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Abstract

In this article, we establish Lp boundednesss of the Marcinkiewicz integral opera-
tors with rough kernels on Rn1 × . . . × Rnk under some weak conditions on � and
h. Our results are essential improvements and extensions of some known results
on Marcinkiewicz integrals.
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1. Introduction

Throughout this article, let n, m ≥ 2, and let SN−1 (N = n or m) be the unit sphere
in RN which is equipped with the normalized Lebesgue surface measure dσ = dσ(·).
Also, let x′ = x/|x| for x ∈ Rn \ {0}, y′ = y/|y| for y ∈ Rm \ {0}. Suppose that p′ is
denoted the exponent conjugate to p; that is 1/p + 1/p′ = 1.

Let K�,h(u, v) = �(u′, v′)
|u|n−1|v|m−1

h(|u|, |v|), where h is a measurable function on

R+ × R+, � is a function on Sn−1 × Sm−1 with � ∈ L1(Sn−1 × Sm−1) satisfying the
cancellation conditions:∫

Sn−1
�(x′, .)dσ (x′) =

∫
Sm−1

�(., y′)dσ (y′) = 0. (1.1)

Let d �= 0 and Hd be the class of all functions φ : (0, ∞) → R which are smooth
and satisfy the following growth conditions:

|φ(t)| ≤ C1t
d, |φ′′(t)| ≤ C2t

d−2, C3t
d−1 ≤ |φ′(t)| ≤ C4t

d−1 (1.2)
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for t ∈ (0, ∞), where C1, C2, C3 and C4 are positive constants independent of t .
For φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0, a measurable function h on Sn−1 ×Sm−1

and an � satisfying (1.1), we define the Marcinkiewicz integral operator M�,h,φ,ψ ,
initially for C∞

0 on Rn × Rm, by

M�,h,φ,ψf (x) =
(∫ ∞

0

∫ ∞

0

∣∣∣Fφ,ψ
t,s (x, y)

∣∣∣2 dtds

(ts)3

)1/2

, (1.3)

where

F
φ,ψ
t,s (x, y) =

∫
|u|≤t

∫
|v|≤s

f (x − φ(|u|)u′, y − ψ(|v|)v′)K�,h(u, v)dudv. (1.4)

When φ(t) = t , ψ(s) = s, we denote M�,h,φ,ψ by M�,h.
The operators M�,h,φ,ψ have their roots in the classical Marcinkiewicz integral

operators M�,1 which were introduced by Stein in [19]. The Marcinkiewicz integral
operators have received much attention from many authors due to their powerful role
in dealing with many significant problems arising in such parts of analysis as Poisson
integrals, singular integrals and singular Radon transforms analysis (we refer the readers
to [1, 3, 10, 12, 23, 24, 25] and the references therein), and they can also see [2, 4, 6, 9,
13, 14, 19, 21] for the corresponding results in the one parameter cases.

Before stating our result, we first recall the definition of the block space B(0,ν)
q

(Sn−1 × Sm−1). The special class of block space B(0,ν)
q (Sn−1 × Sm−1)(for ν > −1 and

q > 1) was introduced by Jiang and Lu in the study of the singular integral operators ( see
[17]), and it is defined as follows: A q-block on Sn−1×Sm−1 is an Lq function b(x, y) that
satisfies (i) supp (b) ⊆ I, (ii) ‖b‖Lq(Sn−1×Sm−1) ≤ |I |−1/q ′

, where |I | = σ(I) and
I = {

x′ ∈ Sn−1 : ∣∣x′ − x′
0

∣∣ < δ
}×{

y′ ∈ Sm−1 : ∣∣y′ − y′
0

∣∣ < β
}

is a cap on Sn−1×Sm−1

for some x′
0 ∈ Sn−1, y′

0 ∈ Sm−1 and δ, β ∈ (0, 1]. The block space B(0,ν)
q (Sn−1 ×Sm−1)

is defined by

B(0,ν)
q = {� ∈ L1(Sn−1 × Sm−1): � =

∞∑
µ=1

C
µ
b

µ
with M(0,ν)

q

({
C

µ

})
< ∞},

where each C
µ

is a complex number; each b
µ

is a q-block supported on a cap I
µ

on
Sn−1 × Sm−1, and

M(0,ν)
q

({
C

µ

}) =
∞∑

µ=1

∣∣C
µ

∣∣ (1 + log(ν+1)
(∣∣I

µ

∣∣−1
))

.

