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Abstract 

 
We present new fourth order accurate methods for evaluating certain volume 
and surface integrals which satisfy the modified Helmholtz equation on 
general two dimensional regions with smooth boundaries. The integrals are 
computed by fast finite difference methods on a rectangular region in which 
integration region is embedded at a cost of O(n2 log n) operations where n is 
the number of mesh points in each direction in the embedding region. We 
apply these techniques to the numerical solution of the modified Helmholtz 
equation and the heat equation on general regions using integral equation 
methods, and indicate how these methods could be combined with mesh 
refinement. Computational results are provided. 
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1 Introduction 
In this paper we present rapid new high order accurate methods for evaluating volume 
integrals whose kernels are the fundamental solution of the modified Helmholtz 
equation and surface integrals whose kernels are the normal derivative of the 
fundamental solution. The regions of integration can be any smooth curve or region in 
two dimensions, and the cost of evaluating either integral is essentially equal to the 
cost of inverting a discrete approximation to the modified Helmholtz operator on a 
rectangular two dimensional region. Thus, by using Fourier methods [11] both types 
of integrals can be evaluated in O(n2 log n) operations. We note that other rapid 
methods have been developed for solving the modified Helmholtz equation on 
rectangular regions [6] and can equally well be combined with our method. Our 
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method is an extension of one we developed previously for solving Poisson’s and the 
biharmonic equation on general regions. See, for example, [9],[16],[17]. 
The essential idea is the following. Let L denote the modified Helmholtz operator, and 
suppose the integral W is such that LW = f in D and LW = 0 outside. (f can be 0 if W is 
a surface integral) We evaluate an approximation to W by first embedding D in a 
larger rectangular region R with a uniform mesh, and computing a fourth order 
accurate approximation to LhW, the discrete modified Helmholtz operator Lh applied 
to W, at all the mesh points of R. Once we have done this, we apply an operator that 
inverts Lh on R to obtain an approximation to W. It is easy to compute such an 
approximation at most mesh points of R. At mesh points inside D that have all their 
neighboring mesh points inside D we approximate LhW by f since LW = f on D. 
Similarly, at mesh points outside D whose neighboring mesh points are also outside 
D, we set LhW = 0 since LW = 0 outside D. The difficulty arises at the other, 
”irregular” mesh points. Because of the discontinuities in the derivatives of W across 
the boundary of D the discrete modified Helmholtz operator is not well approximated 
by the continuous Helmholtz operator. It turns out, however, that one can compute an 
approximation using the discontinuities in W, which depend on f and its derivatives, 
and information about the boundary of D. 
In order to solve the modified Helmholtz equation we use an integral equation 
formulation also used by Quaife and Kropinski [14] in which one assumes the 
solution is the sum of a volume integral and a surface integral. The volume integral 
satisfies the inhomogeneous differential equation, and the surface integral is chosen so 
that the boundary condition is satisfied. The density of the surface integral is the 
solution of a boundary integral equation of the second kind with bounded kernel 
similar to one used for solving Laplace’s equation. (The kernel is the normal 
derivative of the fundamental solution of the Helmholtz equation in free space.) 
Quaife and Kropinski have solved this equation using a fast multipole method, and for 
the discretization they used hybrid gauss-trapezoidal quadrature rules developed by 
Alpert [2] for evaluating integrals with logarithmic singularities. If there are N 

