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Abstract

Kim (2015) constructed the degenerate Frobenius-Euler polynomials and numbers
and studied some identities of these polynomials. In this paper, by the same moti-
vation, we define the degenerate Frobenius-Genocchi polynomials and investigate
some new and interesting properties of these polynomials.
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1. Introduction

As is well known, the Bernoulli polynomials are defined by the generating function to
be

0.¢]
t xt t"
e = 2(:) Ba(x)— (see [3—5,11,13,15]) (1)
and the Euler polynomials are defined by the generating function to be
2 > 1"
r_
e = ;_0 En(x)— (see [5, 14, 16, 18, 19,25, 26]). )

When x = 0, B, = B, (0) and E,, = E,(0) are called the Bernoulli numbers and the
Euler numbers respectively.
We consider a finite sum as follows:

1k ok ooyt for all k € N. (3)

We also note that
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From (4) and (5), we obtain the following theorem.

Theorem 1.1. Letn, m € N U {0}. Then we have
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m
In order to calculate Z(— l)l ", we first note that
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From (5) and (7), we obtain the following theorem.

Theorem 1.2. Let n, m € N U {0}. Then we have

2) (=D = (~D"En(n+1)+ Ep
=0

E,(n+1)+ E, ifn=1 (mod?2)
E,—E,(n+1) ifn=0 (mod 2).

By (8), we get

From (9), we obtain the following theorem.

Theorem 1.3. Letn, m € N U {0}. Then we have

n

m 2 ifn=0
Z)(H)Em(”“HE" _{ 0 ifn> 0.
m=

By (10), we calculate the followings:

1 1
Eo=1, Et=—=, £, =0, E3=—, E4=0,---
0 1 5 b2 3= 0 b4

(1)
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From (11), we see that for n € N U {0}
Ey, = 0 and E2n+1 € Q (22)

Recall that the Genocchi numbers are defined by the generating function to be

2t = .t

ke Z:(j) Gn—y (see [1]) (23)

By (13), we get
Go=0 (24)

and
2 = (2(:) G,%) (e +1) (25)
— Z_(:)Gna Zﬁ+1 (26)
-y (Z (’") G+ Gn) £ @)
m=0 \n=0 " n

From (14) and (15), we obtain the following theorem.

Theorem 1.4. Let m € N. Then we have

Go=0
and
r;)(f)Gm(n—i-l)—l—Gn:{ (2) ﬁ”i} (28)
By (16), we calculate the followings:
Gi=1,Gy=-1,G3=0, Ga4=1,--- (29)
From (17), we see that forn € N
Gop+1 = 0and Gy, € Z. (30)

From (12) and (18), we see that

2 > "
e = Y B0 € Q) 31)
n=0

n!

et



On the degenerate Frobenius-Genocchi polynomials 5

and

2t
el +1

DN ACER/(1) (32)
n=0

where R([¢]) is the set of all polynomials in an indeterminate ¢ with coefficients in a ring
F and F is either Q or Z.

For u € C with u # 1, the Frobenius-Genocchi polynomials are defined by the
generating function to be

(1 —u)t

el —u

o0 l'n
=3 G Hy (x|u) —. (33)
n=0

When x = 0, GH,,(u) = GH,,(0|u) are called the Frobenius-Genocchi numbers. In
particular, if u = —1, we have

= " 2
Y GH,(x| - = = e (34)
n! el +1
n=0
o fn
= ) Gan)—, (35)
n:
n=0

where G, (x) are the Genocchi polynomials. In fact, GH,(x| — 1) = G,(x) for all
n € N U {0}. We observe that

1—u

(0,0)
t’l
X Z Hn(xlu)a. (36)
n=0

e
el —u

where H, (x|u) are the Frobenius-Euler polynomials (see [21]). When x = 0, H,,(u) =
H, (0|u) are called the Frobenius-Euler numbers.

In recent years, many researchers have studied various types of special polynomi-
als, for examples, Barnes-type degenerate Euler polynomials, the degenerate Frobenius-
Euler polynomials, Daehee polynomials, Changhee polynomials, and Boole polynomials
etc. (see [1,6-10, 17, 20-24]). Thus, our motivation in this paper is to define the de-
generate Frobenius-Genocchi polynomials and to investigate some new and interesting
properties of these polynomials.