Let ‖�‖
B

(0,ν)
q (Sn−1×Sm−1)

= inf{M(0,ν
q )

({
C

µ

}) : � =
∞∑

µ=1

C
µ
b

µ
and each b

µ
is a q-

block function supported on a cap I
µ

on Sn−1 × Sm−1}. Then ‖·‖
B

(0,ν)
q (Sn−1×Sm−1)

is a
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norm on the space B(0,ν)
q

(
Sn−1 × Sm−1) , and the space

(
B(0,ν)

q

(
Sn−1 × Sm−1) ,

‖·‖
B

(0,ν)
q (Sn−1×Sm−1)

)
is a Banach space.

Employing the ideas of [18, 22] pointed out, for any q > 1 and for any ν2 > ν1 > −1,

∪r>1L
r(Sn−1 × Sm−1) ⊂ B(0,ν2)

q (Sn−1 × Sm−1) ⊂ B(0,ν1)
q (Sn−1 × Sm−1).

Our main concern in this work is in dealing with Marcinkiewicz operators M�,h,φ,ψ

under weak conditions on � as well as h. In fact, we will extend some known results (see
[11, 25, 19]) to the case � ∈ B(0,0)

q (Sn−1 × Sm−1) for some q > 1 and h ∈ �γ (R+×R+)

for some γ > 1, where 	γ (R+ × R+) denote the set of all measurable functions h on
R+ × R+ such that

sup
R1R2∈Z

1

R1R2

(∫ R2

0

∫ R1

0
|h(t, s)|γ dtds

)1/γ

< ∞.

Our main result is described as follows.

Theorem 1.1. Let � ∈ B(0,0)
q (Sn−1 × Sm−1) for some q > 1, h ∈ �γ (R+ × R+) for

some γ > 1 and φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0. Then there exists a constant
Cp such that ∥∥M�,h,φ,ψf

∥∥
Lp(Rn×Rm)

≤ Cp ‖f ‖Lp(Rn×Rm)

for any f ∈ Lp(Rn × Rm) and for any p satisfying |1/p − 1/2| < min{1/2, 1/γ ′}.
Throughout this paper, the letter C denotes a bounded positive constant that may

vary at each occurrence but independent of the essential variables.

2. Definitions and Lemmas

In this section, we present some definitions and also establish some lemmas used in the
sequel. Let us start this section by introducing the following:

Definition 2.1. Let µ ∈ N ∪ {0} and I
µ

be an interval on Sn−1 × Sm−1 with
∣∣I

µ

∣∣ < e−1.

Also, let A
µ

= [log
∣∣I

µ

∣∣−1] and ω
µ

= 2Aµ , where [·] is the greatest integer function. For
suitable functions φ, ψ defined on R+ and b̃µ ∈ L1(Sn−1 × Sm−1), we define the family
of measures {σb̃µ,t,s : t, s ∈ R+} and the corresponding maximal operator σ ∗

b̃µ,h,t,s
on

Rn × Rm by∫
Rn

∫
Rm

f dσb̃µ,t,s = 1

ts

∫
1/2t≤|u|≤t

∫
1/2s≤|v|≤s

f (φ(|u|)u′, ψ(|v|)v′)Kb̃µ,h(u, v)dudv,

σ ∗
b̃µ,h,t,s

f (x, y) = sup
t,s∈R+

||σb̃µ,t,s | ∗ f (x, y)|,

where |σb̃µ,t,s | is defined in the same way as σb̃µ,t,s , but with replacing Kb̃µ,h by |Kb̃µ,h|.
We write t

±α = min{t−α

, t
+α} and ‖σ‖ for the total variation of σ .
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In order to prove Theorem 1.1, it suffices to prove the following lemmas.

Lemma 2.2. Let µ ∈ N ∪ {0}, q > 1, h ∈ �γ (R+ × R+) for some 1 < γ ≤ 2, and
φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0. Let b̃µ be a function on Sn−1 × Sm−1 satisfying

(i)

∥∥∥b̃µ

∥∥∥
Lq(Sn−1×Sm−1)

≤ ∣∣Iµ

∣∣− 1
q′ for some interval Iµ on Sn−1 ×Sm−1 with

∣∣Iµ

∣∣ < e−1;
(ii)

∥∥∥b̃µ

∥∥∥
L1(Sn−1×Sm−1)

≤ 1 and (iii) b̃µ satisfies the vanishing conditions in (1.1) with

� replaced by b̃µ. Then there are constants α, C > 0 with 0 < α <
1

2q ′ such that

∥∥∥σb̃µ,t,s(ξ, η)

∥∥∥ ≤ C; (2.1)

ωi+1
µ∫

ωi
µ

ω
j+1
µ∫

ω
j
µ

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣2 dtds

ts
≤ CA2

µ

∣∣ξωid1
µ

∣∣± 2α
γ ′Aµ

∣∣ηωjd2
µ

∣∣± 2α
γ ′Aµ (2.2)

hold for all i, j ∈ Z. The constant C is independent of i, j, µ, ξ and η.

