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Abstract 
 

In this paper we study the existence of periodic solutions of the Floquet differential 
systems 

 

where  and  are column vectors of length n, A is a constant  matrix 

and B(t) is  matrix for  and 3. The components of b(t) and B(t) are T-
periodic. 

 

 

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS 

Floquet theory is concerned with the study of linear differential equations with 

periodic coefficients see [3, 4, 5, 10, 12, 19]. It is very important for the study of 

dynamical systems. These differential systems have been studied intensively and have 
many applications see for instance the papers [16, 6, 17, 18] and references quoted 

therein. 

The linear first order differential system 

 

Where x(t) and b(t) are column vectors of lenghth n, A and B(t) are  matrix, 
B(t) and b(t) are periodic with period T, is called a Floquet differential system. 

A limit cycle of the differential system (2) is a periodic orbit isolated in the set of all 

the periodic orbits of the same differential system. To obtain analytically limit cycles 
of a differential system is in general a very difficult problem, many times impossible. 

If the averaging theory can be applied to the differential system (1), then it reduces 

this difficult problem to find the zeros of a nonlinear function. It is known that in 

general the averaging theory for finding limit cycles does not provide all the limit 
cycles of the diffrential system. 
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The averaging theory (see for instance [15]) gives a quantitative relation between the 
solutions of some nonautonomous differential system and the solutions of its 

autonoumous averaged differential system. In particular, it allows to study the 

periodic orbits of a non-autonomous differential system in function of the periodic 
orbits of the averaged one, see for more details [1, 2, 8, 9, 15,19]. For more 

information about the averaging theory see section 2. 

In the paper [7], the authors studied the limit cycles of the homogenous perturbed 

linear system 

 

Here, we consider the nonhomogenous perturbed linear system (1) for  and 

. 
Our main result on the periodic solutions of the second-order non-autonomous 

differential system (1), where 

, 

, 

, 

Is the following one. 

Theorem1. We define 

 

 

where 

 

 

If 

 

 

Then for every  solution of the system 

 
satisfying 

 

The differential system (1) has a periodic solution  tending to the 
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solution 

 (3) 

Of the system (2) when  

Consider the case . Our main results on the periodic solutions of the third-order 
differential system (1) where 

 

and 

 

are the following. 

 

Theorem2.  Consider the case  We define 

 

 

 

where 

 

 

 

If we have 

 

 

 

then for every solution of the system  
satisfying 
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The differential system (1) has a periodic solution ) tending to 
the solution 

 

of the system (2) when  

 

Theorem3.  Consider the case . We define 

 

 

where  

 

 

 

If we have  

 

 

 

then for every  solution of the system  
satisfying 

 

The differential system (1) has a periodic solution ) tending to 

the solution 
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of the differential system (2) when  
Theorem 1, 2 and 3 are proved in section 3. Their proofs are based on the averaging 

theory for computing periodic solutions, see section 2. For others applications of the 

averaging theory to the study of periodic solutions, see [11] and [13]. 

Applications of Theorem 1, 2 and 3 are the following ones. 

 

Corollary 1.  Consider the Floquet differential system (1) in  with 

 

 

 

Then for  sufficiently small the differential system (1) has a periodic solution 

 tending to the periodic solution 

 of the differential system 

 

When  
Corollary 1 is proved in section 4. 

 

Corolloray 2.  Consider the Floquet differential system  (1) in with 

 

 

 

then for  sufficiently small the differential system (1) has a periodic solution 

) tending to the periodic solution  of 

the differential system 
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when  

Corollary 2 is proved in section 4. 

 

Corolloray 3.  Consider the Floquet differential system  (1) in with 

 

 

 

then for  sufficiently small the differential system (1) has a periodic solution 

) tending to the periodic solution 

 

of the differential system 

 

when  
Corollary 3 is proved in section 4. 

 

 

2. BASIC RESULTS ON AVERAGING THEORY 

In this section we present the basic results from the averaging theory that we shall 

need for proving the main results of this paper. 

We consider the problem of the bifurcation of T-periodic solutions from differential 
systems of the form 

 

With  to  sufficiently small. Here the functions  and 

 are functions, T-periodic in the first variable, and  

is an open subset of  . The main assumption is thet the unperturbed system 

 
Has a submanifold of dimension n of periodic solutions. A solution of this problem is 
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given using the averaging theory. 
Let x(t,z,0) be the solution of the system (7) such that x(0,z,0)=z. We write the 

linearization of the unperturbed system along the periodic solution x(t,z,0) as  

 

In what follows we denote by  some fundamental matrix of the linear 

differential system (8), and by  the projection of  onto its first 

k coordinates ; i.e.  

We assume that there exists an open set V with  such that for each 

, x(t, z, 0) is T-periodic. The set  is isochronous for the system (6) ; i.e 
it is a set formed only by periodic orbits, all of them having the same period. 

Then, an answer to the problem of the bifurcation of T-periodic solutions from the 

periodic solutions x(t,z,0) contained in  is given in the following result. 

