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Abstract 

 

In this small note we have established some new explicit expressions and 
recurrence relations for single and product moments of generalized order 

statistics for the Marshall-Olkin log-logistic distribution. These explicit 

expressions and recurrence relations can be used to develop the relationship 

for moments of ordinary order statistics, record statistics and other ordered 
random variable techniques. Further, a characterization result of this 

distribution has been considered on using the conditional moment of the 

generalized order statistics. 
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1. Introduction 
The concept of generalized order statistics )(gos  was introduced by Kamps [1]. 

Several models of ordered random variables such as order statistics, record values, 

sequential order statistics, progressive type II censored order statistics and Pfeifer’s 

record values can be discussed as special cases of the gos . Suppose 

),,,(,),,,,1( kmnnXkmnX  , mk ,1(   is a real number), are n gos  from an 

absolutely continuous distribution function )(df  )(xF  with probability density 

function )( pdf  )(xf , if their joint pdf  is of the form 
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on the cone )1()0( 1
1

1   FxxF n , where 0)1)((  mjnkj  for all 

j , nj 1 , k  is a positive integer and 1m . 

 If 0m  and 1k , then this model reduces to the ordinary r th order 

statistic and (1.1) will be the joint pdf  of n  order statistics nnnn XXX ::2:1    

from df  )(xF . If 1k  and 1m , then (1.1) will be the joint pdf of the first n  

record values of the identically and independently distributed )(iid  random variables 

with df  )(xF  and corresponding pdf  )(xf . 

 In view of (1.1), the marginal pdf  of the r th gos , ),,,( kmnrX , nr 1 , 

is 
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and the joint pdf  of ),,,( kmnrX  and ),,,( kmnsX , nsr 1 , is 
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 )0()()( mmm hxhxg  , )1,0[x . 

 The general theory for distributions of sequential and gos  have been 

developed by Cramer and Kamps (2003) without imposing and condition on the 

parameters. Some characterization of probability distributions via regression of gos  

has been obtained by Bieniek and Szynal (2003) and Cramer et al. (2004). Some 

recurrence for moments of gos  for different distributions have been considered by 

Kamps and Gather (1997), Keseling (1999), Cramer and Kamps (2000), Ahsanullah 

(2000), Habibullah and Ahsanullah (2000), Pawlas and Szynal (2001), Raqab (2001), 

Kamps and Cramer (2001), Ahmad and Fawzy (2003), Saran and Pandey (2003), Al-
Hussaini, et al. (2005), Ahmad (2007, 2008) and Kumar (2013) among others. 

 In this paper, we are concerned with some new expressions for the exact 

moments and recurrence relations of gos  from Marshall-Olkin log-logistic 

distribution. Section 2, gives a exact moments and recurrence relations for single 

moments gos  which can be applied to obtained relations for order statistics and 



On Generalized Order Statistics From Marshall-Olkin Log-Logistic Distribution 3515 

 3515 

record values. In Section 3, some exact moments and recurrence relations for product 

moments gos  are derived and we show that result for order statistics and record 

values are deduced as special cases. Finally in last section, of the paper we present a 

characterization of this distribution is obtained by using conditional moment of gos  

we also use the explicit expression to calculate the mean and variance of order 
statistics and record values. 

 A random variable X  is said to have Marshall-Olkin log-logistic distribution 

if its pdf  is of the form 
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and the corresponding survival function is 
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 Note that for Marshall-Olkin log-logistic distribution defined in (1.5) 
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 Log-logistic distribution is consider as a special case of Marshall-Olkin log-

logistic distribution when 1 . 

 

 

2 Relations for single moments 

For the Marshall-Olkin log-logistic distribution as given in (1.5), the j th moments 

of ),,,( kmnrX  is given as 
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 Further, on using the binomial expansion, we can rewrite (2.1) as 
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 Now letting )]([ xFt   in (2.2), we get 
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 Since 
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where ),( baB  is the complete beta function. Therefore,  
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Special cases 

i) Putting 0m , 1k  in (2.5), we get moments of order statistics from 

Marshall-Olkin log-logistic distribution as; 
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ii) Putting 1m  in (2.6), to get moments of k th record value from Marshall-

Olkin log-logistic distribution as; 
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 A recurrence relation for single moment of gos  from df  (1.5) is obtained in 

the following theorem. 
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Theorem 2.1 For the distribution as given in (1.5) and for nr 2 , 2n  and 

,2,1k  
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integrand for differentiation, we get 
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Upon substituting for )(xF  from (1.6) in (2.8) and simplifying the resulting 

expression, we derive the relation in Theorem 2.1. 