discretization points on the boundary of the irregular region then they can solve the 
integral equation using only O(N ) operations. Since we were only interested in the 
accuracy of evaluating the volume and surface integrals, not the speed of solving the 
integral equation, in our numerical experiments we discretized the integral equation 
using a Nystrom method with the trapezoid rule as the quadrature method, and solved 
the resulting linear system of equations using a preconditioned conjugate gradient 
method [18]. Our cost of solving the integral equation was therefore O(N 2). Our 
method of evaluating integrals can and should, of course, be combined with FMM 
type methods for solving integral equations [19], [20]. For simplicity we also used the 
same discretization in time of the heat equation as Quaife and Kropinski, and 
combined it with our method of evaluating volume and surface integrals. 
We note that integral equation formulations are particularly convenient for solving 
problems on exterior regions. Once a particular solution has been evaluated, the 
computational problem is reduced to the solution of a homogeneous differential 
equation, which only requires the solution of an integral equation on the surface of the 
region. We also note that integral equation methods for solving differential equations 
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have become increasingly popular in part due to rapid methods for solving certain 
integral equations Most prominent among these are those based on the fast multipole 
method, which have made the solution of problems on very complex geometries 
possible. Other methods based on wavelets, singular value decompositions and other 
sparse representations are commonly used [1], [4]. Despite these advances, fewer 
effective methods have been developed for solving realistic inhomogeneous equations 
which require the evaluation of volume integrals. The most common methods involve 
direct application of some quadrature formula. See, for example [13]. In particular, a 
total of O(n4) operations are needed to evaluate the integral at every point of an n by 
n grid, since evaluating each integral requires O(n2) operations. In contrast, our 
method only requires O(n2log n) operations. 
Another difficulty encountered when using quadrature formulas in a straight- forward 
way is that fundamental solutions of the modified Helmholtz equation are 
discontinuous and have discontinuities in their derivatives as the point at which one is 
evaluating the integral nears a point of the region of integration. That is, the function 
K0(r) and its derivatives are unbounded at the origin. Therefore, it is difficult compute 
these integrals very accurately at points in, or near, the region of integration. The 
method we use does not have these problems. We note other rapid and sophisticated 
methods have been developed for evaluating volume integrals, but these require 
smooth extension of the inhomogeneous term from the irregular region to the rest of 
the rectangular embedding region [8], [14]. Our methods have no such requirement. 
The organization of this paper is as follows. In Section 2 we show how to compute the 
volume and surface integrals, in Section 3 we show how to use these methods in the 
solution of the modified Helmholtz and heat equations on general regions and discuss 
mesh refinement. In Section 4 we provide results of numerical experiments. 
 
 
2 Evaluation of volume and surface integrals 
In this section we present our method for evaluating an integral whose kernel 
1/2πa2)K0(r/a) + g is a fundamental solution of the modified Helmholtz equation 
∆u − a2u = δ 
Here K0(r) is the zeroth order modified Bessel function of the second kind and δ is 
the Dirac function. We later show how to compute surface integrals. Initially we 
ignore boundary conditions since we often only seek a particular solution of the 
equation. 
 
2.1 Evaluation of volume integrals 

We start by embedding the irregular region D over which we are evaluating the 
integral in a larger rectangular region R with a uniform grid, say with mesh width h, 
which ignores the boundary of D. 
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h 

where  
 
As noted, we evaluate this integral by computing an approximation to 
LhW where Lh is a discrete approximation to the modified Helmholtz operator at all 
the mesh points of R. Once we have done that, we apply an operator, L−1 which 
inverts Lh on R to obtain an approximation to W, de- spite the fact that W is not 
smooth. We note that inverting Lh on a grid with n points only requires O(n log n) 
operations [11]. 
Since ∆W − a2W = f in D and ∆W − a2W = 0 outside D (2.2) 
at mesh points inside D, which have all their neighboring mesh points inside 
D we set LhW = f, and at points outside D, with all their neighbors outside we set LhW 