 

Theorem 4.  Let V be an open and bounded subset of and let  

be a  function. We assume that 

i.  and that for each  the solution 

 of (5) is T-periodic ; 

ii. For each   there is a fundamental matrix  of (6) such that the 

matrix  has in the upper right corner the  zero 

matrix, and in the lower right corner a  matrix  with 

 

We consider the function  

 

If there exists  with  and , then there is a T-

periodic solution  of system (4) such that  as  

 

Theorem 5. (Perturbations of an isochronous set). We assume that there exists an 

open and bounded set V with  such that for each , the solution 

 is T-periodic, then we consider the function  

 

If there exists  with  and , then there exists a T-

periodic solution  of system (6) such that  as  
 

 

3. PROOF OF THEOREM 1, 2 AND 3 
Proof of theorem 1. We shall study the periodic solutions of system (7), i.e. the 

periodic solutions of the system (1) with . The solution of the system (2) such 

that  is 
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where  

 

so  

  (11) 

These solutions are -periodic if and only if 

 
We obtain the following periodicity conditions  

 

 

We shall apply Theorem 4 to the differential system (1). It can be written as system 

(6) taking 

x =   , F0(t , x) =  . F1(t, x) =  

The set of the periodic solutions (11) has dimension two, To look for the periodic 

solutions of our system (1) we must calculate the zeros z = ( ) of the system 

, where  is given by (10). The fundamental matrix M(t) of the 

differential system (8) is 

M (t) = M z (t) =  

Consequently all the assumptions of Theorem 4 are satisfied. Therefore we must 

study the zeros of the system  of two equations with two unknowns, where 

 is given in the statement of theorem (4). More precisely, we have 

 where  ,  are defined as in the statement 

of Theorem 3. The zeros (  of system 

 

with respect to the variables  and  provide periodic orbits of system (1) with 

sufficiently small if they are simple, i.e. if  

 

For every simple zeros (  of system (12), we obtain a -periodic solution 

 of the differential system (1) for  sufficiently small which tends 
to the periodic solution (3) of the differential system  

 

When . This completes the proof of Theorem 1. 

Proof of theorem 2 and 3. The solution of the system (1) with  such that 

 is 
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 =  +  d  

where 

A =  

we obtain   

 

For studying the periodicity of this solution, we distinguish two cases:  and 

. these two cases will be studied respectively in Theorem 2 and Theorem 3. 

 
Proof of theorem 2. We will apply the averaging theory described in section 2 for 

studying the limit cycles of system (2). More precisely we shall analyze which 

periodic orbits of system (2) can be continued to limit cycles of system (1) with  
sufficiently small. Now we define the elements of section 2 and of Theorem 4 

corresponding to our differential system (1). We have that  and  we 

write (1) in the form (6) and we get that  and  are given by 

, 

, 

 

We shall study the periodic solutions of system (7) in our case, i.e. the periodic 

solutions of the system (1) with  

These solutions such that  are 

 

These solutions are -periodic if and only if 

 
We obtain the following periodicity conditions  
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The set of periodic solutions (13) has dimension 3. To look for the periodic solutions 

of our system (1) we must calculate the zeros (  of the system  

where  is given by (10). The fundamental matrix M(t) of the differential system 
(8) is 

 

Therefore we must study the zeros of the system  where 

 are given in the statement of Theorem 

2. More precisely, the zeros  of the system 

 

With respect to the variables and  provide periodic orbits of system (1) with 

 sufficiently small if they are simple, i.e. if 

. 

For every simple zero  of system (14),we obtain a -periodic solution 

 of the differential system (1) for  sufficiently small such 

that  tends to the periodic solution (4) of (1) when . Note 

that this solution is periodic of period . This completes the proof of Theorem 2. 

 
Proof of theorem 3. We shall study the periodic solutions of system (7), i.e. the 

periodic solution of the system (2) with  . The solution of the system (2) with 

 such that    is 

 

these solutions are -periodic if and only if 

. 
We obtain the following periodicity conditions 
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We shall apply Theorem 4 to the differential system (1) with . It can be written 
as system (6) taking 

x=   ,  F0(t , x) =  ,   

 

The set of the periodic solutions becomes 

. 

This set of the periodic solutions has dimension two. To look for the periodic 

solutions of our system (1) we must calculate the zeros (  of the system 

, where  is given by (10). The fundamental matrix M(t) of the 
differential system (8) is therefore 

 

It verifies 

 

Consequently all the assumptions of Theorem 4 are satisfied. Therefore we must 

study the zeros of the system  of two equations with two unknowns. More 

precisely, we have  where  ,  are 

defined as in the statement of Theorem 3. The zeros  of system 

 

with respect to the variable and  provide periodic orbits of system (1) with  
sufficiently small if they are simple, i.e. if  

 

For every simple zeros   of system (15), we obtain a -periodic solution 

 of differential system (1) for  sufficiently small wich 
tends to the periodic solution (5) of the differential system 
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when . This completes the proof of Theorem 2. 
 

 

4.  PROOF OF COROLLARIES 1, 2 AND 3 

Proof of corollary 1. We consider the differential system (1) with 

  ,   

and 

. 

Computing the functions  of theorem 1, we obtain 

 

 

The system  has the solution = . Since the Jocabian 

 

Then this differential system has a periodic solution  tending to the 

solution given in the statement of the corollary (1) when . 
 

Proof of corollary  2. We must apply Theorem 2 with b(t) and B(t) are defined in the 
statement of corollary (2). We can verify easily the periodicity conditions  

 

 

 

After computations of the functions  and  of Theorem 2, we obtain 

 

 

 

The system   =  = = 0 has one real solution given by 

 

Since the Jacobian 

. 



On The Limit Cycles Of The Floquet Differential Systems 3541 

3541 
 

Using Theorem 2 we obtain the periodic solution given in the statement of the 
corollary (2). 

 

Proof of corollary 3. We must apply Theorem 3 with b(t) and B(t) are defined in the 
statement of corollary. We can verify easily the periodicity conditions 

 

 

After computations of the functions  and  of  Theorem 3, we obtain 

 

 

The system  has only one real solution given by  

. 

Since the Jacobian 

 

using Theorem 3 we obtain the periodic solution given in the statement of the 
corollary (3). 
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