 

Remark 2.1 Putting 0m , 1k , in (2.7), we obtain a recurrence relation for single 

moment of order statistics of the Marshall-Olkin log-logistic distribution in the form 

 ][
)1(

][][
)1(

1 ::1:











 











 j

nr
j

nr
j
nr XE

rn

j
XEXE

rn

j
. 

 

Remark 2.2 Setting 1m  and 1k  in Theorem 2.1, we get a recurrence relation 

for single moment of k th record values from Marshall-Olkin log-logistic 
distribution in the form 
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Table 2.1: Mean of order statistics 

 

n  r  3  

1  2  

1  2  1  2  
1 1 1.209402 2.418805 1.523752 3.047503 
2 1 0.806537 1.613075 1.016173 2.032347 

2 1.612267 3.224535 2.031330 4.062660 

3 1 0.672382 1.344764 0.847148 1.694296 

2 1.074848 2.149696 1.354224 2.708448 
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3 1.880977 3.761954 2.369883 4.739765 
4 1 0.597939 1.195878 0.753356 1.506711 

2 0.895712 1.791423 1.128526 2.257052 

3 1.253985 2.507970 1.579922 3.159844 

4 2.089975 4.179949 2.633203 5.266406 
5 1 0.548383 1.096766 0.690919 1.381838 

2 0.796195 1.592389 1.003142 2.006285 

3 1.044987 2.089975 1.316602 2.633203 

4 1.393316 2.786633 1.755469 3.510937 

5 2.264139 4.528278 2.852637 5.705273 
n  r  4  

1  2  

1  2  1  2  
1 1 1.110995 2.221990 1.321203 2.642407 

2 1 0.833588 1.667175 0.991308 1.982616 

2 1.388403 2.776805 1.651098 3.302197 

3 1 0.729728 1.459456 0.867798 1.735596 

2 1.041306 2.082612 1.238329 2.476657 
3 1.561951 3.123902 1.857483 3.714967 

4 1 0.669255 1.338509 0.795882 1.591765 

2 0.911149 1.822298 1.083545 2.167089 

3 1.171463 2.342927 1.393113 2.786225 

4 1.692114 3.384227 2.012274 4.024547 
5 1 0.627772 1.255543 0.746550 1.493101 

2 0.835228 1.670456 0.993259 1.986518 

3 1.025031 2.050061 1.218974 2.437947 

4 1.269085 2.538170 1.509205 3.018410 
5 1.797871 3.595741 2.138041 4.276081 

n  r  5  

1  2  

1  2  1  2  
1 1 1.069270 2.138540 1.228269 2.456537 

2 1 0.855787 1.711573 0.983041 1.966082 

2 1.282753 2.565506 1.473497 2.946993 

3 1 0.770577 1.541153 0.885160 1.770320 
2 1.026207 2.052414 1.178802 2.357605 

3 1.411026 2.822053 1.620844 3.241687 

4 1 0.719571 1.439142 0.826570 1.653141 

2 0.923593 1.847186 1.060930 2.121859 

3 1.128821 2.257642 1.296675 2.593350 
4 1.505095 3.010189 1.728900 3.457800 

5 1 0.683968 1.367936 0.785673 1.571346 

2 0.862029 1.724058 0.990211 1.980422 
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3 1.015939 2.031878 1.167008 2.334015 
4 1.204076 2.408152 1.383120 2.766240 

5 1.580349 3.160699 1.815345 3.630690 

 

Table 2.2: Variance of order statistics 

 

