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Abstract

In this paper we study the existence of periodic solutions of the Floquet differential
systems

x = Ax(t) + b(t) + eB(t)x(t), (1)

where x(t) and b(t) are column vectors of length n, A is a constant (n X n) matrix
and B(t) is (n X n) matrix for n = 2 and 3. The components of b(t) and B(t) are T-
periodic.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS
Floquet theory is concerned with the study of linear differential equations with
periodic coefficients see [3, 4, 5, 10, 12, 19]. It is very important for the study of
dynamical systems. These differential systems have been studied intensively and have
many applications see for instance the papers [16, 6, 17, 18] and references quoted
therein.

The linear first order differential system

x = Ax(t) + b(t). (2)

Where x(t) and b(t) are column vectors of lenghth n, A and B(t) are (n X n) matrix,
B(t) and b(t) are periodic with period T, is called a Floquet differential system.

A limit cycle of the differential system (2) is a periodic orbit isolated in the set of all
the periodic orbits of the same differential system. To obtain analytically limit cycles
of a differential system is in general a very difficult problem, many times impossible.
If the averaging theory can be applied to the differential system (1), then it reduces
this difficult problem to find the zeros of a nonlinear function. It is known that in
general the averaging theory for finding limit cycles does not provide all the limit
cycles of the diffrential system.
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The averaging theory (see for instance [15]) gives a quantitative relation between the
solutions of some nonautonomous differential system and the solutions of its
autonoumous averaged differential system. In particular, it allows to study the
periodic orbits of a non-autonomous differential system in function of the periodic
orbits of the averaged one, see for more details [1, 2, 8, 9, 15,19]. For more
information about the averaging theory see section 2.
In the paper [7], the authors studied the limit cycles of the homogenous perturbed
linear system
x = Ax(t) + e(B(t)x(t) + b(t))
Here, we consider the nonhomogenous perturbed linear system (1) for n = 2 and
n=>3.
Our main result on the periodic solutions of the second-order non-autonomous
differential system (1), where

_/0 -1
4= o)

— (b

- (li?)'(t) bia ()
B(t :( 11 12 ),

O={b(© b
Is the following one.
Theorem1. We define

F1(X0,¥o) = %f (cos () [b11 (DYC(E) + by (DID(B)] + sin (D) [b21 ()C (1) + b2 ()D(D)]) L,

Fa(Xo,Yo) = %f (=sin(®)[b11 (1)C(E) + b2 (DID(B)] + cos (£)[b21 (1) C(E) + byo (DD ()],

where

C(t) = xgcos(t) — y, sin(t) + J’(—b2 (7) sin(t — 7) + b, (1) cos(t — 1))drx,

D(t) = xysin(t) + y, cos(t) + f(bl () sin(t — 1) + b, (1) cos(t — 7))drx,

If

27
(cos ()b, (7) + sin(7) b,(7))dr = 0,
027'1.'
(=sin ()b, (1) + cos (t)b,(7))dr = 0,
0
Then for every (x;,ygs) solution of the system

“Fk(xO'yO) = O' k = 1525

satisfying
) <0
(x0.¥0)=(x¢.¥0)

a(F,,F
det( (F1.2)
The differential system (1) has a periodic solution (x(t,e),y(t,¢)) tending to the

d(x0,¥0)
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solution
(&0 _ xg cos(®)—yg sin(t)+f0t(—b2 (0) sin(t—1)+b, (v) cos(t—T1))dr

<3’(ﬁ0)) - ( xgsin(t) +y;, cos(t)+f0r(b1 (1) sin(t—1) +b, (1) cos(t—1))d1 ) (3)

Of the system (2) when & — 0.

Consider the case n = 3. Our main results on the periodic solutions of the third-order

differential system (1) where

0 -1 0 bi1(t) byp(t) bs(t)
A(t)=<1 0 0)» B(t) = | b1 (t) bpp(t) bas(t)

0 0 24 b3 (t) bsp(t)  bsz(t)
and

by ()
b(t) = | bo(t)

b3 (t)

are the following.