Proof. We prove our estimates only for d1, d2 > 0 because the proof for the other cases
d1 < 0 or d2 < 0 is essentially the same and requires only minor modifications. Also we
prove this lemma for the case 1 < q ≤ 2, since Lq

(
Sn−1 × Sm−1) ⊆ L2 (

Sn−1 × Sm−1)
for q ≥ 2. By using condition (ii), it is easy to verify that (2.1) holds. By Hölder’s
inequality and a simple change of variables, we get that

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤



t∫
1/2t

s∫
1/2s

|h (r, k)|γ drdk

rk




1/γ 


1∫
1/2

1∫
1/2

∣∣Lt,s(r, k)
∣∣γ ′ drdk

rk




1/γ ′

,

where

Lt,s(r, k) =
∫

Sn−1×Sm−1

e−i(φ(tr)x·ξ +ψ(ks)y·η )b̃µ (x, y) dσ (x) dσ (y) .

Since h ∈ 	γ (R+ × R+), 1 < γ ≤ 2 and |Lt,s(r, k)| ≤ 1, we obtain

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C




1∫
1/2

1∫
1/2

∣∣Lt,s(r, k)
∣∣2 drdk

rr




1/γ ′

.
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By Schwarz inequality, we derive that

|Lt,s(r, k)|2 ≤
∫

Sm−1

∣∣∣∣∣∣∣
∫

Sn−1

e−iφ(tr)x·ξ b̃µ (x, y) dσ (x)

∣∣∣∣∣∣∣

2

dσ (y)

=
∫

Sm−1




∫

Sn−1×Sn−1

e−iφ(tr)(x−u)·ξ b̃µ (x, y) b̃µ (u, y)dσ (x) dσ (u)


 dσ (y) .

Therefore,
∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣

≤ C




∫

Sm−1




∫

Sn−1×Sn−1

J (ξ, x, u)b̃µ (x, y) b̃µ (u, y)dσ (x) dσ (u)


 dσ (y)




1/γ ′

,

where J (ξ, x, u) =
1∫

1/2

e−iφ(tr)ξ ·(x−u) dr

r
. Write J (ξ, x, u) =

1∫
1/2

Y ′
t (r)

dr

r
, where

Yt(r) =
r∫

1/2

e−iφ(tz)ξ ·(x−u)dz, 1/2 ≤ z ≤ r ≤ 1.

By Van der Corput’s lemma, the conditions on φ and integration by parts, we conclude

|J (ξ, x, u)| ≤ C
∣∣td1ξ · (x − u)

∣∣−1
,

which when combined with the trivial estimate |J (ξ, x, u)| ≤ C gives

|J (ξ, x, u)| ≤ C
∣∣td1ξ

∣∣−α ∣∣ξ ′ · (x − u)
∣∣−α

(2.3)

for any 0 < α < 1. Thus, by using Hölder’s inequality, we have

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ξ td1

∣∣−α
γ ′

∥∥∥b̃µ

∥∥∥2/γ ′

Lq(Sn−1×Sm−1)

×



∫

Sn−1×Sn−1

∣∣ξ ′ · (x − u)
∣∣−αq ′

dσ(x)dσ(u)




1/q ′γ ′

.
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By choosing 0 < 2αq ′ < 1, we get that the last integral is finite. Hence, by the condition
(i), we reach

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ξ td1

∣∣−α
γ ′ |Iµ|−2/q′γ ′

.