n  r  3  

1  2  

1  2  1  2  
1 1 0.955776 3.823098 1.517197 6.068793 

2 1 0.155691 0.622760 0.247143 0.988571 

2 1.431260 5.725036 2.271981 9.087924 

3 1 0.085413 0.341655 0.135586 0.542345 
2 0.188258 0.753030 0.298839 1.195356 

3 1.836146 7.344583 2.914698 11.65880 

4 1 0.060582 0.242330 0.096169 0.384677 

2 0.093405 0.373623 0.148272 0.593086 
3 0.218929 0.875713 0.347527 1.390110 

4 2.200496 8.801992 3.493072 13.97229 

5 1 0.047754 0.191017 0.075806 0.303222 

2 0.062734 0.250939 0.099585 0.398338 

3 0.102273 0.409089 0.162346 0.649392 
4 0.248168 0.992666 0.393939 1.575761 

5 2.536915 10.14766 4.027102 16.1084 
n  r  4  

1  2  

1  2  1  2  
1 1 0.336575 1.346298 0.475989 1.903950 

2 1 0.090705 0.362824 0.128278 0.513112 

2 0.428532 1.714135 0.606038 2.424147 
3 1 0.056809 0.227234 0.080339 0.321357 

2 0.093781 0.375124 0.132625 0.530505 

3 0.505552 2.022208 0.714960 2.859831 

4 1 0.043321 0.173287 0.061267 0.245062 
2 0.053384 0.213537 0.075496 0.301990 

3 0.100296 0.401179 0.141837 0.567356 

4 0.572867 2.291476 0.810156 3.240634 

5 1 0.035856 0.143427 0.050709 0.202835 

2 0.038711 0.154845 0.054747 0.218984 
3 0.053777 0.215115 0.076053 0.304219 

4 0.107481 0.429927 0.152002 0.608007 

5 0.633292 2.533173 0.895610 3.582445 
n  r  5  
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1  2  

1  2  1  2  
1 1 0.178118 0.712473 0.235027 0.940115 

2 1 0.060712 0.242849 0.080109 0.320438 
2 0.204375 0.817499 0.269672 1.078693 

3 1 0.040885 0.163543 0.053949 0.215797 

2 0.056799 0.227199 0.074948 0.299789 

3 0.228801 0.915196 0.301902 1.207612 
4 1 0.032475 0.129899 0.042851 0.171401 

2 0.034900 0.139600 0.046051 0.184205 

3 0.057640 0.230561 0.076056 0.304224 

4 0.250456 1.001832 0.330480 1.321919 

5 1 0.027631 0.110523 0.036459 0.145836 
2 0.026445 0.105781 0.034895 0.139581 

3 0.033370 0.133478 0.044030 0.176125 

4 0.059661 0.238646 0.078724 0.314896 

5 0.269841 1.079358 0.356055 1.424220 

 

Table 2.3: Mean of record statistics 

 

n  3  

1  2  

1  2  1  2  
1 1.209402 2.418805 1.523752 3.047503 
2 2.105240 4.210480 2.652436 5.304872 
3 3.295122 6.590244 4.151593 8.303187 
4 5.016621 10.033242 6.320546 12.641092 
5 7.566886 15.133772 9.533679 19.067358 
6 11.37473 22.74947 14.33127 28.66253 
7 17.07648 34.15297 21.51502 43.03004 
8 25.62326 51.24652 32.28329 64.56657 
9 38.43998 76.87997 48.43134 96.86269 
10 57.66302 115.32604 72.65085 145.30170 
n  4  

1  2  

1  2  1  2  
1 1.110995 2.221990 1.321203 2.642407 
2 1.675684 3.351369 1.992736 3.985472 
3 2.317494 4.634989 2.755981 5.511962 
4 3.131800 6.263601 3.724359 7.448718 
5 4.198067 8.396134 4.992371 9.984743 
6 5.609711 11.219422 6.671108 13.342216 
7 7.486482 14.972965 8.902978 17.805956 
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8 9.985849 19.971698 11.875243 23.750485 
9 13.31666 26.63332 15.83627 31.67253 
10 17.75680 35.51359 21.11651 42.23301 
n  5  

1  2  

1  2  1  2  
1 1.069270 2.138540 1.228269 2.456537 
2 1.483495 2.966990 1.704088 3.408177 
3 1.913709 3.827419 2.198275 4.396550 
4 2.420716 4.841433 2.780673 5.561346 
5 3.040628 6.081257 3.492765 6.985529 
6 3.808631 7.617263 4.374969 8.749937 
7 4.765041 9.530081 5.473594 10.947189 
8 5.958627 11.917254 6.844665 13.689330 
9 7.449564 14.899129 8.557302 17.114605 
10 9.312663 18.625326 10.697440 21.394881 

 