Theorem?2. Consider the case A = 0. We define

Fy (X0, Yo, 25) = %j (cos @®)[byy, OC@®) + by, D) + byg(DE@®)] + sin (£)[by; @ C) + by D) + bpg WD E(®)])dL,

Folx0.V0.2Z0) = %f (—sin (&) [bys (©)C(E) + by, (E)D(E) + byz (E(E)] + o5 (£) [b, (£)C(E) + by (£)D(2) + by () E(E)])dE,

P30, 70) = 5= [ (s (OCEO) + o (D) + by (OB

where
t

C(t) = xqcos(t) — y, sin(t) + J’(—b2 (7) sin(t — 1) + b, (1) cos(t — 1))dr,

0

D(t) = xysin(t) + y, cos(t) + f(bl (7) sin(t — 1) + b, (1) cos(t — 7))drx,

E(t) =2z, + ftbs(r)dr,

If we have
(cos (1)b, (1) + sin(7) b,(7))dr = 0,

0
27

(=sin (7)b, (1) + cos (t)b,(7))dr =0,

0
21T

bs(1)dt =0,
0
then for every (x;,y5,2;) solution of the system F, (xq,v0,20) = 0, k =1,2,3,
satisfying
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O(F1,Fy, F
det((l 2, F5)

* 0,
9(x0,Y0.20) (xo.yo,z0>=<xz.y3.zg>>
The differential system (1) has a periodic solution (x(t,¢),y(t,€),z(t, ¢)) tending to

the solution

t
xgcos(t) — yg sin(t) + f(—bz (r)sin(t — 1) + by (1) cos(t — 1))dt

X(t, 0) t
<Y(t' 0)> | xesin(t) + yg cos(t) + f(bl (1) sin(t — 1) + by (1) cos(t — 1))dr )
z(t,0) J

t
Zg + f by (1) dt
(4]
of the system (2) when ¢ — 0.

Theorem3. Consider the case A # 0. We define

VA % f (cos (®)[by; ®C®) + by, D) + by (DE@)] + sin (£) [y, () C ) + by, D) + by (WDE ()] d,

Fy (X0 ¥o) = %j (=sin @®)[by; @)C@®) + by, D) + by (DE®)] + cos () [byy D C (1) + by, )P (1) + bpg D E@®)])dL,

where

C(t) = xqcos(t) — y, sin(t) + J’(—b2 (7) sin(t — 1) + b (1) cos(t — 1))drx,

D(t) = xysin(t) + y, cos(t) + f(bl (7) sin(t — 1) + b, (1) cos(t — 7))dr,

0

E(t) =2z, + ftbs(r)dr,

If we have
27T

(cos (T)b, (1) + sin(z) b,(7))dr = 0,

0
27

(=sin (7)by (1) + cos (t)b,(7))dr =0,

0
e 27A

21T
* —A
% =T g J; e”"hy(7)dr,

then for every (x;,ys) solution of the system Fy, (xq, yo) =0, k = 1,2,

satisfying
) <0
(x0,¥0)=(x¢.¥0)

a(F,,F

det (F1.F3)
d(x0,¥0)

The differential system (1) has a periodic solution (x(t,¢),y(t,€),z(t, €)) tending to

the solution
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t

xgcos(t) — yp sin(t) + f(—bz (™) sin(t — 1) + by (7) cos(t — 1))dt
0

x(t,0) t
<Y(t‘0)> | xgsin(t) + yg cos(t) + f(bl(r) sin(t — 1) + by (1) cos(t — 1))dr (3)
z(t,0) s

eht fOZﬂ eA2m—1) by (T)dt
1— e27h

of the differential system (2) when & — 0.

Theorem 1, 2 and 3 are proved in section 3. Their proofs are based on the averaging

theory for computing periodic solutions, see section 2. For others applications of the

averaging theory to the study of periodic solutions, see [11] and [13].

Applications of Theorem 1, 2 and 3 are the following ones.

t
+ f et (1) dr
0

Corollary 1. Consider the Floquet differential system (1) in [R? with
A= (O —1)

1 0 20

sSin

b(t) = (cos (t))

_ (cos (t) sin (2t)
B(O) = (sin (t) cos (3t))'
Then for e # 0 sufficiently small the differential system (1) has a periodic solution
(x(t,e),y(t,e)) tending to the periodic solution (—%cos(t) — %cos (2t) +
%, - % sin(t) + % sin (Zt)) of the differential system
X = —y +sin (t)
{ y = x + cos (t)
When ¢ - 0.
Corollary 1 is proved in section 4.