Combine this with the trivial estimate
∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C provides

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ξ td1

∣∣− α
γ ′Aµ . (2.4)

Similarly, we derive
∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ηsd2

∣∣− α
γ ′Aµ . (2.5)

The other estimates in (2.2) can be obtained by using the cancellation property of b̃µ.
By a change of variable plus the conditions on φ, we have that

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣

≤
∫

Sn−1×Sm−1

1∫
1/2

1∫
1/2

|e−iφ(tr)ξ ·x − 1||b̃µ(x, y)||h(tr, ks)|drdk

rk
dσ (x) dσ (y)

≤ C
∣∣ξ td1

∣∣ ,
which when combined with the trivial estimate

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C gives that

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ξ td1

∣∣ α
γ ′Aµ . (2.6)

Following the same manner, we attain
∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ηsd2

∣∣ α
γ ′Aµ . (2.7)

Therefore, by combining (2.4)-(2.5) and (2.6)-(2.7), we acquire
∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣ ≤ C
∣∣ξ td1

∣∣± α
γ ′Aµ

∣∣ηsd2
∣∣± α

γ ′Aµ , (2.8)

and consequently,

ωi+1
µ∫

ωi
µ

ω
j+1
µ∫

ω
j
µ

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣2 dtds

ts
≤ CA2

µ

∣∣ξωid1
µ

∣∣± 2α
γ ′Aµ

∣∣ηωjd2
µ

∣∣± 2α
γ ′Aµ . (2.9)
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This completes the proof of the lemma. �

We shall need the following lemma which can be found in [15].

Lemma 2.3. Let {µi : i ∈ Z} be a sequence of nonnegative Borel measures on Rn, and let
{ai : i ∈ Z} be lacunary sequence of positive numbers with inf

i∈Z
(ai+1/ai) ≥ a. Suppose

that for all i ∈ Z, ξ ∈ Rn and for some C > 0,

(i) ‖µi‖ ≤ C; (ii)
∣∣µ̂i (ξ)

∣∣ ≤ C |aiξ |−a ; (iii)
∣∣µ̂i (ξ) − 1

∣∣ ≤ C |ai+1ξ |a .

Then the inequality ∥∥µ∗(f )
∥∥

Lp(Rn)
≤ C ‖f ‖Lp(Rn)

holds for all 1 < p ≤ ∞ and f ∈ Lp
(
Rn

)
.

The following result follows immediately from the Lemma 2.3.

Lemma 2.4. Let φ ∈ Hd for some d �= 0. Define the maximal function

M
φ,ξ

f (x) = sup
t∈R+

1

t

∣∣∣∣∣∣∣∣

t∫
1
2 t

f (x − φ (s) ξ)ds

∣∣∣∣∣∣∣∣
.

Then for 1 < p < ∞, there exists a constant Cp such that
∥∥M

φ,ξ
(f )

∥∥
Lp(Rn)

≤ Cp ‖f ‖Lp(Rn)

for any f ∈ Lp(Rn).

Proof. It is clear that M
φ,ξ

f (x) ≤ C sup
i∈Z

∣∣∣∣∣∣∣
2i+1∫

2i

f (x − φ (s) ξ)
ds

s

∣∣∣∣∣∣∣
. Define a sequence of

measures νi on R by

ν̂i(ξ) =
2i+1∫

2i

e−iφ(s)ξ ds

s
.

Following the same arguments used in proof of Lemma 2.2, we achieve that




∣∣ν̂i(ξ)
∣∣ ≤ C;∣∣ν̂i(ξ) − ν̂i(0)
∣∣ ≤ C

∣∣2idξ
∣∣ ;∣∣ν̂i(ξ)

∣∣ ≤ C
∣∣2idξ

∣∣−1
.

(2.10)

By this and Lemma 2.3, we finish the proof. �
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Lemma 2.5. Let µ ∈ N ∪ {0}, 1 < q ≤ 2, h ∈ �γ (R+ × R+) for some 1 < γ ≤ 2 and
φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0. Let b̃µ be a given function on Sn−1 × Sm−1 as
in Lemma 2.2. Let M

b̃µ,φ,ψ
be the maximal function defined on Rn × Rm by

M
b̃µ,φ,ψ

f (x, y) = sup
t,s∈R+

1

ts

∣∣∣∣∣∣∣∣

t∫
1
2 t

s∫
1
2 s

f (x − φ (|u|) u′, y − ψ (|v|) v′)
b̃µ(u, v)

|u|n−1|v|m−1
dudv

∣∣∣∣∣∣∣∣
.

Then there exists a constant Cp such that

∥∥∥M
b̃µ,φ,ψ

(f )

∥∥∥
Lp(Rn×Rm)

≤ Cp ‖f ‖Lp(Rn×Rm)

for any 1 < p < ∞ and f ∈ Lp(Rn × Rm).

