

A Comparative study of Numerical solutions and Analytic solutions obtained using Adomian decomposition method for heat transfer over stretching surface with variable heat flux in the presence of a heat source or sink

Kanthavel.T and M. Kaliyappan

*Department of Mathematics, School of Advanced Sciences,
VIT University Chennai Campus,
Vandalur-Kelambakkam Road, Chennai-600 127.
Email: kanthavelmaths@gmail.com, Email: kaliyappan.m@vit.ac.in*

Abstract

In this paper, we study the unsteady boundary layer flow of an incompressible fluid over a stretching surface in the presence of a heat source or sink using Adomian decomposition method. The solutions are agreeable with the existing numerical results.

Keywords: Unsteady flow, Boundary layer flow, Stretching surface, Heat transfer, Adomian decomposition method (ADM) and Padé approximants.

1. INTRODUCTION

The study of two-dimensional boundary layer flow due to a stretching surface is important in variety of engineering applications such as cooling of an infinite metallic plate in a cooling bath, the boundary layer along material handling conveyors, the aerodynamic extrusion of paper and plastic sheets. In all these cases, a study of flow field and heat transfer can be of significant importance since the quality of the final product depends on skin friction coefficient and surface heat transfer rate.

Heating and cooling of fluids finds many industrial applications in power transmission, manufacturing and electronics. Effective cooling techniques are greatly needed for cooling today's high-energy devices. Conventional heat transfer fluids such as water, ethylene glycol, and engine oil have poor heat transfer capabilities due to their low heat transfer properties. Further, as the thermal conductivities of metals are nearly three times higher than these fluids, it would be desirable to combine the two

substances to produce a heat transfer medium that behaves like a fluid with the thermal conductivity of a metal.

The problem of heat transfer from boundary layer flow driven by a continuous moving surface is of importance in a number of industrial manufacturing processes. Several authors have been analysed in various aspects of the pioneering work of Sakiadis [14,15]. Crane [7] have investigated the steady boundary layer flow due to stretching with linear velocity. Vleggaar et al.[17] have analysed the stretching problem with constant surface temperature and Soundalgekar et al.[16] have analysed the constant surface velocity.

Grubka et al. [10] have investigated the stretching problem for a surface moving with a linear velocity and with a variable surface temperature. Ali [2] has analysed the flow and heat characteristics on a stretched surface subject to power-law velocity and temperature distributions. Banks [5] studied similarity solutions of the boundary layer equation for a stretching wall. Ali and Elbashbeshy [2, 8] extended Banks work to a porous stretched surface with different values of the injection parameter.

Hashim et al.[12] applied Adomian decomposition method to the classical Blasius equation. Wazwaz [18] used Adomian decomposition method to solve the boundary layer equation arising in an incompressible fluid. AwangKechil and Hashim [3] used Adomian decomposition method to get the approximate analytical solution of an unsteady boundary layer problem over an impulsively stretching sheet. The heat transfer over an unsteady stretching surface with prescribed heat flux discussed in detail by Ishak et al.[13].

AwangKechil and Hashim [4] applied Adomian decomposition method to a two by two system of nonlinear ordinary differential equations of free-convective boundary layer equation. Hayat et al.[11] analysed the MHD flow over a nonlinearly stretching sheet by employing the Modified Adomian decomposition method. In this paper, we studied the problem discussed in Elsayed M. A. Elbashbeshy et al.[9] using Adomian decomposition method.

2. FORMULATION OF THE PROBLEM

The formulation of the problem presented by Elsayed M. A. Elbashbeshy et al.[9] is described below.

Consider the unsteady two-dimensional laminar boundary layer flow of an incompressible fluid over a continuous moving stretching surface. Assume that the surface is stretched with velocity $U_\omega(x,t) = \frac{\alpha x}{1-\gamma t}$ along the x axis by keeping the origin fixed, where the y axis is normal to the x axis and also assume that the surface being subjected to a variable heat flux $q_\omega(x,t) = \frac{\beta x}{1-\gamma t}$

