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Abstract

We present new fourth order accurate methods for evaluating certain volume
and surface integrals which satisfy the modified Helmholtz equation on
general two dimensional regions with smooth boundaries. The integrals are
computed by fast finite difference methods on a rectangular region in which

integration region is embedded at a cost of O(n2 log n) operations where n is
the number of mesh points in each direction in the embedding region. We
apply these techniques to the numerical solution of the modified Helmholtz
equation and the heat equation on general regions using integral equation
methods, and indicate how these methods could be combined with mesh
refinement. Computational results are provided.
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1 Introduction

In this paper we present rapid new high order accurate methods for evaluating volume
integrals whose kernels are the fundamental solution of the modified Helmholtz
equation and surface integrals whose kernels are the normal derivative of the
fundamental solution. The regions of integration can be any smooth curve or region in
two dimensions, and the cost of evaluating either integral is essentially equal to the
cost of inverting a discrete approximation to the modified Helmholtz operator on a
rectangular two dimensional region. Thus, by using Fourier methods [11] both types

of integrals can be evaluated in O(n2 log n) operations. We note that other rapid
methods have been developed for solving the modified Helmholtz equation on
rectangular regions [6] and can equally well be combined with our method. Our
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method is an extension of one we developed previously for solving Poisson’s and the
biharmonic equation on general regions. See, for example, [9],[16],[17].

The essential idea is the following. Let L denote the modified Helmholtz operator, and
suppose the integral W is such that LW =f in D and LW = 0 outside. (f can be 0 if W is
a surface integral) We evaluate an approximation to W by first embedding D in a
larger rectangular region R with a uniform mesh, and computing a fourth order
accurate approximation to LhW, the discrete modified Helmholtz operator Lh applied
to W, at all the mesh points of R. Once we have done this, we apply an operator that
inverts Lh on R to obtain an approximation to W. It is easy to compute such an
approximation at most mesh points of R. At mesh points inside D that have all their
neighboring mesh points inside D we approximate LhW by f since LW = f on D.
Similarly, at mesh points outside D whose neighboring mesh points are also outside
D, we set LhW = 0 since LW = 0 outside D. The difficulty arises at the other,
“irregular” mesh points. Because of the discontinuities in the derivatives of W across
the boundary of D the discrete modified Helmholtz operator is not well approximated
by the continuous Helmholtz operator. It turns out, however, that one can compute an
approximation using the discontinuities in W, which depend on f and its derivatives,
and information about the boundary of D.

In order to solve the modified Helmholtz equation we use an integral equation
formulation also used by Quaife and Kropinski [14] in which one assumes the
solution is the sum of a volume integral and a surface integral. The volume integral
satisfies the inhomogeneous differential equation, and the surface integral is chosen so
that the boundary condition is satisfied. The density of the surface integral is the
solution of a boundary integral equation of the second kind with bounded kernel
similar to one used for solving Laplace’s equation. (The kernel is the normal
derivative of the fundamental solution of the Helmholtz equation in free space.)
Quaife and Kropinski have solved this equation using a fast multipole method, and for
the discretization they used hybrid gauss-trapezoidal quadrature rules developed by
Alpert [2] for evaluating integrals with logarithmic singularities. If there are N
discretization points on the boundary of the irregular region then they can solve the
integral equation using only O(N ) operations. Since we were only interested in the
accuracy of evaluating the volume and surface integrals, not the speed of solving the
integral equation, in our numerical experiments we discretized the integral equation
using a Nystrom method with the trapezoid rule as the quadrature method, and solved
the resulting linear system of equations using a preconditioned conjugate gradient

method [18]. Our cost of solving the integral equation was therefore O(N 2). Our
method of evaluating integrals can and should, of course, be combined with FMM
type methods for solving integral equations [19], [20]. For simplicity we also used the
same discretization in time of the heat equation as Quaife and Kropinski, and
combined it with our method of evaluating volume and surface integrals.