Proof. By using Hölder’s inequality, we have

∥∥∥M
b̃µ,φ,ψ

f

∥∥∥
Lp(Rn×Rm)

≤
∥∥∥b̃µ

∥∥∥
L1(Sn−1×Sm−1)

×
∫

Sn−1×Sm−1

∥∥∥M1
φ,u′ � M2

ψ,v′f
∥∥∥

Lp(Rn×Rm)
dσ (u′)dσ (v′),

where M1
φ,u′f (x, y) = Mφ,u′f (·, y)(x), M2

ψ,v′f (x, y) = Mψ,v′f (x, ·)(y) and � de-
notes the composition of operators. Therefore, we get the result by using Lemma 2.4.

�

Lemma 2.6. Let µ ∈ N ∪ {0}, 1 < q ≤ 2, h ∈ �γ (R+ × R+) for some 1 < γ ≤ 2
and φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0. Assume that b̃µ is a given function on
Sn−1 × Sm−1 as in Lemma 2.2, and σ ∗

b̃µ,h,t,s
is given as in Definition 2.1. Then for any

f ∈ Lp(Rn × Rm) with p > γ ′, there exists a constant Cp such that

‖σ ∗
b̃µ,h,t,s

f (x, y)‖Lp(Rn×Rm) ≤ Cp‖f ‖Lp(Rn×Rm). (2.11)

Proof. By Hölder’s inequality, we obtain

||σ
b̃µ,t,s

| ∗ f (x, y)| ≤ C

∥∥∥b̃µ

∥∥∥1/γ

L1(Sn−1×Sn−1)

×supt,s∈R+




t∫
t
2

s∫
s
2

∫

Sn−1×Sm−1

|b̃µ(u, v)||f (x − φ(r)u, y − φ(k)v)|γ ′
dσ(u)dσ(v)

drdk

rk




1/γ ′

.
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Use Minkowski’s inequality for integrals and assumptions of b̃µ, we get

‖σ ∗
b̃µ,t,s,h

f (x, y)‖Lp(Rn×Rm)

≤ C




∫

Sn−1×Sm−1

|b̃µ(u, v)|
(
‖Mb̃µ,φ,ψ

(
|f |γ ′) ‖Lp/γ ′

(Rn×Rm)

)
dσ(u)dσ(v)




1/γ ′

.

By this and Lemma 2.5, we finish the proof. �

By tracking the constants, we have the following.

Lemma 2.7. Let µ ∈ N ∪ {0}, q > 1, h ∈ �γ (R+ × R+) for some 1 < γ ≤ 2 and
φ ∈ Hd1 , ψ ∈ Hd2 for some d1, d2 �= 0. If b̃µ is a given function on Sn−1 × Sm−1

as in Lemma 2.2, then for any p satisfying |1/p − 1/2| < 1/γ ′, there exists a positive
constant Cp such that

∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ ,t,s
∗ gi,j

∣∣∣2 dtds

ts




1/2∥∥∥∥∥∥∥∥
Lp(Rn×Rm)

≤ CpAµ

∥∥∥∥∥∥∥


 ∑

i,j∈Z

∣∣gi,j

∣∣2




1/2
∥∥∥∥∥∥∥

Lp(Rn×Rm)

holds for arbitrary measurable functions
{
gi,j (·, ·)

}
i,j∈Z on Rn × Rm. The constant Cp

is independent of µ.

Proof. We employ some ideas from [2, 16]. By Schwarz’s inequality, we obtain

∣∣∣σb̃µ,t,s ∗ gi,j

∣∣∣2 ≤ C

t∫
1
2 t

s∫
1
2 s

∫

Sn−1×Sm−1

∣∣gi,j (x − φ (r) u, y − ψ (k) v)
∣∣2

×
∣∣∣b̃µ

(u, v)

∣∣∣ |h(r, k)|2−γ dσ (u)dσ(v)
drdk

rk
.

Let us first prove this lemma for the case 2 ≤ p <
2γ

2 − γ
. By duality, there is a

non-negative function � ∈ L(p/2)′(Rn × Rm) with ‖�‖
L(p/2)′(Rn×Rm)

≤ 1 such that

∥∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ gi,j

∣∣∣2 dtds

ts




1/2
∥∥∥∥∥∥∥∥∥

2

Lp(Rn×Rm)

=
∫

Rn×Rm

∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ gi,j (x, y)

∣∣∣2 dtds

ts
�(x, y)dxdy.
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Thus, by a change of variable we derive∥∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ gi,j

∣∣∣2 dtds

ts




1/2
∥∥∥∥∥∥∥∥∥

2

Lp(Rn×Rm)

≤ CA2
µ

∫
Rn×Rm


 ∑

i,j∈Z

∣∣gi,j (x, y)
∣∣2


 σ ∗

b̃µ ,|h|2−γ ,t,s
�(−x, −y)dxdy.