The basic boundary layer equations that governs momentum and energy are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (1)$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2} \quad (2)$$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{Q}{\rho c_p} (T - T_\infty) \quad (3)$$

subject to the boundary conditions

$$y = 0 : u = U_\omega, \quad v = 0 \quad \frac{\partial T}{\partial y} = -\frac{q_\omega}{k} \quad (4)$$

$$y \rightarrow \infty : u = 0, \quad T = T_\infty,$$

Where u and v are the velocity components in the x and y directions respectively, T is the fluid temperature inside the boundary layer, t is the time, k is the thermal conductivity, ν is the kinematics viscosity, c_p is the specific heat at constant pressure, ρ is the density, $Q > 0$ represents a heat source and $Q < 0$ represents a heat sink, T_∞ is the temperature far away from the stretching surface, and α , β and γ are constants, where $\alpha > 0$, $\beta \geq 0$, $\gamma \geq 0$ and $\gamma t < 1$. Both α and γ have dimension (time)⁻¹

The equation of continuity is satisfied if we choose a stream function $\psi(x, y)$ such that

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}.$$

The mathematical analysis of the problem is simplified by introducing the following dimensionless similarity variables:

$$\begin{aligned} \eta &= \sqrt{\frac{\alpha}{\nu(1-\gamma t)}} y \\ \psi(x, y) &= \sqrt{\frac{\alpha \nu x^2}{(1-\gamma t)}} f(\eta) \\ T &= T_\infty + \frac{q_\omega}{k} \left[\sqrt{\frac{\nu(1-\gamma t)}{\alpha}} \right] \theta(\eta). \end{aligned} \quad (5)$$

Substituting (5) into (2) and (3), we obtain the following set of ordinary differential equations:

$$f''' + ff'' - f'^2 - A \left(f' + \frac{1}{2} \eta f'' \right) = 0 \quad (6)$$

$$\theta'' + Pr \left[f\theta' - f'\theta - \frac{A}{2} (\theta + \eta\theta') + \delta\theta \right] = 0 \quad (7)$$

The boundary conditions (4) now become

$$\begin{aligned} \eta = 0 : \quad f &= 0, \quad f' = 1, \quad \theta' = -1 \\ \eta \rightarrow \infty : \quad f' &= 0, \quad \theta = 0 \end{aligned} \quad (8)$$

where the primes denote differentiation with respect to η , $A = \frac{\gamma}{\alpha}$ is a parameter that measures the unsteadiness, $Pr = \frac{\mu c_p}{k}$ is the Prandtl number (μ is the viscosity), $\delta = \frac{Q_k}{\mu c_p} \frac{Re_x}{Re_k^2}$ is the dimensionless heat source or sink parameter, $Re_x = \frac{U_\omega x}{v}$ is the local Reynolds number, and $Re_k = \frac{U_\omega \sqrt{k}}{v}$. The physical quantities of interest in this problem are the skin friction coefficient C_f and the local Nusselt number Nu_x which are defined as

$$C_f = \frac{\mu \left(\frac{\partial u}{\partial y} \right)_{y=0}}{\left[\rho U_\omega^2 / 2 \right]}, \quad Nu_x = \frac{-x \left(\frac{\partial T}{\partial y} \right)_{y=0}}{T_\omega - T_\infty}$$

$$C_f \sqrt{Re_x} = f''(0), \quad \frac{Nu_x}{\sqrt{Re_x}} = -\frac{1}{\theta(0)} \quad \text{where } Re_x = \frac{x U_\omega}{v}$$

based on the surface velocity.

3. ADOMIAN DECOMPOSITION METHOD

To solve the system of coupled ODEs using Adomian decomposition method, rearrange (6) and (7) as follows

$$f''' = -ff'' + f'^2 + A \left(f' + \frac{1}{2} \eta f'' \right) \quad (9)$$

$$\theta'' = -Pr \left[f\theta' - f'\theta - \frac{A}{2} (\theta + \eta\theta') + \delta\theta \right] \quad (10)$$