2. Properties of Frobenius-Genocchi polynomials

We note that the Stirling number of the first kind is defined as

@n =Y S, Dx', (=0, 37)

=0
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where (x), = x(x —1)---(x —n 4+ 1) and (x)p = 1, and the Stirling number of the
second kind is defined as

n i
t
(e —1)" :n!ZSz(l,n)E. (38)
l=n
By (22) and (23), we get
(0,0)
t" (I —-uwtr .,
tZHn(x|u)a = e’
n=0
o0 tn
= ZGHn(x|u)—. (39)
n!
n=0

By comparing coefficients on the both sides of (26), we get

G Ho(x|u) = 0. (40)
By (26) and (27), we get
> 1" | — 1"
Y Hixlw— = —% GHy(xlw)— (41)
n! t n!
n=0 n=1
o =1
= Y GH,(x|lu)—; (42)
— n:
o0
GH t"
_ Z n—i—l(-xlu)_. (43)
= n+1 n!

From (28), we obtain the following theorem

Theorem 2.1. Letn € NU {0} and u € C with u # 1. Then we have

Hy (x|u) = —GH,’;j(f ) (44)

From (21), we note that
(0]

a __”:t =3 GH,,(u);—n'. (45)
-0 :

et
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By (30), we get

(1—u)t = (Z GHn(u);—n'> (¢ — u)

- > (o) Sy
-y <Xn: (;)GHm(u) _ uGHn(u)) ;

n=0 \m=0

From (31), we obtain the following theorem.
Theorem 2.2. Letn € Nand u € C with u # 1. Then we have
GHy(u) =0,

and

n

> (Z)GHm(u) — uGH, () = (1 — )81 1,

m=0

where 61 ,, is the Kronecker’s symbol.

By (21), we note that

[0, ] tn
ZGHn(x|u)— = et
n!

n=0

From (34), we obtain the following theorem.

Theorem 2.3. Letn € NU {0} and u € C with u # 1. Then we have
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with the usual convolution about replacing G H ! (u) by GH;(u).
Note that if we take u = —1, by (35), we have

Gn(x) = GHy(x|—1) (57)

_ ZGHI(—I)(n>x”_l (58)
[=0 !

- Y G <”>x"—l (59)
[=0 !

— G+ (60)

with the usual convolution about replacing G! by G;.

3. Degenerate Frobenius-Genocchi polynomials

For u € C with u # 1, we consider the degenerate Frobenius-Euler polynomials which
are given by the generating function to be

T At = Y bt (see [21]). (61)
(l—l—)\.t)X —Uu n=0 n:

In the reference ([21]), they obtained some interesting results of these polynomials. By
the same motivation, we define the degenerate Frobenius-Genocchi polynomials which
are given by the generating function to be

(1 — u)t R "
—— {0 +A)r = Ghy ) (x|u)—. (62)
(14+10)7% —u ,; FE

When x = 0, Gh, ;(u) = Gh, ;(0|u) are called the degenerate Frobenious-Genocchi
numbers. By (37), we get

as tn 1 — u x
Y Ghyxlwy— = t——————(1+ 1)} (63)
n=0 n: (1 'i‘)\.t)X —Uu
[e.@] tn
= 1) Il (64)
n=0

+1
— (65)

(0] tn
= > hua(xlu)
n=0 n

Thus, by comparing coefficients on the both sides (39), we get

Gho(xlu) =0 (66)
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and hence

(o¢] tn 0 tn
D Gl — = Y Gl (xlu)—

n=0 n=1
B i Ghygr5.(x]u) "+
— -
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By (39) and (41), we get
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(70)

By comparing of coefficients on the both sides of (42), we obtain the following theorem.

Theorem 3.1. Letn € NU {0} and u € C with u # 1. Then we have

Ghyy1(x|u)

hn,k(x|u) = n+1

We note that
(7 = ()G Gm)
= (X|M)m,

where (x|A)y, = x(x —A)---(x — (m — 1)) forall m € N. By (37), we get
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By comparing the coefficients on the both sides of (45), we obtain the following theorem.
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Theorem 3.2. Letn € NU {0} and u € C with u # 1. Then we have

n

Ghas(xlu) =Y (’;) Gy, 3. () (¥ (79)

=0

Note that

t—— Ghy, ()— (80)
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By comparing coefficients on the both sides of (48), we obtain the following theorem.

Theorem 3.3. Letn € N and u € C with u # 1. Then we have
Gho () =0 (85)

and

> Gy () (1) (’;) — uGhy () = (1 = w)y 1, (86)

=0

where 61 ,, is the Kronecker’s symbol.

1
By replacing ¢ by P——— (e™ — 1) in (37), we get
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From (49), we note that

1 —
S (88)
el —u
00 1, At n—1
—(e™ —1
S Gl ' ) (89)
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o Gl a(xlu) (@ = D)
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From (23) and (52), we obtain the following theorem.
Theorem 3.4. Letn € N and u € C with u # 1. Then we have
" Ghyy1(x|u)
H,(x|u) = Tl AT ymen g m,n). 93
(xu) go g 2(m, n) (93)
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