ry rR; l/y
</ / |h(t, s)|thds) < 0.
R1R26Z R1R2

Our main result is described as follows.

Theorem 1.1. Let Q € B;O’O)(S”_1 x §"~1) for some ¢ > 1, h € A, (RT x RY) for
some y > 1 and ¢ € Hy,, ¥ € Hg, for some dj, dy # 0. Then there exists a constant
C)p such that

HMQ’h"Pﬂ/’fHLP(R”me) < Cp If lLr@rscrrmy
forany f € L”(R" x R™) and for any p satisfying |1/p — 1/2| < min{1/2, 1/y'}.

Throughout this paper, the letter C denotes a bounded positive constant that may
vary at each occurrence but independent of the essential variables.

2. Definitions and Lemmas

In this section, we present some definitions and also establish some lemmas used in the
sequel. Let us start this section by introducing the following:
Definition 2.1. Let u € N U {0} and /, be an interval on S" 1 x §" ! with |1 -1

m

<e

Also, let AM = [log ‘IM ‘_1] and w, = ZAM, where [-] is the greatest integer function. For
suitable functions ¢, ¥ defined on R" and I; elL! (S" Iy §m _1) we define the family

of measures {UEM 15 LS E R} and the correspondmg maximal operator o b rs OD
7 o
R" x R" by
1
/ fdop .o = — / F@Uubu, ¢ (vDv)Kj; , (u, v)dudv,
n JR™ o 1/2t<|ul<t J1/2s<|v|<s e
O s @) = z§2£+ llog, ..l % . DI,

where |O’5M ; ;| 1s defined in the same way as Op, b0 but with replacing K Bk by | K Bk |

. +a . —o  ta .o
We writet = min{r ,t }and | o] for the total variation of o.
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In order to prove Theorem 1.1, it suffices to prove the following lemmas.

Lemma 2.2. Let u € NU{0}, ¢ > 1, h € A,(R" x R") for some | < y < 2, and
¢ € Hay, ¥ € Ha, forsomed;, dr # 0. Let l;u be a function on 8"~ ! x §”7~! satisfying

© HE"‘ La (S xsm=1) g
@[]

_1
< |Iu‘ ¢" for some interval /,, on "1 x §"~ 1 with ‘IM| <e”

< 1 and (iii) Bu satisfies the vanishing conditions in (1.1) with
L! (Snfl Xsmfl)

~ 1
Q replaced by b,,. Then there are constants «, C > 0 with 0 < « < —— such that

q
lo5,.05& ]| = C; @1
w;’jl w/{;jrl
~ 2 dtds ) id, i% ids :t/ZTt?l
Gh0s G| S5 = A g [T e[ @2)
“)L wﬁ

hold for all i, j € Z. The constant C is independent of i, j, i, & and 7.

Proof. We prove our estimates only for di, dy > 0 because the proof for the other cases
d1 < 0ord, < 0O1is essentially the same and requires only minor modifications. Also we
prove this lemma for the case 1 < ¢ < 2, since LY (S”_1 X Sm_l) CL? (S"_1 X Sm_l)
for ¢ > 2. By using condition (i7), it is easy to verify that (2.1) holds. By Holder’s
inequality and a simple change of variables, we get that

s 1y 1 1 1/y'
N y drdk  drdk
‘Uz;u,t,s(é : n)‘ =< I G 1" — |L;s(r, k)| o ,
1/2t1/2s 1/21/2
where
Ly(r, k) = / e HOUEHVEN M, (x, y)do (x)do (y) .
Sn—lxsm—l

Since h € A),(R‘L xR™), 1 <y <2and |L; s(r, k)| <1, we obtain

] /
| /v

1
A > drdk
‘Ug/uhs(g’ 77)‘ <C / / ‘Lt,s(r, k)| P

1/21/2
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By Schwarz inequality, we derive that