By applying the standard procedure of Adomian decomposition method eqs (9) and (10) becomes

$$L_1 f = \left(-ff'' + f'^2 + A \left(f' + \frac{1}{2} \eta f'' \right) \right) \quad (11)$$

$$L_2 \theta = -Pr \left[f\theta' - f'\theta - \frac{A}{2} (\theta + \eta\theta') + \delta\theta \right] \quad (12)$$

where

$$L_1 = \frac{d^3}{d\eta^3} \text{ and inverse operator } L_1^{-1}(.) = \int_0^\eta \int_0^\eta \int_0^\eta (.) d\eta d\eta d\eta \text{ and}$$

$$L_2 = \frac{d^2}{d\eta^2} \text{ and inverse operator } L_2^{-1}(.) = \int_0^\eta \int_0^\eta (.) d\eta d\eta$$

Applying the inverse operator on both sides of (11) and (12)

$$L_1^{-1}L_1 f = L_1^{-1} \left(-ff'' + f'^2 + A \left(f' + \frac{1}{2} \eta f'' \right) \right) \quad (13)$$

$$L_2^{-1}L_2 \theta = -Pr L_2^{-1} \left[f\theta' - f'\theta - \frac{A}{2}(\theta + \eta\theta') + \delta\theta \right] \quad (14)$$

simplify eqs (13) and (14) we get

$$f(\eta) = \eta + \frac{a\eta^2}{2} + \int_0^\eta \int_0^\eta \int_0^\eta \left[-N_1(f) + N_2(f) + A \left(f' + \frac{1}{2} \eta f'' \right) \right] d\eta d\eta d\eta \quad (15)$$

and

$$\theta(\eta) = b - \eta - Pr \int_0^\eta \int_0^\eta \left[N_3(f, \theta) - N_4(f, \theta) - \frac{A}{2}(\theta + \eta\theta') + \delta\theta \right] d\eta d\eta \quad (16)$$

where $a = f''(0)$ and $b = \theta(0)$ are to be determined from the boundary conditions at infinity in (8). The nonlinear terms $ff'', f'^2, f\theta'$ and $f'\theta$ can be decomposed as

Adomian polynomials $\sum_{n=0}^{\infty} B_n, \sum_{n=0}^{\infty} C_n, \sum_{n=0}^{\infty} D_n$ and $\sum_{n=0}^{\infty} E_n$ as follows

$$N_1(f) = \sum_{n=0}^{\infty} B_n = ff'' \quad (17)$$

$$N_2(f) = \sum_{n=0}^{\infty} C_n = (f')^2 \quad (18)$$

$$N_3(f, \theta) = \sum_{n=0}^{\infty} D_n = f\theta' \quad (19)$$

$$N_4(f, \theta) = \sum_{n=0}^{\infty} E_n = f'\theta \quad (20)$$

Where $B_n(f_0, f_1, \dots, f_n)$, $C_n(f_0, f_1, \dots, f_n)$ and $D_n(f_0, f_1, \dots, f_n, \theta_0, \theta_1, \dots, \theta_n)$, $E_n(f_0, f_1, \dots, f_n, \theta_0, \theta_1, \dots, \theta_n)$ are the so called Adomian polynomials. In the Adomian decomposition method [1] f and θ can be expanded as the infinite series

$$f(\eta) = \sum_{n=0}^{\infty} f_n = f_0 + f_1 + f_2 + \dots + f_m + \dots$$

$$\theta(\eta) = \sum_{n=0}^{\infty} \theta_n = \theta_0 + \theta_1 + \theta_2 + \dots + \theta_m + \dots$$

The individual terms of the Adomian series solution of the equation (6)-(8) are provided below by the simple recursive format

$$f_0(\eta) = \eta + \frac{a\eta^2}{2} \quad (21)$$

$$\theta_0(\eta) = b - \eta \quad (22)$$

$$f_{n+1}(\eta) = \int_0^\eta \int_0^\eta \int_0^\eta \left[-B_n + C_n + A \left(f_n' + \frac{1}{2} \eta f_n'' \right) \right] d\eta d\eta d\eta \quad (23)$$

$$\theta_{n+1}(\eta) = -Pr \int_0^\eta \int_0^\eta \left[D_n - E_n - \frac{A}{2} (\theta_n + \eta \theta_n') + \delta \theta_n \right] d\eta d\eta \quad (24)$$

For practical numerical computation, we have taken the m-term approximation of $f(\eta)$ and $\theta(\eta)$ as $\phi_m(\eta) = \sum_{n=0}^{m-1} f_n(\eta)$ and $\omega_m(\eta) = \sum_{n=0}^{m-1} \theta_n(\eta)$