We note that integral equation formulations are particularly convenient for solving
problems on exterior regions. Once a particular solution has been evaluated, the
computational problem is reduced to the solution of a homogeneous differential
equation, which only requires the solution of an integral equation on the surface of the
region. We also note that integral equation methods for solving differential equations
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have become increasingly popular in part due to rapid methods for solving certain
integral equations Most prominent among these are those based on the fast multipole
method, which have made the solution of problems on very complex geometries
possible. Other methods based on wavelets, singular value decompositions and other
sparse representations are commonly used [1], [4]. Despite these advances, fewer
effective methods have been developed for solving realistic inhomogeneous equations
which require the evaluation of volume integrals. The most common methods involve
direct application of some quadrature formula. See, for example [13]. In particular, a

total of O(n4) operations are needed to evaluate the integral at every point of an n by
n grid, since evaluating each integral requires O(n2) operations. In contrast, our

method only requires O(nzlog N) operations.

Another difficulty encountered when using quadrature formulas in a straight- forward
way is that fundamental solutions of the modified Helmholtz equation are
discontinuous and have discontinuities in their derivatives as the point at which one is
evaluating the integral nears a point of the region of integration. That is, the function
KO(r) and its derivatives are unbounded at the origin. Therefore, it is difficult compute
these integrals very accurately at points in, or near, the region of integration. The
method we use does not have these problems. We note other rapid and sophisticated
methods have been developed for evaluating volume integrals, but these require
smooth extension of the inhomogeneous term from the irregular region to the rest of
the rectangular embedding region [8], [ 14]. Our methods have no such requirement.
The organization of this paper is as follows. In Section 2 we show how to compute the
volume and surface integrals, in Section 3 we show how to use these methods in the
solution of the modified Helmholtz and heat equations on general regions and discuss
mesh refinement. In Section 4 we provide results of numerical experiments.

2 Evaluation of volume and surface integrals
In this section we present our method for evaluating an integral whose kernel

1/27ra2)K0(r/a) + g is a fundamental solution of the modified Helmholtz equation
Au-aZu=s

Here KQ(r) is the zeroth order modified Bessel function of the second kind and ¢ is
the Dirac function. We later show how to compute surface integrals. Initially we
ignore boundary conditions since we often only seek a particular solution of the
equation.

2.1  Evaluation of volume integrals
We start by embedding the irregular region D over which we are evaluating the
integral in a larger rectangular region R with a uniform grid, say with mesh width h,
which ignores the boundary of D.
1 T
T = — — f :'"
Wxy) = 5— f K, (a] Flx',yNdv  (21)

i
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where r = M,.“(x —x)2+(y—y")?

As noted, we evaluate this integral by computing an approximation to
LhW where Lh is a discrete approximation to the modified Helmholtz operator at all

the mesh points of R. Once we have done that, we apply an operator, L~! which
inverts Lh on R to Obtain an approximation to W, de- spite the fact that W is not
smooth. We note that inverting Lh on a grid with n points only requires O(n log n)
operations [11].

Since AW — a2W = f in D and AW — a2W = 0 outside D (2.2)

at mesh points inside D, which have all their neighboring mesh points inside

D we set LhW =f, and at points outside D, with all their neighbors outside we set LhW
=0.

The problem then reduces to computing an approximation to LhW at the other mesh
points, the points which are in one region, but have neighboring mesh points in the
other region.

It turns out that in order to be able to compute an approximation to LhW at these
points it is sufficient to know what the discontinuities in the derivatives of W in the
coordinate directions are at the boundary of the region D. We now show how to find
these discontinuities.

Suppose the boundary of D is given by (x(t), y(1)).

For a function g defined on R let [g(p)] denote the discontinuity in g at a point p on
OD. An integral of the form (2.1) and its normal derivative are continuous across 0D.
Therefore, for p in 6D

[W(P)]=0, (2.3)
and

[Wn(p)] =y (O[Wx ()] —x" (O[Wy (p)] =0 (2.4)
By differentiating (2.3) in the tangential direction t, we see

[Wt(p)] = x" (D[Wx ()] +Y (DIWy (p)] = 0, (2.5)

so [Wx]=[Wy]=0.
By (2.2) the second derivatives of W are discontinuous and

[Wxx] + [Wyy ] =f (2.6)
By differentiating (2.4) and (2.5) in the tangential direction we see

X" (O2[Wxx] +y (D[ Wyy ]+ 2x D)y (O[Wxy ] = 0. 2.7)
X (DY (O[Wxx ] =X Oy O[Wyy 1+ (y2(t) —x 2(E)[Wxy 1 =0. 2.8)

Equations (2.6), (2.7) and (2.8) determine [Wxx], [Wyy ] and [Wxy ]. We use similar
methods in order to determine the discontinuities in third and higher order derivatives.
See [6].