Since h(·, ·) ∈ Lγ (R+ × R+,
dtds

ts
), then |h(·, ·)|2−γ ∈ Lγ/(2−γ )(R+ × R+,

dtds

ts
),

and since
(p

2

)′
>

(
γ

2 − γ

)′
, then by Lemma 2.6 and Hölder’s inequality, we achieve

that ∥∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ gi,j

∣∣∣2 dtds

ts




1/2
∥∥∥∥∥∥∥∥∥

2

Lp(Rn×Rm)

≤ CA2
µ

∥∥∥∥∥∥∥


 ∑

i,j∈Z

∣∣gi,j

∣∣2




1/2
∥∥∥∥∥∥∥

2

Lp(Rn×Rm)

∥∥∥∥σ ∗
b̃µ ,|h|2−γ ,t,s

�(−x, −y)

∥∥∥∥
L(p/2)′(Rn×Rm)

≤ CpA2
µ

∥∥∥∥∥∥∥


 ∑

i,j∈Z

∣∣gi,j

∣∣2




1/2
∥∥∥∥∥∥∥

2

Lp(Rn×Rm)

.

For the case
2γ

3γ − 2
< p < 2, by the duality, there are functions ζ = ζi,j (x, y, t, s)

defined on Rn×Rm×R+×R+ with

∥∥∥∥
∥∥∥∥‖ζi,j‖L2([ωi

µ
,ωi+1

µ
]×[ωj

µ,ω
j+1
µ ], dtds

ts
)

∥∥∥∥
l2

∥∥∥∥
Lp′

(Rn×Rm)

≤
1 such that ∥∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ gi,j

∣∣∣2 dtds

ts




1/2
∥∥∥∥∥∥∥∥∥

Lp(Rn×Rm)

≤ Cp

∥∥(ϒ(ζ ))1/2
∥∥

Lp′
(Rn×Rm)

∥∥∥∥∥∥∥


 ∑

i,j∈Z

∣∣gi,j

∣∣2




1/2
∥∥∥∥∥∥∥

Lp(Rn×Rm)

,



On certain estimates for Marcinkiewicz integrals 11

where

ϒ(ζ ) =
∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣∣σb̃µ,t,s ∗ ζi,j (x, y, t, s)

∣∣∣2 dtds

ts
.

Applying the above procedure, we reach that

‖ϒ(ζ )‖L(p′/2)(Rn×Rm) ≤ Cp

∥∥∥∥∥∥∥∥




∑
i,j∈Z

ωi+1
µ∫

ωi
µ

ωj+1
µ∫

ω
j
µ

∣∣ζi,j (·, ·, t, s)
∣∣2 dtds

ts




∥∥∥∥∥∥∥∥
L(p′/2)(Rn×Rm)

×
∥∥∥σ ∗

b̃µ ,s,t,|h|2−γ (ϑ)

∥∥∥
L(p′/2)′(Rn×Rm)

≤ CAµ,

where ϑ is a function in L(p′/2)
′
(Rn × Rm) with ‖ϑ‖

L(p′/2)′(Rn×Rm)
≤ 1. By this, we get

our desired for
2γ

3γ − 2
≤ p < 2. This completes the proof of Lemma 2.7. �

3. Proof of the main Result

Assume that � ∈ B(0,0)
q (Sn−1 × Sm−1) for some q > 1 and satisfies (1.1). Thus � can

be written as � =
∞∑

µ=1

C
µ
b

µ
, where C

µ
∈ C, b

µ
is a q-block supported on an interval

I
µ

on Sn−1 × Sm−1, and M(0,0)
q

({
C

µ

})
< ∞. For each block function bµ (x, y), let

b̃µ (x, y) be a function defined by

b̃µ (x, y) = bµ (x, y) −
∫

Sn−1

bµ (u, y) dσ (u) −
∫

Sm−1

bµ (x, v) dσ (v)

+
∫

Sn−1×Sm−1

bµ (u, v) dσ (u) dσ (v) . (3.1)