= 0. 
The problem then reduces to computing an approximation to LhW at the other mesh 
points, the points which are in one region, but have neighboring mesh points in the 
other region. 
It turns out that in order to be able to compute an approximation to LhW at these 
points it is sufficient to know what the discontinuities in the derivatives of W in the 
coordinate directions are at the boundary of the region D. We now show how to find 
these discontinuities. 
Suppose the boundary of D is given by (x(t), y(t)). 
For a function g defined on R let [g(p)] denote the discontinuity in g at a point p on 
∂D. An integral of the form (2.1) and its normal derivative are continuous across ∂D. 
Therefore, for p in ∂D 
[W (p)] = 0, (2.3) 
and 
[Wn(p)] = y˙(t)[Wx (p)] − x˙ (t)[Wy (p)] = 0 (2.4) 
By differentiating (2.3) in the tangential direction t, we see 
[Wt(p)] = x˙ (t)[Wx (p)] + y˙(t)[Wy (p)] = 0, (2.5) 
so [Wx ] = [Wy ] = 0. 
By (2.2) the second derivatives of W are discontinuous and 
[Wxx] + [Wyy ] = f (2.6) 
By differentiating (2.4) and (2.5) in the tangential direction we see 
x˙ (t)2[Wxx] + y˙(t)2[Wyy ] + 2x˙ (t)y˙(t)[Wxy ] = 0. (2.7) 
x˙ (t)y˙(t)[Wxx ] − x˙ (t)y˙(t)[Wyy ] + (y˙2(t) − x˙ 2(t))[Wxy ] = 0. (2.8) 
Equations (2.6), (2.7) and (2.8) determine [Wxx], [Wyy ] and [Wxy ]. We use similar 
methods in order to determine the discontinuities in third and higher order derivatives. 
See [6]. 
Now we show how to use these discontinuities to approximate LhW. 
Let  denote the values of W (p) at points p outside D, w(p) denote the values of 
W (p) at points p inside D, and let B be the set of irregular mesh points, that is the set 
of points which have one of their neighboring mesh points on the opposite side of D. 

 



On The Evaluation of Integrals for the Solution 3547 

 

 
 

Figure 1 

 
We need to show how to approximate the discrete modified Helmholtz operator at 
points of B. Let 
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Suppose a point p is in D, and the point to the right, pE, is not. Let p∗ be the point on 
the line between p and pE which intersects D, let h1 be the distance between pE and 

p∗, and let h2 = h − h1. 

By manipulating the Taylor series centered at p and pE and evaluated at p∗ we can 
derive the following expression for  

 (For details see [6]). 

 
 [ (  

  (2.9) 
Note that the first five terms depend on the discontinuities between w and w˜ and in 
their x derivatives across D. The other terms are the usual Taylor series terms. 
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h 

h 

Therefore, the right hand side of (2.9) is a sum of terms we can evaluate in terms of 
the discontinuities between w and w˜ and their x derivatives, and terms we would have 
if the boundary of D did not pass between p and pE. 
Now let pW, pN, pS be the mesh points to the left of, above, and below 

 

 
 
 

We get the same type of expressions for the differences between the value of W at p 

and at its other neighbors, that is W (pW ) − W (p), W (pN ) − W (p), W (pS ) − W (p), 
except that there will not be any boundary terms unless ∂D passes between p and that 
neighbor. Therefore, we can compute an approximation to L5 W, which is just the 
sum of the above four differences divided by h2 minus a2W (p) 

 
at all the irregular points when we know the derivatives of the boundary curve (x(t), 
y(t)) and the derivatives of f accurately enough. 
More precisely, for mesh points p ∈ B we define the mesh function m(p) to be the 
value of the extra terms in L5 W (p) due to the discontinuities in W and its derivatives. 
We define Wh to be the solution of the following equations: 
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h 

Wh(p) = W (p) p ∈ ∂R 
How accurately we compute the terms m(p) determines the accuracy of the solution 
we obtain after applying a fast solver. In particular, if the values of m(p) are first order 
accurate then W h will be a second order accurate approximation to W. For a proof see 
[3]. 
We can also compute an approximation to a fourth order accurate 9 point 
approximation to L. Then, by applying an operator which inverts the discrete operator 
L9 we can obtain a fourth order accurate solution. 
Specifically, in order to evaluate the surface and volume integrals we use the fourth 
order accurate approximation to the modified Helmholtz operator 

)  

where 

 
To see that this operator is fourth order accurate we note that for a smooth function ω 

 

So, if ∆ω = a2ω + f, then 

 

 
To compute an approximation to  
 we use the fact that the stencil  is a linear combination of two second order accurate 
stencils, i.e. 
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Once we know these discontinuities we may, in the same way as before, use them to 
compute a higher order accurate approximation to ∆x W. 
The accuracy of the resulting method is same as the accuracy to which the discrete 
Helmholtz operator is computed. That is, the errors in computed values of the 
potential Wh are bounded by a constant times the maximum truncation error, and if 
the potential function which is being computed is smooth, the errors are O(h2) or 
O(h4). 
 