Now we show how to use these discontinuities to approximate LhW.

Let W(p) denote the values of W (p) at points p outside D, w(p) denote the values of
W (p) at points p inside D, and let B be the set of irregular mesh points, that is the set
of points which have one of their neighboring mesh points on the opposite side of D.
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B consists of x ando
Figure 1

We need to show how to approximate the discrete modified Helmholtz operator at
points of B. Let

1
where L%W=hi2[ 1 —4 1 ]W—aZW
1

Suppose a point p is in D, and the point to the right, pE, is not. Let p* be the point on
the line between p and pE which intersects D, let h1 be the distance between pE and

p*, andleth2 =h—hi.

By manipulating the Taylor series centered at p and pE and evaluated at p* we can
derive the following expression for
w(pg) —w(p). (For details see [6]).

1

w () —wp?) — hy[w, (") —w, (p)] + 5
h?i [EIII (Fﬁj - WIII(p 3:]] + ;:_3 [E:rxxx [:pi-c:] - W:rxxx [pgj]

h! hE h4
_hwx (pj + 2 Wex (pj T e Wexx (pj + 2a Wesmx [:p:] + D(h‘sj (29)
Note that the first five terms depend on the discontinuities between W and W™ and in
their X derivatives across D. The other terms are the usual Taylor series terms.

-
rs

[Wer (P7) — W, (p7))]
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Therefore, the right hand side of (2.9) is a sum of terms we can evaluate in terms of
the discontinuities between w and W™ and their X derivatives, and terms we would have
if the boundary of D did not pass between p and pE.

Now let pW, pN, pS be the mesh points to the left of, above, and below

FIGURE 2

We get the same type of expressions for the differences between the value of W at p
and at its other neighbors, that is W (pW ) — W (p), W (pN ) — W (p), W (pS ) — W (p),
except that there will not be amy boundary terms unless 0D passes between p and that

neighbor. Therefore, we can compute an approximation to LS W, which is just the

sum of the above four differences divided by h2 minus a2W (p)

W = Wi(pg) + W(ps) + W[FT,] + W(py) — 4W(p) —2W(p)

=

at all the irregular points when we know the derivatives of the boundary curve (x(t),
y(t)) and the derivatives of f accurately enough.

More precisely, for mesh points p € B we define the mesh function m(p) to be the

value of the extra terms in L W (p) due to the discontinuities in W and its derivatives.
We define Wh to be the solution of the following equations:

L3W,(p) = f(p) forpe D —B
L3W,(p) = f(p) + m(p) forpeBND
L5 W, (p) = m(p) forp € B ND°
L,W,(p)=0forpeER—DnNBE
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Wh(p) =W (p) p € 0R
How accurately we compute the terms m(p) determines the accuracy of the solution
we obtain after applying a fast solver. In particular, if the values of m(p) are first order

accurate then W will be a second order accurate approximation to W. For a proof see
[3].

We can also compute an approximation to a fourth order accurate 9 point
approximation to L. Then, by applying an operator which inverts the discrete operator

L9 we can obtain a fourth ofder accurate solution.
Specifically, in order to evaluate the surface and volume integrals we use the fourth
order accurate approximation to the modified Helmholtz operator

(a:;;—(af + })w F+E(F+ap

where
1 [* 4 1
g —
NW=—=[¢ —20 4|W
1 4 1

To see that this operator is fourth order accurate we note that for a smooth function @

El —

So, if Aw = aZw + f, then

A,

B 2+a4h2 N hz
=|la e tw+ f

To compute an approxnnatlon to AW
we use the fact that the stencil is a linear combmatlon of two second order accurate
stencils, i.e.

Ha’w + k) + Ag) + 0(h*)
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9 _ 2,5 1 .m
‘&h - E‘&h +§ Ah
1

where A} = o -4 ]

In order to approximate A* W we need to know the discontinuities of
W in u and v directions where u =2 and v = "2 The discontinuities

7l 72
can, of course, be computed in terms of the discontinuities in the x and y
directions by using the chain rule. For example, if p* is on ¢D, then

Wi(p™) W;(p*)
(W) = [WipT)] | [Wilp .]_

V3 Vo

Once we know these discontinuities we may, in the same way as before, use them to

compute a higher order accurate approximation to AX W.