2
Loy O < / / IR (V) do (0| do ()
Sm—l Sn—l
= ‘/’ u/ e T b (x, y) by (u, y)do (x) do (u) | do (y).
Sm—l Sn—l ><Sn—l
Therefore,
55,056 )]
1/y’
<C ‘/ / J(&, x,u)b, (x,y) by, (u, y)do (x)do (u) | do (y) ,
m—1 Sn—lxsn—l
1 d 1 d
where J (€, x, u) = /e“'d’(f’)f'(x—“)—r.Write J(é,x,u)z/Yt/(r)—r, where
r r
1/2 1/2

)
Yi(r) = / TG, 12 <z <<,
1/2

By Van der Corput’s lemma, the conditions on ¢ and integration by parts, we conclude
d -1
V& x,w)| <CtTE - (x —w)|
which when combined with the trivial estimate |J (&, x, u)| < C gives
[, x,w)| < C g [E - (x —w)| ™ 2.3)

for any 0 < @ < 1. Thus, by using Holder’s inequality, we have

—a 27y’
A di | o7 d
65,0, €| = C e[ |y R
/gy’
X / }g/ C(x — u)‘_aq/ do (x)do (u)

n—lXSn—l



6 Mohammadkheer Al-Jararha

By choosing 0 < 2aq’ < 1, we get that the last integral is finite. Hence, by the condition
(i), we reach

-2/q"y’

65,6 m| < ClatFin

Combine this with the trivial estimate ‘65/“ 15 n)’ < C provides

‘@;HM(S, n)’ < C|erh| A (2.4)
Similarly, we derive
Gp0s& )| = C s | 700 @.5)

The other estimates in (2.2) can be obtained by using the cancellation property of 15”.
By a change of variable plus the conditions on ¢, we have that

55,05 )|

1 1
) - drdk
< f ff|e—””<">“—1||bu<x,y>||h<rr,ks>| rk

.
§1-1x§m=1 172172
< C e,

do (x)do (y)

which when combined with the trivial estimate ‘65;4 (&, r])‘ < C gives that

’5';;#“(5, 77)‘ <C \Stdl |7Au (2.6)
Following the same manner, we attain

‘?fgﬂ,,,s(é, n)‘ < C |ns®|7 4. .7)
Therefore, by combining (2.4)-(2.5) and (2.6)-(2.7), we acquire

S (2.8)

- & | E7a |, d
G5 & )| = C [0 [T st
and consequently,

@'l it

w o @Ou
A 2 dtds 20 e
[ [ [o0ntecn] G < cal feaft [75 o7 9

i
w), W’



On certain estimates for Marcinkiewicz integrals 7

This completes the proof of the lemma. |
We shall need the following lemma which can be found in [15].

Lemma2.3. Let{u;: i € Z}beasequence of nonnegative Borel measures on R”, and let
{a;: i € Z} be lacunary sequence of positive numbers with in£ (aj+1/ai) > a. Suppose
IAS]

that for all i € Z, & € R" and for some C > 0,

@) Mwill = C; Gi)

i (§)| < Claig|™; (i) |1 (§) — 1] < Clai €|
Then the inequality

| O Lo ey = C I F Loy
holds forall 1 < p <ocoand f € L” (R").

The following result follows immediately from the Lemma 2.3.

Lemma 2.4. Let ¢ € H, for some d # 0. Define the maximal function

t
1
M, f(x)=sup —| | fx—(s)E)ds|.
t

teR+ L :

7]

Then for 1 < p < oo, there exists a constant C), such that

for any f € LP(R").

2i+l
d
Proof. Itis clear that M, , f(x) < C sup f fx —ao(s) 5)—s . Define a sequence of
’ icZ S
21
measures v; on R by
2i+l
5i() = / oidE 95
s
2i

Following the same arguments used in proof of Lemma 2.2, we achieve that

&) <C;
19: (&) — :(0)] < C [|21%]; (2.10)
0:6)] < € [2g| "

By this and Lemma 2.3, we finish the proof. [ |
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Lemma 2.5. Letu e NU{0},1 < g <2,h € A,(RT x R") forsome 1 <y <2and

¢ € Ha,, ¥ € Hg, for some dy, dy # 0. Let Eu be a given function on 8"~ x "~ ! as
in Lemma 2.2. Let M;  be the maximal function defined on R" x R" by
w9,

by (u, v)

—————dudv|.
|u|n—1|v|m—1

1

M. ,y) = sup —
buqd)ﬂ//f(x y) z,se£+ ts /
1

/f(x — ¢ (luhu'sy — ¥ (Jvhv)

t
t

(7]
S]]

Then there exists a constant C), such that

< Cp I f I Lr®r xr™)

|0, 0]

LP(R"xR™)
forany 1 < p <ooand f € LP(R" x R™).