Corolloray 2. Consider the Floquet differential system (1) in R3 with

0 -1 0
A= (1 0 0)
0 0 O

sin(t)
b(t) = cos(t)

sin(2t)

cos (t) 1 sin (t)
B(t) = 2 sin (2t) 1

sin (t) 1 cos (3t)
then for & # 0 sufficiently small the differential system (1) has a periodic solution
(x(t,e),y(t, &), z(t, &)) tending to the periodic solution (—cos(t), O,i - %cos(z)) of
the differential system
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X = —y +sin (t)
y =X + cos (t)
Zz = —sin (2t)
when & - 0.
Corollary 2 is proved in section 4.

Corolloray 3. Consider the Floquet differential system (1) in R3 with

0 -1 0
A= (1 0 O)
0 0 41

sin(t)
b(t):( 0 )

sin(t)
0 0 sin (t)

B(t) = sin(2t) sin(t) cos (t)

cos (t) 0 cos (t)
then for e # 0 sufficiently small the differential system (1) has a periodic solution
(x(t, &), y(t, €),z(t, €)) tending to the periodic solution

24(e?™ — 1) (sin(t) A — 2 cos(t))

B T(A* + 512 + 4)

;Eg _ (292”’112 _ le)cos ) . (7-(,14 + 57TA2 + 4e27A) + 47 — 4/1)Sill (0
206 T(A* + 52 + 4) m(A* + 512 + 4)
—Acos(t) + sin (t)
22 +1

of the differential system
X = =y +sin (t)

y=x
Z = Az +sin (t)
when e = 0.

Corollary 3 is proved in section 4.

2. BASIC RESULTS ON AVERAGING THEORY

In this section we present the basic results from the averaging theory that we shall
need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from differential
systems of the form

x' = Fy(t,X) + €F, (t,X) + £2F, (,%x, €) (6)

With e = 0 to € # 0 sufficiently small. Here the functions Fy, F;: R X 2 — R™ and
F: RX 2 X (—&y, &) = R™ are €2 functions, T-periodic in the first variable, and
is an open subset of [R™. The main assumption is thet the unperturbed system

x' = Fy(t,x%), (7

Has a submanifold of dimension n of periodic solutions. A solution of this problem is
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given using the averaging theory.

Let x(t,z,0) be the solution of the system (7) such that x(0,z,0)=z. We write the
linearization of the unperturbed system along the periodic solution x(t,z,0) as

yl = DxFO (t,X(t, zZ, 0))y (8)

In what follows we denote by M,(t) some fundamental matrix of the linear
differential system (8), and by &: R¥ x R** — RF the projection of R™ onto its first
k coordinates ; i.e. £(xq, ..., x,) = (X1, ..., Xp).

We assume that there exists an open set V with CI(V) c 2 such that for each
z € CL(V), x(t, z, 0) is T-periodic. The set CI(V) is isochronous for the system (6) ; i.e
it is a set formed only by periodic orbits, all of them having the same period.

Then, an answer to the problem of the bifurcation of T-periodic solutions from the
periodic solutions x(t,z,0) contained in CL(V) is given in the following result.

Theorem 4. Let V be an open and bounded subset of R¥, and let §: CI(V) » R**

be a €2 function. We assume that
Z ={z, = (a,B(a)), a € Cl(V)} c 2 and that for each z, € Z the solution
x(t,z,) of (5) is T-periodic ;
For each z, € Z there is a fundamental matrix M, (t) of (6) such that the
matrix M, *(0) — M, (T has in the upper right corer the k x (n — k) zero
matrix, and in the lower right corner a (n — k) X (n — k) matrix 4, with
det (4,) # 0.

We consider the function F : CL(V) - R

1 T
Fla) =¢ (? f M;H(OF(t, X(t,za))dt>. (9)
0
If there exists a € V with F(a) = 0 and det((dF /da) (a)) # 0, then there is a T-
periodic solution ¢(t, &) of system (4) such that ¢ (0,&) » z, as ¢ = 0.

Theorem 5. (Perturbations of an isochronous set). We assume that there exists an
open and bounded set V with CI(V) c {2 such that for each z € CI(V), the solution
x(t,z, 0) is T-periodic, then we consider the function F : Cl(V) —» R"

Fla) = f TM;l(t)Fl (t,x(t,2,0))dt. (10)

If there exists a € V with F(a) = 0 and det ((%) (a)) # 0, then there exists a T-
periodic solution ¢(t, ) of system (6) such that ¢ (0,¢) - aas e — 0.