The accuracy of the resulting method is same as the accuracy to which the discrete
Helmholtz operator is computed. That is, the errors in computed values of the
potential Wh are bounded by a constant times the maximum truncation error, and if

the potential function which is being computed is smooth, the errors are O(h?) or
O(h%).

2.2  Evaluation of surface integral
We use essentially the same method we use to compute volume integrals to compute
surface integrals of the form

oK, (=
U(xy) = — f u(s) f;n("')ds

2wal

As when we evaluate volume integrals, the problem of evaluating an integral of this
type reduces to evaluating LU in the regions inside and outside D, and evaluating the
discontinuities in U and its derivatives across the boundary of D. We first note that
LU vanishes in the two regions, i.e.

(A —a)U (x, y) = 0 inside D, and (A — a?)U (x, y) = 0 outside D. (2.10)
It is also known that such a surface integral is continuous in the normal direction, and
has a discontinuity equal to the density [ in the tangential direction. That is

Ul=u (2.11)
and

It follows that

[Un]=0. (2.12)

To find the discontinuities in the second derivatives of U we note that by (2.10)
[AU]=a%[U]=a%y
We also note that by (2.11) and (2.12)
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[Utt] ="

[Unt]=0

The above three equations determine [Uxx], [Uxy ] and [Uyy ].

To find the discontinuities in the four third derivatives we use the follow- ing four
equations:

[(AU )n] =aZ [Un] = 0,
[(AU)t]=aZ [Ut] =aZu’

[Uttt] = 1

[Untt] = 0.

As before, once they are determined we use these disgpntinuities in the Derivatives of
U to compute approximations to L3 Uor L3 U at the irregular mesh points of R, and
then apply a fast solver to obtain an approximation to U.

Boundary Conditions

When computing volume and surface integrals it is, of course, necessary to provide
boundary conditions at the edge of the computational region R before inverting Lh. If
we only require a particular solution of the modi- fied Helmholtz equation then it
makes no difference which are prescribed, since the discontinuities in the derivatives
of the integrals are the same, and therefore LhV, is the same, independent of which
fundamental solution of the modified Helmholtz equation is the kernel. The integral
we obtain an approximation to with this method is the one associated with the same
boundary conditions as the fast Helmholtz solver we use. For example, if we use a
doubly periodic Helmholtz solver, then we obtain an approximation to the integral
whose kernel is the doubly periodic Green’s function for the modified Helmholtz
equation on R. If we need an integral with a specific kernel, then we use the
corresponding solver.

It is also possible to obtain approximations to integrals which satisfy free space
boundary conditions. In that case we can use a method originally developed by
Hockney [11] and later improved by James [12] where one cal- culates the boundary
potential by finding a set of correction charges on the boundary of the embedding
region, and then convolves them with a suitable

Green’s function. This method, however, is more expensive than the others since it

requires two applications of the operator L1,

3 Solution of modified Helmholtz and Heat equations
We use the volume and surface integrals discussed in the previous section to solve the
modified Helmholtz and heat equations on smooth two dimensional regions.
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3.1  Modified Helmholtz equation

As in [14], in order to solve the inhomogeneous equation (A — a2)U X y)=1f(XY)
when Dirichlet boundary conditions U (X, Y) = g(X, ¥) on 0D are prescribed we use the
representation of the solution as the sum of a volume integral and an integral of a
double layer density function:
Ux,y) = W(x,y) + Us(x,y)