2.2 Evaluation of surface integral 
We use essentially the same method we use to compute volume integrals to compute 
surface integrals of the form 

 
As when we evaluate volume integrals, the problem of evaluating an integral of this 
type reduces to evaluating LU in the regions inside and outside D, and evaluating the 
discontinuities in U and its derivatives across the boundary of D. We first note that 
LU vanishes in the two regions, i.e. 
(∆ − a2)U (x, y) = 0 inside D, and (∆ − a2)U (x, y) = 0 outside D.  (2.10) 
It is also known that such a surface integral is continuous in the normal direction, and 
has a discontinuity equal to the density µ in the tangential direction. That is 
[U ] = µ (2.11) 
and 
It follows that 
[Un] = 0. (2.12) 
To find the discontinuities in the second derivatives of U we note that by (2.10) 
[∆U ] = a2 [U ] = a2µ 
We also note that by (2.11) and (2.12) 
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h 

[Utt] = µ¨ 
[Unt] = 0 
The above three equations determine [Uxx], [Uxy ] and [Uyy ]. 
To find the discontinuities in the four third derivatives we use the follow- ing four 
equations: 
[(∆U )n] = a2 [Un] = 0, 
[(∆U )t] = a2 [Ut] = a2µ˙ 
... 
[Uttt] = µ 
 
[Untt] = 0. 
As before, once they are determined we use these discontinuities in the Derivatives of 

 to compute approximations to or  at the irregular mesh points of R, and 
then apply a fast solver to obtain an approximation to U. 
 

Boundary Conditions 

When computing volume and surface integrals it is, of course, necessary to provide 
boundary conditions at the edge of the computational region R before inverting Lh. If 
we only require a particular solution of the modi- fied Helmholtz equation then it 
makes no difference which are prescribed, since the discontinuities in the derivatives 
of the integrals are the same, and therefore LhV, is the same, independent of which 
fundamental solution of the modified Helmholtz equation is the kernel. The integral 
we obtain an approximation to with this method is the one associated with the same 
boundary conditions as the fast Helmholtz solver we use. For example, if we use a 
doubly periodic Helmholtz solver, then we obtain an approximation to the integral 
whose kernel is the doubly periodic Green’s function for the modified Helmholtz 
equation on R. If we need an integral with a specific kernel, then we use the 
corresponding solver. 
It is also possible to obtain approximations to integrals which satisfy free space 
boundary conditions. In that case we can use a method originally developed by 
Hockney [11] and later improved by James [12] where one cal- culates the boundary 
potential by finding a set of correction charges on the boundary of the embedding 
region, and then convolves them with a suitable 
Green’s function. This method, however, is more expensive than the others since it 
requires two applications of the operator L−1. 
 
 
3 Solution of modified Helmholtz and Heat equations 
We use the volume and surface integrals discussed in the previous section to solve the 
modified Helmholtz and heat equations on smooth two dimensional regions. 
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3.1 Modified Helmholtz equation 

As in [14], in order to solve the inhomogeneous equation (∆ − a2)U (x, y) = f (x, y) 
when Dirichlet boundary conditions U (x, y) = g(x, y) on ∂D are prescribed we use the 
representation of the solution as the sum of a volume integral and an integral of a 
double layer density function: 