3. PROOF OF THEOREM 1,2 AND 3
Proof of theorem 1. We shall study the periodic solutions of system (7), i.e. the

periodic solutions of the system (1) with € = 0. The solution of the system (2) such
that (x(0),y(0)) = (xo, ¥o) is

G =G+ [ ()

3535
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where

0 -1
4= (1 0 )
SO

x(@®) _ [¥o cos(t)—y, sin(t) +f0r(b1 (1) cos(t—1)—b, (D) sin(t—1))dt
(J’ (t)) - (xo sin(t) +y, cos(t) +f0t(b1 (T sin(t—1) +b, (1) cos(t—‘r))d‘r) a1
These solutions are 2m-periodic if and only if

(x(2m), y(2m)) = (x(0),y(0)).

We obtain the following periodicity conditions
27

(cos (1)b, (1) + sin(7) b,(7))dr = 0,

27

(=sin (1)by (1) + cos (t)b,(1))dr =0,

VS/e shall apply Theorem 4 to the differential system (1). It can be written as system
(6) taking

_ (x(®©) _(—y(@®) + b (D) _ (b11x(8) + bipy(0)
<= (50) P9 = (o 4 nyto ) FE0= (150 + heoy(o)
The set of the periodic solutions (11) has dimension two, To look for the periodic
solutions of our system (1) we must calculate the zeros z = (x,,y,) of the system
F(z) =0, where F(z) is given by (10). The fundamental matrix M(t) of the
differential system (8) is

B _(cos(t) —sin(t)

MO =M: ()= (sin(t) cos (t))
Consequently all the assumptions of Theorem 4 are satisfied. Therefore we must
study the zeros of the system F(z) = 0 of two equations with two unknowns, where
F is given in the statement of theorem (4). More precisely, we have F(z) =
(Fy (x0,¥0), F5(x0,¥0)) Where Fi(xq,¥0), F2 (%0, ¥o) are defined as in the statement
of T?eorerr; 3. The zeros (x;,yy) of system

Fi(x0, Yo 0
(Tz(xm)h))) - (0) (12)
with respect to the variables x, and y, provide periodic orbits of system (1) with
e # 0 sufficiently small if they are simple, i.e. if

3(F.,F
det (% > * 0.
700700 g y0)= G )

For every simple zeros (xg,y;) of system (12), we obtain a 2m-periodic solution

(x(t, &), y(t,€)) of the differential system (1) for € # 0 sufficiently small which tends
to the periodic solution (3) of the differential system
X =-y+by(t)
{ y=x+Dby (1)
When & — 0. This completes the proof of Theorem 1.
Proof of theorem 2 and 3. The solution of the system (1) with £ = 0 such that

(x(0),y(0),2(0)) = (0, Y0, 2) Is
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x(t) Xo by (1)
y(t) | = e4t <YO>+fOteA(t_T) b, (1) | dt.

z2(t) Z0 b3 (1)
where
0 1 0
A= (—1 0 0)
0 0 1
we obtain
Xo cos(t) — yo sin(t) + f(—bz () sin(t — 1) + by () cos(t — 1))dt
x(t) °
igg = | xosin(t) + y, cos(t) + J’(bl (7) sin(t — 1) + b, (1) cos(t — 7))dr

t
ez, + J’ e Dp. (1) dr
0

For studying the periodicity of this solution, we distinguish two cases: A = 0 and
A # 0. these two cases will be studied respectively in Theorem 2 and Theorem 3.