Table 2.2: Variance of record statistics 

 

n  3  

1  2  

1  2  1  2  
1 0.955776 3.823098 1.517197 6.068793 

2 4.164934 16.65974 6.611421 26.44569 

3 15.85024 63.40095 25.1607 100.6427 
4 55.61831 222.4733 88.2886 353.1543 

5 185.5822 742.3291 294.5935 1178.374 

6 599.4961 2397.984 951.6406 3806.563 

7 1895.305 7581.218 3008.608 12034.43 

8 5904.382 23617.53 9372.621 37490.49 
9 18205.32 72821.27 28899.15 115596.6 

10 55723.94 222895.8 88456.24 353825.0 
n  4  

1  2  

1  2  1  2  
1 0.336575 1.346298 0.475989 1.903950 

2 0.940466 3.761857 1.330017 5.320068 

3 2.470848 9.883383 3.494304 13.97721 
4 6.089299 24.35718 8.61157 34.44627 

5 14.30896 57.23584 20.23593 80.94370 

6 32.48669 129.9468 45.94313 183.7725 

7 71.92309 287.6924 101.7146 406.8585 
8 156.2632 625.0529 220.9896 883.9583 
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9 334.6536 1338.614 473.2715 1893.086 
10 708.6871 2834.75 1002.235 4008.943 
n  5  

1  2  

1  2  1  2  
1 0.178118 0.712473 0.235027 0.940115 

2 0.393501 1.574003 0.519228 2.076907 

3 0.860701 3.442797 1.135699 4.542796 
4 1.791993 7.167965 2.364547 9.458187 

5 3.575371 14.30147 4.717723 18.87092 

6 6.90354 27.61412 9.109256 36.43706 

7 13.00177 52.00712 17.15596 68.62379 

8 24.0228 96.09124 31.69829 126.7931 
9 43.72719 174.9087 57.69836 230.7934 

10 78.65241 314.6095 103.7825 415.1298 

 

 

3 Relations for product moments 

For Marshall-Olkin log-logistic distribution, the product moments of ),,,( kmnrX  and 

),,,( kmnsX  is given as 

dxdyyxfyxkmnsXkmnrXE kmnsXkmnrX
j

x
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 On using (1.3) and binomial expansion, we have 
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 On substituting the above expression of )(xI  in (3.1), we find that 
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 
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 Again by setting )]([ xFz   in (3.3) and simplifying the resulting equation, 

we get 
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 On using relation (2.4) in (3.4), we get 
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Special cases 
i)  By setting 0m , 1k  in (3.5), we get product moments of order statistics 

from Marshall-Olkin log-logistic distribution as 
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ii) If 1m  in (3.6), we get product moments of k th record values from 

Marshall-Olkin log-logistic distribution as 
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 Making use of (1.6), we can derive recurrence relations for product moments 

of gos  from (1.5). 

 

Theorem 3.1 For the distribution as given in (1.5) and for nsr 1 , 2n  and 

,2,1k  
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Proof: From (1.3), we have 
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 Solving the integral in )(xG  by parts and substituting the resulting expression 

in (3.8), we get 
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 )],,,1(),,,([)],,,(),,,([ kmnsXkmnrXEkmnsXkmnrXE jiji   
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 Now on using (1.6) in (3.9), we have the result given in (3.7). 
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Remark 3.2 Setting 1m  and 1k , in (3.7), we obtain the recurrence relations for 

product moments of k th record values from Marshall-Olkin log-logistic distribution 
in the form 
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Remark 3.3 At 0j  in (3.6), we have 
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as obtained in (2.6). 

 

Remark 3.4 At 0i , Theorem 3.1 reduces to Theorem 2.1. 
 

 

4 Characterization 
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Theorem 4.1: Let X  be a non negative random variable having an absolutely 

continuous distribution function )(xF  with 0)0( F  and 1)(0  xF  for all 0x , 

then 
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if and only if 
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Proof: From (4.1), we have 
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 Again by setting 
1 mut  in (4.4) and simplifying the resulting expression, we 

derive the relation given in (4.2). 
 To prove sufficient part, we have from (4.1) and (4.2) 
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where 
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 Differentiating (4.7) both sides with respect to x , we get 
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which proves that 
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5. Application 
Order statistics, record values and their moments are widely used in statistical 

inference. In this Section we suggest some application based on moments discussed in 

Section 2. 

 

i)  Estimation: The moments of order statistics and record values given in 

Section 2 can be used to obtain the best linear unbiased estimate of the 

parameters of the Marshall-Olkin log-logistic distribution. 
ii)  Characterization: The Marshall-Olkin log-logic distribution given in (1.5) 

can be characterization by using conditional expectation of generalized order 

statistics as Theorem 4.1. 
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