Let D = {µ ∈ N : |Iµ| < e−1}, and let b̃0 = � −
∑
µ∈D

C
µ
b̃

µ
. Then it is easy to show

that, for each µ ∈ D ∪ {0}, b̃µ (x, y) has the following properties: sss
∫

Sn−1

b̃µ (u, ·) dσ (u) =
∫

Sm−1

b̃µ (·, v) dσ (v) = 0,

∥∥∥b̃µ

∥∥∥
Lq(Sn−1×Sm−1)

≤ C
∣∣Iµ

∣∣− 1
q′ ,
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and ∥∥∥b̃µ

∥∥∥
L1(Sn−1×Sm−1)

≤ C,

where I0 is an interval on Sn−1 × Sm−1 with |I0| = e−2 and C is a positive constant
independent of µ. Using the assumption that � satisfies the vanishing conditions (1.1)

and the definition of b̃µ; we deduce that � can be written as � =
∑

µ∈D∪{0}
C

µ
b̃

µ
, which

in turn implies
∥∥M�,h,φ,ψ

∥∥
Lp(Rn×Rm)

≤
∑

µ∈D∪{0}
|C

µ
|
∥∥∥Mb̃µ,h,φ,ψ

∥∥∥
Lp(Rn×Rm)

. (3.2)

Therefore, to prove our theorem, it is enough to show∥∥∥Mb̃µ,φ,ψ

∥∥∥
Lp(Rn×Rm)

≤ CpAµ ‖f ‖Lp(Rn×Rm) . (3.3)

We establish the inequality (3.3) by applying the same approaches that Al-Qassem
[2] as well as Fan and Pan [16] used. Without loss of generality we may assume that

h ∈ Lγ (R+ × R+,
dtds

ts
) for some 1 < γ ≤ 2 and φ ∈ Hd1 , ψ ∈ Hd2 for some

d1, d2 > 0. For i ∈ Z and µ ∈ N, let
{
�i,µ

}∞
−∞ be a smooth partition of unity in (0,∞)

adapted to the interval Ii,µ = [ω−id1−|d1|
µ , ω−id1+|d1|

µ ]. More precisely, we require the
following:

�i,µ ∈ C∞, 0 ≤ �i,µ ≤ 1,
∑

i

�i,µ (t) = 1,

supp �i,µ ⊆ Ii,µ, and

∣∣∣∣d
s�i,µ (t)

dts

∣∣∣∣ ≤ Cs

ts
,

where Cs is independent of ωµ. Define the multiplier operators Mi,j,µ on Rn × Rm by

(M̂i,j,µf )(ξ, η) = �i,µ(|ξ |)�j,µ(|η|)f̂ (ξ, η). By Minkowski’s inequality, we get that

Mb̃µ,h,φ,ψf (x, y) =

∫

R+×R+

∣∣∣∣∣∣
∞∑

i,j=0

2−(i+j)

∫
2−i−1t<|u|≤2−i t

∫
2−j−1s<|v|≤2−j s

× f (x − φ(|u|)u′, y − ψ(|v|)v′)Kb̃µ,h(u, v)dudv

∣∣∣2 dtds

(ts)3

)1/2

≤
∞∑

i,j=0

2−(i+j)

(∫
R+×R+

∣∣∣∣
∫

1/2t<|u|≤t

∫
1/2s<|v|≤s

× f (x − φ(|u|)u′, y − ψ(|v|)v′)Kb̃µ,h(u, v)dudv

∣∣∣2 dtds

(ts)3

)1/2

≤ 4

(∫
R+×R+

∣∣∣σb̃µ,t,s ∗ f (x, y)

∣∣∣2 dtds

ts

)1/2

. (3.4)
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Decompose σb̃µ,t,s ∗ f (x, y) =
∑

a,b∈Z

Yµ,a,b(x, y, t, s), where

Yµ,a,b(x, y, t, s) =
∑
i,j∈Z

σb̃µ,t,s ∗ Mi+a,j+b,µf (x, y)χ
[ωi

µ,ω
i+1
µ )×[ωj

µ,ω
j+1
µ )

(t, s).

For anyf ∈ S(Rn×Rm), defineSµ,a,bf (x, y) =



∞∫
0

∞∫
0

∣∣Yµ,a,b(x, y, t, s)
∣∣2 dtds

ts




1/2

.