 

 
where K0 is the zeroth order modified Bessel function of the second kind. We first 
evaluate Wh, the approximation to the volume integral W at mesh points of R, and 
then we interpolate its values onto the discretization points of ∂D using the known 
discontinuities in its derivatives. More precisely, we use the values of the mesh 
function Wh at points on both sides of ∂D and the discontinuities in the second and 
third derivatives of W to compute the extension of the inside function w to nearby 
points of R outside D. We then interpolate values of the extended function w onto ∂D 

using fourth order Lagrange interpolation. 
Also, as in [14], in order to determine the density µ(s) we solve the integral equation 

 
where ω(t) = g(t) − w(t) 
As noted, in our experiments we discretized the above equation using a Nystrom 
method with the trapezoid rule as the quadrature formula, and we chose the 
discretization points to be equally spaced. By the Euler Maclaurin formula [7] the 
trapezoid rule is highly accurate for smooth functions on periodic regions, and we 
needed few mesh points to solve the integral equation very accurately on the simple 
test regions we used. For calculations on more general regions one should use 
multipole methods [14].  
Once we have solved the integral equation we evaluate the surface integral US using 
the method described in the previous section. 
 
3.2 Heat Equation 
We also used the surface and volume integrals to solve the heat equation 
ut(x, y, t) − ∆u(x, y, t) = F (x, y, t), (x, y) ∈ D, 0 ≤ t ≤ tf 
with Dirichlet boundary conditions 
u(x, y, t) = f (x, y, t) (x, y) ∈ ∂D, t ∈ [0, tf ] and initial conditions 
u(x, y, 0) = u0(x, y) 
prescribed where D is a two dimensional region with smooth boundary. 
Instead of using an integral equation approach based on a fundamental solution of the 
heat equation we first discretized with respect to time. Specifically, as in [14] we used 
the implicit second order accurate extrapolated Gear method: 
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 (3.3) 
where δt is the time step and   

At the N th time step the solution uN is represented as the sum of a volume integral W 

N and a surface integral U N : 

 
Thus, at each time step we must solve one integral equation and evaluate two 
integrals. 
We can accurately approximate the right hand side of (3.4) and it’s Laplacian. 
However, since we cannot approximate the normal derivative of the right hand side 
accurately enough, we cannot accurately approximate the discontinuities in the third 
and higher order derivatives of W N. Therefore the method should only be second 
order accurate in space. In practice, how- ever, we have found the method to be 
somewhat more accurate. 
 
Mesh refinement 

When approximating integrals it is often not necessary to use as refined a mesh at all 
points of the computational region. That is, it may be desirable to evaluate volume 
and surface integrals on regions composed of subregions with different mesh widths. 
There are several recently developed accurate methods for solving elliptic differential 
equations on regions with locally refined grids that can be combined with our method. 
See, for example, [6]. 
However, it is also possible to perform calculations on different subregions 
independently. For example, suppose we want to approximate an integral US on a 
rectangular region RS disjoint from D, which has a different (presumably coarser) 
mesh than the one on the region covering D. 
Since ( ∆ − a2 ) US is known in RS, in order to approximate US we only need to 
evaluate it at mesh points on the boundary of RS and then invert Lh on RS. Although 
one could evaluate the integral at all boundary points by quadrature, we have instead 
done the following. We only evaluated it by quadrature at the four corner mesh points 
of RS and at their neighboring points. At mesh points on the line between two 
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consecutive corner mesh points we required the fourth derivative of W to be 0. Thus, 
finding the values at all points on the boundary of RS only requires solving four 5 
diagonal linear system of equations, one for each side of the rectangle RS, and 
therefore the cost was O(n). 
 

 

Conclusion 
We have presented rapid, fourth order accurate numerical methods for evaluating 
volume integrals whose kernels are a fundamental solution of the modified Helmholtz 
equation and surface integrals whose kernels are the nor- mal derivatives of such 
functions. We have also shown how these methods can be used as part of efficient 
numerical methods for solving both the modified Helmholz and heat equations on 
general two dimensional regions in space. In addition, we have indicated how these 
methods can be combined with locally refined meshes. 
 