f’-r ij (
where KO is the zeroth order modlﬁed Bessel functlon of the second kind. We first
evaluate Wh, the approximation to the volume integral W at mesh points of R, and
then we interpolate its values onto the discretization points of 0D using the known
discontinuities in its derivatives. More precisely, we use the values of the mesh
function Wh at points on both sides of 6D and the discontinuities in the second and
third derivatives of W to compute the extension of the inside function W to nearby
points of R outside D. We then interpolate values of the extended function w onto 0D
using fourth order Lagrange interpolation.
Also, as in [14], in order to determine the density H(S) we solve the integral equation
u(t) 1 d e
2a?  2ma® _LD an, Ko (ajp[sjds = w(®) (32)
where o(t) = g(t) — w(t)
As noted, in our experiments we discretized the above equation using a Nystrom
method with the trapezoid rule as the quadrature formula, and we chose the
discretization points to be equally spaced. By the Euler Maclaurin formula [7] the
trapezoid rule is highly accurate for smooth functions on periodic regions, and we
needed few mesh points to solve the integral equation very accurately on the simple
test regions we used. For calculations on more general regions one should use
multipole methods [14].
Once we have solved the integral equation we evaluate the surface integral US using
the method described in the previous section.

3.2  Heat Equation

We also used the surface and volume integrals to solve the heat equation

ut(x,y,t) —Aux,y,)=F (X, y, 1), (X,y) € D, 0 <t < tf

with Dirichlet boundary conditions

ux,y,ty=f(x,y, t) (x,y) € oD, t € [0, tf ] and initial conditions

u(x, y, 0)=uo(x, y)

prescribed where D is a two dimensional region with smooth boundary.

Instead of using an integral equation approach based on a fundamental solution of the
heat equation we first discretized with respect to time. Specifically, as in [14] we used
the implicit second order accurate extrapolated Gear method:
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et = e o L (T - au e bR - 267 B
2 ia (3.3)
where 0t is the time step and a® = ; 8t.
At the N th time step the solution uN s represented as the sum of a volume integral W
N and a surface integral U N .

a3

u = WY+ UY
where 1 )
AT — _W=58", (3.4)
a2
and
e
Ay - —% 70
7

UV y.t) =flxy. ) — Wiy t),
Thus, at each time step we must solve one integral equation and evaluate two
integrals.
We can accurately approximate the right hand side of (3.4) and it’s Laplacian.

However, since we cannot approximate the normal derivative of the right hand side
accurately enough, we cannot accurately approximate the discontinuities in the third

and higher order derivatives of W N. Therefore the method should only be second
order accurate in space. In practice, how- ever, we have found the method to be
somewhat more accurate.

Mesh refinement

When approximating integrals it is often not necessary to use as refined a mesh at all
points of the computational region. That is, it may be desirable to evaluate volume
and surface integrals on regions composed of subregions with different mesh widths.
There are several recently developed accurate methods for solving elliptic differential
equations on regions with locally refined grids that can be combined with our method.
See, for example, [6].

However, it is also possible to perform calculations on different subregions
independently. For example, suppose we want to approximate an integral US on a

rectangular region RS disjoint from D, which has a different (presumably coarser)
mesh than the one on the region covering D.

Since ( A — a2 ) US is known in RS: in order to approximate US we only need to

evaluate it at mesh points on the boundary of RS and then invert Lh on RS- Although
one could evaluate the integral at all boundary points by quadrature, we have instead
done the following. We only evaluated it by quadrature at the four corner mesh points

of RS and at their neighboring points. At mesh points on the line between two
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consecutive corner mesh points we required the fourth derivative of W to be 0. Thus,
finding the values at all points on the boundary of RS only requires solving four 5

diagonal linear system of equations, one for each side of the rectangle RS: and
therefore the cost was O(n).

Conclusion

We have presented rapid, fourth order accurate numerical methods for evaluating
volume integrals whose kernels are a fundamental solution of the modified Helmholtz
equation and surface integrals whose kernels are the nor- mal derivatives of such
functions. We have also shown how these methods can be used as part of efficient
numerical methods for solving both the modified Helmholz and heat equations on
general two dimensional regions in space. In addition, we have indicated how these
methods can be combined with locally refined meshes.

4 Numerical Experiments

In this section we report on results of numerical experiments in which we tested the
accuracy of our methods for evaluating surface and volume integrals, and for solving
the inhomogeneous modified Helmholtz equation and the heat equation.

In all experiments we embedded the irregular region D in a square of side 1.6 in the X
direction and Yy directions. In the tables nx denotes the number of mesh points in the X
direction, and ny denotes the number of mesh points in the y direction.