Proof. By using Holder’s inequality, we have

=<

M| o]
” buv‘Pﬂ//f LP(R"xR™) H LIS x§m—1)

dowdo V),
LP(R" xR™)

1 2
X f HM’M,QMJ),f‘

Snfl ><Smfl

where My, f(x.y) = Mg f (. y)(xX), My f(x,y) = My f(x,)(y) and O de-
notes the composition of operators. Therefore, we get the result by using Lemma 2.4.
[ |

Lemma 2.6. Let © e NU{0},1 < g <2,h € A,(R" x R) forsome 1 <y <2
and ¢ € Hy,, ¥ € Hy, for some dj, dr # 0. Assume that l;u is a given function on

§"! x 8" as in Lemma 2.2, and ag hps is given as in Definition 2.1. Then for any
wsttsbs

f € LP(R" x R™) with p > y/, there exists a constant C,, such that
lof FO W r®rxrmy < Cpll fllLr®? xr™y- (2.11)
by.,h,t,s

Proof. By Holder’s inequality, we obtain

1/y

195,041 £ 9] = C |y P

1/y'
drdk
rk

t s
XSUP; ser+ // / by (. V)| f (x — (r)u. y — p(k)v)[" do (u)do (v)

% % Sn—1y§m—1
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Use Minkowski’s inequality for integrals and assumptions of I;M, we get

k
195, 1 ond s D Lr@e <R

17y’
s | [ (1050 (197) L o) do 0o @)
n—1y gm—1
By this and Lemma 2.5, we finish the proof. |

By tracking the constants, we have the following.

Lemma 2.7. Let 4 € NU{0}, ¢ > 1,h € A, (Rt x RT) forsome 1 < y <2 and

¢ € Ha, ¥ € Hg, for some dy,dr # 0. If l;u is a given function on Sl x gl
as in Lemma 2.2, then for any p satisfying |1/p — 1/2| < 1/y/, there exists a positive
constant C ), such that

172

z+1 w/+1 12
2 dtds 2
> / /\ab | 2 <con, | [ 3 1ss
i.jJEL ; i,jeZ
wﬂ . Lp(Rn XRm) LP(Rn ><R’")
holds for arbitrary measurable functions { 8., )}l jez O0 R" x R™. The constant C,

is independent of jt.

Proof. We employ some ideas from [2, 16]. By Schwarz’s inequality, we obtain

t s
2
‘G‘;M’S *g’*f" . Cf/ f |8 (x — ¢ (M u,y — ¥ K|

n—1 m—1
is St=1IxS

N\

‘;;M (u, v)‘ A (r, k)PP~ dcr(u)da(v)d:;jk

X

Let us first prove this lemma for the case 2 < p < By duality, there is a

non-negative function A € L/ 2)/(R" x R™) with | Al L/ Rnxrmy < 1 such that

2
1+1 w/’” 1/2

2 dtds
Z ‘Gb”*gl]‘ ts

z]EZ

LP(R"xR™)
@/t

: /z/m%

R2xR™ 14 ]EZ
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Thus, by a change of variable we derive

2
Wit w]+1 1/2

‘ 2 dtds
Z ‘Gb ”*g”‘ ts

i,jel

i

LP(R"xR™)

2
< CA2 / > gijxy)| OF oy A =)dxdy.
R xR™ i,jeZ

dtd dtd
Since h(-,-) € LY (RT x R, t—s), then [ ()P € L/ RT x RT, = ),
S S

’ /
and since (%) > (L> , then by Lemma 2.6 and Holder’s inequality, we achieve

2—y
that
2
z+1 a)j+1 1/2
2 dtds
Z )Gb 1,8 * 8i ]‘ ts
l]EZ
LP(R" xR™)
1722
2 2 *
= cau | 2 lsil T thir 1,5 (X 7Y) ,
i,jEZ H L(p/Z) (RnXRm)
LP(R" xR™)
1722
2 2
< CoAL || D Izl
i,jeZ
LP(R" xR™)