 

4 Numerical Experiments 
In this section we report on results of numerical experiments in which we tested the 
accuracy of our methods for evaluating surface and volume integrals, and for solving 
the inhomogeneous modified Helmholtz equation and the heat equation. 
In all experiments we embedded the irregular region D in a square of side 1.6 in the x 
direction and y directions. In the tables nx denotes the number of mesh points in the x 

direction, and ny denotes the number of mesh points in the y direction. 
In our first set of numerical experiments we tested our method of evaluating volume 
integrals W (x, y). The test region D was the unit disc, and we chose W (x, y) so that 

 
When D is a disc of radius d the analytic value of the integral is known: 
W = b(r2 − d2) + K0 (ad) for r ≤ d 
And 
K0 (ar) for r > d 
The results in Table 1 are for a =.45, d = 1, the errors are the maximum relative errors, 
and the numbers in the last column are the ratios of consecutive errors. 
 

Table 1 
nx ny rel. error rate 
17 17 0.279E-03 . 
33 33 0.205E-04 13.61 
65 65 0.145E-05 14.14 
129 129 0.101E-06 14.36 
257 257 0.711E-08 14.20 
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In Table 2 the errors are maximum absolute errors for a = 5/6, d = 1, and in Table 3 
the errors are maximum relative errors for a = 5, d =.5. 
 

Table 2 
nx ny abs. error rate 
17 17 0.181E-03 . 
33 33 0.123E-04 14.72 
65 65 0.822E-06 14.96 
129 129 0.557E-07 14.76 
257 257 0.371E-08 15.02 

 
Table 3 

nx ny abs. error rate 
17 17 0.568E-02 . 
33 33 0.465E-03 12.23 
65 65 0.910E-04 5.10 
129 129 0.665E-05 13.68 
257 257 0.328E-06 20.27 

 
These numbers confirm that our method of evaluating volume integrals method is 
essentially fourth order accurate. 
In our next set of experiments we tested the accuracy of our method for solving the 
integral equation and evaluating the surface integral. We chose the boundary values 
g(x, y) = I1 (ar) , 
and let the region D be the disc of radius d. In this case both the density function and 
the values of the surface integral inside and outside D are known: 
µ = (I1(ad) − cK1(ad)) x/r 
where 

 
and 
US (r) = I1(ar)x/r for r ≤ d 
US (r) = cK1(ar)x/r for r > d. 
In the tables 4, 5 and 6 ns is the number of discretization points on ∂D, and the errors 
are the maximum relative errors. Results in Table 4 are for a =.1, d = 1, those in Table 
5 are for a = 10.0, d = 1, and those in Table 6 are for a = 1, d =.5. 
 

Table 4 
nx ns error rate 
17 50 0.328E-05 . 
33 100 0.185E-06 17.73 
65 200 0.502E-08 38.85 
129 400 0.635E-10 80.10 
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Table 5 

nx ns rel. error rate 
17 50 0.110E+00 . 
33 100 0.156E-01 7.05 
65 200 0.120E-02 13.40 
129 400 0.809E-04 14.83 
257 800 0.532E-05 15.20 

 
Table 6 

nx ny rel. error rate 
17 50 0.821E-04 . 
33 100 0.568E-05 14.45 
65 200 0.232E-06 24.48 
129 400 0.169E-07 13.73 

 
 
We next tested the accuracy of our method of solving the heat equation. We give the 
results of solving the homogeneous equation whose exact solution is e−t cos(x) on the 
unit disc for 0 ≤ t ≤ 1 using 32 time steps in Table 7. The errors are r.m.s. errors at t = 
1. 
 

Table 7 
nx ns error rate 
17 60 0.936E-03 . 
33 120 0.266E-03 3.52 
65 240 0.410E-04 6.51 
129 480 0.563E-05 7.28 

 
 
In Table 8 we give our results of solving the inhomogeneous heat equation whose 
solution is sin(t) sin(x) sin(y) on the unit disc for 0 ≤ t ≤ 1. The numbers nt are the 
number of time steps and the errors are the rms. errors at t = 1. 
 

Table 8 
nx ns nt error rate 
17 50 12 0.966E-03 . 
33 100 12 0.160E-03 6.04 
65 200 12 0.168E-04 9.52 
129 400 12 0.221E-05 7.60 
17 50 24 0.198E-03 . 
33 100 24 0.332E-04 5.95 
65 200 24 0.430E-05 7.72 
129 400 24 0.581E-06 7.41 
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