In our first set of numerical experiments we tested our method of evaluating volume
integrals W (X, y). The test region D was the unit disc, and we chose W (X, y) so that

AW — a?W =4b

K, (ad)
where b= —"323

When D is a disc of radius d the analytic value of the integral is known:

W=b(r2 - d?) + Ko (ad) forr <d

And

Ko (ar) forr>d

The results in Table 1 are for a =45, d = 1, the errors are the maximum relative errors,
and the numbers in the last column are the ratios of consecutive errors.

Table 1
nx ny | rel. error rate
17 17 | 0.279E-03 )
33 33 | 0.205E-04 | 13.61
65 65 | 0.145E-05 | 14.14
129 | 129 | 0.101E-06 | 14.36
257 | 257 | 0.711E-08 | 14.20
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In Table 2 the errors are maximum absolute errors for a = 5/6, d = 1, and in Table 3
the errors are maximum relative errors fora = 5,d =.5.

Table 2
nX | ny | abs.error | rate
17 17 | 0.181E-03 :
33 | 33 | 0.123E-04 | 14.72
65 | 65 | 0.822E-06 | 14.96
129 | 129 | 0.557E-07 | 14.76
257 | 257 | 0.371E-08 | 15.02

Table 3
nx ny | abs.error | rate
17 17 | 0.568E-02 )
33 33 | 0.465E-03 | 12.23
65 65 | 0.910E-04 | 5.10
129 | 129 | 0.665E-05 | 13.68
257 | 257 | 0.328E-06 | 20.27

These numbers confirm that our method of evaluating volume integrals method is
essentially fourth order accurate.

In our next set of experiments we tested the accuracy of our method for solving the
integral equation and evaluating the surface integral. We chose the boundary values
g(x, y) =11 (anx/r,

and let the region D be the disc of radius d. In this case both the density function and
the values of the surface integral inside and outside D are known:

n=(l1(ad) — cK1(ad)) x/r

where

Io(ad) — —= I, (ad)

~Ky(ad) + —5K, (ad)

C:

and

Us (rn=I11@nx/r forr<d

US (r) = cK1(ar)x/r forr > d.

In the tables 4, 5 and 6 ns is the number of discretization points on 0D, and the errors
are the maximum relative errors. Results in Table 4 are fora =.1, d = 1, those in Table
5 are fora= 10.0, d = 1, and those in Table 6 are fora=1, d =.5.

Table 4
nx ns error rate
17 50 | 0.328E-05 .
33 100 | 0.185E-06 | 17.73
65 200 | 0.502E-08 | 38.85
129 | 400 | 0.635E-10 | 80.10
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Table 5
nx ns rel. error rate
17 50 | 0.110E+00 .
33 | 100 | 0.156E-01 7.05
65 | 200 | 0.120E-02 | 13.40
129 | 400 | 0.809E-04 | 14.83
257 | 800 | 0.532E-05 | 15.20
Table 6
nx ny | rel. error rate
17 50 | 0.821E-04 .
33 | 100 | 0.568E-05 | 14.45
65 | 200 | 0.232E-06 | 24.48
129 | 400 | 0.169E-07 | 13.73

Anita Mayo

We next tested the accuracy of our method of solving the heat equation. We give the

results of solving the homogeneous equation whose exact solution is € cos(x) on the
unit disc for 0 <t < 1 using 32 time steps in Table 7. The errors are r.m.s. errors at t =

L.

Table 7
nx ns error rate
17 60 | 0.936E-03 .
33 | 120 | 0.266E-03 | 3.52
65 | 240 | 0.410E-04 | 6.51
129 | 480 | 0.563E-05 | 7.28

In Table 8 we give our results of solving the inhomogeneous heat equation whose
solution is sin(t) sin(X) sin(y) on the unit disc for 0 <t < 1. The numbers nt are the

number of time steps and the errors are the rms. errors att = 1.

Table 8

nx ns | nt error rate
17 50 | 12 | 0.966E-03 .

33 | 100 | 12 | 0.160E-03 | 6.04
65 | 200 | 12 | 0.168E-04 | 9.52
129 | 400 | 12 | 0.221E-05 | 7.60
17 50 | 24 | 0.198E-03 .

33 | 100 | 24 | 0.332E-04 | 5.95
65 | 200 | 24 | 0.430E-05 | 7.72
129 | 400 | 24 | 0.581E-06 | 7.41
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