Hence,
Mb̃µ,t,sf (x, y) ≤ C

∑
a,b∈Z

Sµ,a,b(f ). (3.5)

Let us first compute the L2-norm of Sµ,a,b(f ). By using Plancherel’s theorem and
Lemma 2.2, we obtain that

∥∥Sµ,a,b(f )
∥∥2

L2(Rn×Rm)

≤
∑
i,j∈Z

∫
�i+a,j+b,µ




ωi+1
µ∫

ωi
µ

ω
j+1
µ∫

ω
j
µ

∣∣∣σ̂b̃µ,t,s(ξ, η)

∣∣∣2 dtds

ts




∣∣∣f̂ (ξ, η)

∣∣∣2
dξdη

≤ CA2
µ

∑
i,j∈Z

∫
�i+a,j+b,µ

(∣∣ωid1
µ ξ

∣∣± 2α
Aµ

∣∣ωjd2
µ η

∣∣± 2α
Aµ

) ∣∣∣f̂ (ξ, η)

∣∣∣2
dξdη

≤ CA2
µ2−α(|a|+|b|) ∑

i,j∈Z

∫
�i+a,j+b,µ

∣∣∣f̂ (ξ, η)

∣∣∣2
dξdη

≤ CA2
µ2−α(|a|+|b|) ‖f ‖2

L2(Rn×Rm)
,

where �i,j,µ = {
(ξ, η) ∈ Rn × Rm : (|ξ | , |η|) ∈ Ii,µ × Ij,µ

}
. Thus,

∥∥Sµ,a,b(f )
∥∥

L2(Rn×Rm)
≤ CAµ2

−α(|a|+|b|)
2 ‖f ‖L2(Rn×Rm) . (3.6)

Applying the Littlewood-Paley theory and Theorem 3 along with the remark that
follows its statement in [[20], p. 96], plus using Lemma 2.7, we obtain

∥∥Sµ,a,b(f )
∥∥

Lp(Rn×Rm)
≤ CpAµ ‖f ‖Lp(Rn×Rm) (3.7)

for any p satisfying |1/p − 1/2| < 1/γ ′. By interpolation between (3.6) and (3.7) we
reach ∥∥Sµ,a,b(f )

∥∥
Lp(Rn×Rm)

≤ CAµ2
−α(|a|+|b|)

2 ‖f ‖Lp(Rn×Rm) . (3.8)

Consequently, by (3.3)-(3.5) and (3.8), we get our result. This completes the proof of
Theorem 1.1.
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4. Concluding Remarks

Let k ∈ N and n1 . . . nk ≥ 2. Assume that for j = 1, . . . , k, φj ∈ Hdj
for some dj �= 0,

a measurable function h on R+× . . .×R+ (k-times), and �(x′
1, . . . , x

′
k) be an integrable

function on Sn1−1 × . . . × Snk−1 satisfying the following condition:
∫

Snj −1
�(x′

1, . . . , x
′
k)dσ (x′

j ) = 0 f or j = 1, . . . , k.

Define the corresponding Marcinkiewicz integral operator on Rn1 × . . . × Rnk by

M�,h,φ1,...,φk
f (x1, . . . , xk) =

(∫ ∞

0
. . .

∫ ∞

0

∣∣∣Fφ1,...φk
t1,...,tk

(x1, . . . , xk)

∣∣∣2 dt1 . . . dtk

(dt1 . . . dtk)3

)1/2

,

(4.1)
where

F
φ1,...φk
t1,...,tk

(x1, . . . , xk) =
∫

|u1|≤t1

. . .

∫
|uk |≤tk

f (x1 − φ1(|u1|)u′
1, . . . , xk − φk(|uk|)u′

k)

× �(u′
1, . . . , u

′
k)h(|u1|, . . . , |uk|)

|u1|n1−1, . . . , |uk|nk−1
du1 . . . duk.

By following the above procedure, we derive the following corollary.

Corollary 4.1. Let k ∈ N, � ∈ B(0,k/2−1)
q (Sn1−1 × . . . × Snk−1) for some q > 1.

Assume that h ∈ �γ (R+ × . . . × R+) for some γ > 1, and for j = 1, . . . , k, φj ∈ Hdj

for some dj �= 0. Then there exists a constant Cp such that
∥∥M�,h,φ1,...,φk

f
∥∥

Lp(Rn1×...×Rnk )
≤ Cp ‖f ‖Lp(Rn1×...×Rnk )

for anyf ∈ Lp(Rn1 × . . . × Rnk) and for anyp satisfying |1/p−1/2| < min{1/2, 1/γ ′}.
We point out that for k = 1 (the underlying space is not a product space), the Lp

boundedness of M�,h,φ1 was obtained in [7], and for k = 2 the boundedness of M�,h,φ1

was established in [8] by using the extrapolation argument found in [5].
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