For the case

4 5 < p < 2, by the duality, there are functions { = ¢; j(x, y,,s)

definedon R” xR™ xR™ xR™ with ‘ H (k< ||L2([w,» o x [ ol dtds) <
wn - 2l Lr’ (R xRm)
1 such that
z+1 wJ‘H 1/2
o7 * gi.
b ,t,8 J
leZ ts
LP(R" xR™)
1/2

= G H(T(g‘))l/ZHLP/(R"XRm) § : |8i,j‘2 ;
ijeZ
LP(R" xR™)
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where
l+1 wj+1
2 dtds
T(¢) = Z/ /‘Ub,s*fl](x)’ts) .
leZ
Applying the above procedure, we reach that
i+l it
[ drds
2
||T(§)”L(P//2)(R"><R'”) = Cp Z f f |§l JASERE! ,S)‘
i,jel *; j
@u wp L(/}’/Z)(RnXRm)
k
~ _ <
X HG bﬂ,s,t,|h|2 y(ﬁ)HL(p//Z)’(RnXRm) - CA/“L’

where ¥ is a function in L(p//z)/(R” x R™) with ||| < 1. By this, we get

L(p’/2) (R"xR™) =

2
our desired for 3 v 5 < p < 2. This completes the proof of Lemma 2.7. [ |

3. Proof of the main Result
Assume that Q2 € Béo’o) (S”—1 X Sm_l) for some ¢ > 1 and satisfies (1.1). Thus €2 can
o0

be written as Q2 = Z C,b,, where C € C, b, is a g-block supported on an interval
n=1

{M on S ! x §"~! and Méo’o) ({CM}) < oo. For each block function b, (x, y), let

b, (x, y) be a function defined by

Bu(ry) = by(x,y)— f by (u, y) do (u) — f by (x, v) do (v)

Sn—1 Sm—1
+ / by (u,v)do (u)do (v). 3.1

Sn—1y§m—1

LetD = {u e N: [I,] < e_l}, and let 50 = Q- ZCMISM. Then it is easy to show
nebD
that, for each u € D U {0}, b, (x, y) has the following properties: sss

/Z;M(u,-)da(u)z / by (-, v)do (v) =0,

Sn—l Sm—l

By

qnlml_ |I‘
La(Sr—1x§m-1)
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I

where I is an interval on $"~! x §”! with |Iy] = ¢~2 and C is a positive constant
independent of ©. Using the assumption that €2 satisfies the vanishing conditions (1.1)

and the definition of l;u; we deduce that €2 can be written as 2 = Z C b, which

and

2

=
Ll(Sn—l ><Sm—l)

nop?
neDU{0}
in turn implies
| Ma.ng.v HLP(R”XR’”) = Z C, | ‘MB,L,h@),xp‘ LA XR™) (3.2)
neDU{0}
Therefore, to prove our theorem, it is enough to show
M50 |y = oo 1w 33

We establish the inequality (3.3) by applying the same approaches that Al-Qassem
[2] as well as Fan and Pan [16] used. Without loss of generality we may assume that

dtd
h e LY R" x RT, t—s) forsome 1 < y < 2and ¢ € Hy,, ¥ € Hgy, for some
s

di,d» > 0. Fori € Zand u € N, let {Ai,u}iooo be a smooth partition of unity in (0,00)