Proof of theorem 2. We will apply the averaging theory described in section 2 for
studying the limit cycles of system (2). More precisely we shall analyze which
periodic orbits of system (2) can be continued to limit cycles of system (1) with & = 0
sufficiently small. Now we define the elements of section 2 and of Theorem 4
corresponding to our differential system (1). We have that 2 = R3 and T = 2 we
write (1) in the form (6) and we get that Fy, F; and F, are given by
Fy(t,x) = Ax+ b(t),
F,(t,%) = B(t) x,
F,(t,x) = 0.
We shall study the periodic solutions of system (7) in our case, i.e. the periodic
solutions of the system (1) with e = 0.
These solutions such that (x(0), ¥(0),2(0)) = (xo,¥0,2,) are

t

Xg cos(t) — yp sin(t) + f(—bz (m)sin(t — 1) + by () cos(t — 1))dr
0

x(t) .
(igg) - X Sin(t) + yg cos(t) + f(bl (1) sin(t — 1) + b, (1) cos(t — 7))dr (13)
0

t
zy + f by () dt
0

These solutions are 2m-periodic if and only if

(x(2m), y(2m), z(2m)) = (x(0),y(0),2(0))

We obtain the following periodicity conditions

3537
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fm(cos ()b, (7) + sin(7) by (1))dr = 0,

fm(—sin ()b, (1) + cos (t)b,(1))dT =0,
Yon

bs(1)dr =0,

0

The set of periodic solutions (13) has dimension 3. To look for the periodic solutions
of our system (1) we must calculate the zeros z =(x,, y,,2,) of the system F(z) = 0,
where F(z) is given by (10). The fundamental matrix M(t) of the differential system
(8) is

cos (t) sin(t) O
M(t) = My (t) = e4* = (—sin (t) cos (t) 0>.

0 0 1

Therefore we must study the zeros of the system F(z) =0 where F(z) =
(F1(x0,¥0,20), F2 (X0, Y0, Z0), F5 (X0, Vo, 20)) are given in the statement of Theorem
2. More precisely, the zeros (x;,y5, z5) of the system

Fi (x0,¥0,20) 0
Folx0,¥0,20) | =1{ 0 (14)
F3(x0, Y0, 20) 0

With respect to the variables x,, y,and z, provide periodic orbits of system (1) with
e # 0 sufficiently small if they are simple, i.e. if

det (—3(?1'?2"?3) ) # 0.

90020 (g, y0,20)= (x5 v4.20)
For every simple zero (x;,y;,25) of system (14),we obtain a 2m-periodic solution
(x(t, €),y(t, &), z(t, &)) of the differential system (1) for € # 0 sufficiently small such
that (x(t,€),y(t, &), z(t, €)) tends to the periodic solution (4) of (1) when € — 0. Note
that this solution is periodic of period 27r. This completes the proof of Theorem 2.

Proof of theorem 3. We shall study the periodic solutions of system (7), i.e. the
periodic solution of the system (2) with & = 0. The solution of the system (2) with
A # 0 such that (x(0),y(0),2(0)) = (X, Vo, 2Z0) IS

x(0) Xo cos(t) — yy sin(t) + fot(—b2 (1) sin(t — 1) + b, (1) cos(t — 7))dt
y(t) | =] xgsin(t) + y,cos(t) + fot(b1 (1) sin(t — 1) + b, (1) cos(t — 1))dt
z(t) eAtZO + Iof eA(t—f)bs () dt

these solutions are 2mr-periodic if and only if

(x(2m), y(2m), z(2m)) = (x(0),(0),2(0)).
We obtain the following periodicity conditions
27

(cos (T)b, (1) + sin(z) b, (7))dr = 0,

27

(=sin (1)by (1) + cos (t)b,(1))dr =0,
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6271'/1 27
* —AT
Zy = m[ e b3 (T)dT.
0

We shall apply Theorem 4 to the differential system (1) with A # 0. It can be written
as system (6) taking

x(t) —y(®O) + b (1)
x=1y(®) ], Folt,x)={ x() + b(t) |,
z(t) Az(t) + b3(t)

b1 ()x(t) + bio () y(t) + b1z (O)2(t)
F1(t,x) = bar (O)x(t) + bap (1) y(t) + by3(t)2(2)
bs1 ()x(t) + bsz (DY (t) + bss(t)z(t)
The set of the periodic solutions becomes
Xo cos(t) — y, sin(t) + fot(—bz (r) sin(t — 1) + b, (1) cos(t — 7))dr

x(t)
y(t) | = *osin(t) + yocos(t) + fot(bl (t) sin(t — 1) + by (1) cos(t — 7))dr
z(t) et (2 M2n-D (ryar

ot J, " b (D) dr

This set of the periodic solutions has dimension two. To look for the periodic
solutions of our system (1) we must calculate the zeros z =(x,,y,) of the system
F(z) = 0, where F(z) is given by (10). The fundamental matrix M(t) of the
differential system (8) is therefore