—id+|d;]
"

adapted to the interval Z; , = [a);idl_'dl', ) ]. More precisely, we require the

following:
Aig € C°0<A <1 Y A =1,
i
d*A; (1)
dl-s

<Cs

supp Ajy € iy, and ==

b

where C; is independent of w,,. Define the multiplier operators M; ; , on R" x R™ by
M ju)E ) = A w(1EDA . (Inl) f (&, n). By Minkowski’s inequality, we get that

o0

M: fl,y) = / 2‘“”)[ f
bush.¢. ¥ R+ xR+ ,-]zzjo 2-i=lp<|y|<2~it J2-i~ls<|v|<27Js
, , 2 drds\'?
X G glubudsy =Y u)KG e v)dudv| TS
(0,0)
- H—(i+)) (/ / /
i,]Z::O Rt xRt [J1/2t<|ul<t J1/2s<|v|<s
2 dtds\'/?
X flx —¢(|u|)u/,y—w(lvl)v’)K,;M,h(u,v)dudv( W)
2 dtds\ '/?
=4 /R+ R+ Ggu’m*f(x,y)‘ ts ' 34)
X
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Decompose Tptys * fx,y)= Z Yian(x,y,t,s), where
a,bel

Y X, V,t,8 :Zm * M; ; X, o ().
M,a,b( y ) bﬂ,l,S l+a,]+b,ﬂf( y)X[wiL,w;L+l)X[wﬂ,leL+l)( )

i,jeZ
00 00 172
Forany f € S(R"xR™), define S, 4.» f (x, y) = //| Yyan(, v, 1,9 d;fs
Hence, 00
Mg o @) =C Y Suan(f): (3.5)

a,beZ

Let us first compute the L?-norm of S 1.a,b(f). By using Plancherel’s theorem and
Lemma 2.2, we obtain that

2
H Sﬂﬂ,b(f)HLz(R"me)

=X f f f\ob @] T | fem| azan
< cA? Z / ( g [* 3 wf] A“)‘f@,n)’zdédn
< CAZ —a(lal+|b]) Z/ f(g,n)lzdédn

i ]EZ Lita, Jj+b,n

2 n—a(lal+b|)
5 CAMZ otla ||f||L2(R”><Rm) )
where I'; j ,, = {(S, m e R" xR™ : (€], In]) € Z; ;. x Ij,u}~ Thus,

(\aH-\ D

HS,LL,a,b(f) ”Lz(R”XR'") =< CA;Lz ||f||L2(Rn><Rm) (36)

Applying the Littlewood-Paley theory and Theorem 3 along with the remark that
follows its statement in [[20], p. 96], plus using Lemma 2.7, we obtain

IS0 | ogosien < Co IF e (3.7)

for any p satisfying |1/p — 1/2| < 1/y’. By interpolation between (3.6) and (3.7) we

reach
a(la \+\b|)

11006 (O Lo oy < CA2 11l o xR - (3.8)

Consequently, by (3.3)-(3.5) and (3.8), we get our result. This completes the proof of
Theorem 1.1.
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4. Concluding Remarks

Letk € Nandn;...ny > 2. Assume thatfor j =1,...,k, ¢; € de for some d; # 0,
a measurable function 7 on R™ x ... x RT (k-times), and (xi, ..., X;) be an integrable
function on $"' 7! x ... x 8™~ ! satisfying the following condition:

/ lQ(xi,...,x,/{)do“(x})=O for j=1,...,k.
S~

Define the corresponding Marcinkiewicz integral operator on R"!' x ... x R by

2 dty...du )1/2

..... : @ty ...dn)?
4.1)

Ft?,l.’.',',}fk(xl, cey XE) = / f fr —oi(luihul, ..., xx — dr(Juguy)
lur| <ty g | <tx
Q... up)h(uyl, ..., lugl)

g [ g

du1 .. .duk.

By following the above procedure, we derive the following corollary.

Corollary 4.1. Let k € N, Q € B;O’k/z_l)(S”l_l x ... x S™1) for some ¢ > 1.

Assume that h € A,,(RJr x ...x R")forsomey > l,andfor j =1, ...k, ¢j € Hq,
for some d; # 0. Then there exists a constant C,, such that

forany f € L?(R™ x ... x R™)and forany p satisfying |1/ p—1/2| < min{1/2, 1/y'}.

We point out that for k = 1 (the underlying space is not a product space), the L”
boundedness of Mg j, ¢, was obtained in [7], and for k = 2 the boundedness of Mgq j ¢,
was established in [8] by using the extrapolation argument found in [5].
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