cos(t) —=sin(t) O
M(t) = M,(t) = (sin (t) cos(t) O >

0 0 et

It verifies

0 0 0
M~Y(0)-M1(2n) = (o 0 0 >

0 0 1—e2m
Consequently all the assumptions of Theorem 4 are satisfied. Therefore we must
study the zeros of the system F(z) = 0 of two equations with two unknowns. More
precisely, we have F(z) = (F; (xo, o), F2(X0, ¥0)) Where F; (xo, o), F2 (X0, ¥o) are
difi?ed as i)n the statement of Theorem 3. The zeros (x; ,yg) of system

F1(X0, Yo 0

(Tz(xo‘%)) B (0) (15)
with respect to the variable x, and y, provide periodic orbits of system (1) with e # 0
sufficiently small if they are simple, i.e. if

3(F, F
det (% > + 0.
%00 Y0 | (g, y0)=Ceh.y0)

For every simple zeros (xg, y;) of system (15), we obtain a 2m-periodic solution
(x(t, &), y(t, &),2z(t,&)) of differential system (1) for & # 0 sufficiently small wich
tends to the periodic solution (5) of the differential system
X =—y()+b (1)

y =x+b,(t)
z=2Az(t) + b3(t)

3539
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when & — 0. This completes the proof of Theorem 2.

4. PROOF OF COROLLARIES 1,2 AND 3
Proof of corollary 1. We consider the differential system (1) with

A= (0 —1) B = (cos (t) sin (2t))

1 0 sin (t) cos (3t)
and
_(sin (2t)
b(t) = ( cos (t))'
Computing the functions F,, F, of theorem 1, we obtain
1 5
F1(x0,y0) = Zxo + 3

1
Fa(x0:¥0) = Zyo
The system F; = F, = 0 has the solution (x5, y35)= (‘% ,0). Since the Jocabian

1
" 16
)

8(-‘]:'1' :FZ)
8(3(0,)70) (xan’n)=(—gv0

Then this differential system has a periodic solution (x(t,¢),y(t,¢)) tending to the
solution given in the statement of the corollary (1) when & — 0.

Proof of corollary 2. We must apply Theorem 2 with b(t) and B(t) are defined in the
statement of corollary (2). We can verify easily the periodicity conditions

J’zn[cos (17)sin(z) + sin(t) cos(r)]dr = 0,
fm[—sinz(r) + cos?(1)]dr = 0,

27
f sin(t)dr = 0.
0

After computations of the functions F;, F, and F5 of Theorem 2, we obtain
) 1.178097245
F = — L Yo

1
F, = o (—0,7853981634 + 3.141592654 y, — 0.7853981634x,)

1
Fs = 7 (3926990817 + 3.1415926542, + 3.141592654 x,
The system F, = F,= F3=0 has one real solution given by

1
o2 = (—1.0.—1)
Since the Jacobian

I(F1,F2,F3)
det (3 (x0:Y0.Z0)

_ 0.7267096096

(xn'J’n.Zo)=(—1 0. %)) 3
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Using Theorem 2 we obtain the periodic solution given in the statement of the
corollary (2).

Proof of corollary 3. We must apply Theorem 3 with b(t) and B(t) are defined in the
statement of corollary. We can verify easily the periodicity conditions

fzn[Zcos (7)sin(1)]dr =0,

J’zn[—sinz(r) + cos?(1)]dr = 0.

After computations of the functions F; and F, of Theorem 3, we obtain
_ (X + 57 + 4m)x, — 42T 4 42

LT 4m(A* + 522 + 4)
F o (A7 + 5221 + 4m)y, — 22242 + 202
> 4m(A* + 522 + 4)

The system F, = F, = 0 has only one real solution given by
. e aA(e?-1)  222%(e?™-1)

(%5, y5) = (n(/14+5/12+4)’n(/14+512+4))'

Since the Jacobian

a(:Fl,:Fz) _ _1
3(x0,y) | aA(e2™-1) 222(e2™-1)\ | 16

@o.yo)={ 7 /14+5/12+4)'71'(ﬂ4+522+4-))
using Theorem 3 we obtain the periodic solution given in the statement of the
corollary (3).

det
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