4. RESULTS ANALYSIS

The recursive procedure (21)-(24) are programmed in MATLAB. We have obtained upto 15th term of approximations to both $f(\eta)$ and $\theta(\eta)$. The first few terms are given as follows:

$$f_0 = \eta + \frac{a\eta^2}{2}$$

$$f_1 = \left(\frac{A}{6} + \frac{1}{6} \right) \eta^3 + \left(\frac{Aa}{16} + \frac{a}{24} \right) \eta^4 + \left(\frac{a^2}{120} \right) \eta^5$$

$$f_2 = \left(\frac{-a^3}{40320} \right) \eta^8 + \left(\frac{a^2 A}{1120} - \frac{a^2}{5040} \right) \eta^7 + \left(\frac{a A^2}{192} + \frac{a A}{240} + \frac{a}{720} \right) \eta^6 + \left(\frac{A^2}{60} + \frac{A}{60} \right) \eta^5$$

and

$$\theta_0 = b - \eta$$

$$\theta_1 = Pr \left[\left(\frac{2b + Ab - 2b\delta}{4} \right) \eta^2 + \left(\frac{\delta - A + ab}{6} \right) \eta^3 - \left(\frac{a}{24} \right) \eta^4 \right]$$

$$\theta_2 = Pr \left(\frac{b}{24} + \frac{Ab}{24} - \frac{Prb}{24} + \frac{APrb}{24} + \frac{A^2 Prb}{32} + \frac{Prb\delta^2}{24} - \frac{APrb\delta}{12} \right) \eta^4 -$$

$$Pr \left(\frac{A}{60} + \frac{Pr\delta}{60} - \frac{ab}{120} + \frac{A^2 Pr}{60} + \frac{Pr\delta^2}{120} - \frac{APr}{60} - \frac{APr\delta}{40} - \frac{Aab}{80} \right) \eta^5 + \frac{Prab}{60} - \frac{APrab}{60} + \frac{Prab\delta}{120} + \frac{1}{60}$$

$$- Pr \left(\frac{-a}{240} + \frac{Aa}{160} - \frac{Pr a}{240} - \frac{a^2 b}{720} + \frac{APr a}{1440} + \frac{Pr a\delta}{720} + \frac{Pr a^2 b}{360} \right) \eta^6 + \left(\frac{Pr a^2}{1008} - \frac{a^2}{1260} \right) \eta^7$$

The undetermined values of a and b are computed using the boundary conditions at infinity in (8). The difficulty at infinity is tackled by applying the diagonal Padé approximants [6] that approximate $f'(\eta)$ and $\theta(\eta)$ using $\phi_{15}'(\eta)$ and $\omega_{15}(\eta)$. Applying infinity to the diagonal Padé approximants[N/N] approximates $f'(\eta)$ and

$\theta(\eta)$ ranging values of N from 2 to 10 provides a two by two system of nonlinear algebraic equations. The obtained nonlinear system are solved by employing Newton Raphson method. The numerical results of a and b obtained are shown in the following Tables.

Table 1 Comparison of local nusselt number at $A=0$ and $\delta = 0$ for various values of Pr obtained using ADM and MADM with previously published results.

Pr	Present Result		Elbashbeshy et al.[9]	Ishak et al.[13]	Exact solution referred in[9]
	ADM-Padé of [6/6]	MADM-Padé of [6/6]			
0.72	0.808	0.8081	0.808	0.8086	0.8086
1	1	1	1	1	1
10	3.9921	3.7205	3.7207	3.7202	3.7206

Table 2 Comparision of the skin friction coefficient and the local Nusselt number for $Pr= 1$ and $\delta = -2$ at different values of A obtained using ADM and MADM with previously published results.

A	Present Result				Elbashbeshy et al.[9]	
	$f''(0)$		$1/\theta(0)$		$f''(0)$	$1/\theta(0)$
	ADM-Padé of [6/6]	MADM-Padé of [6/6]	ADM-Padé of [6/6]	MADM-Padé of [6/6]		
0	1.0108	1.0057	1.786	1.7851	1	1.7844
0.8	1.3227	1.3219	1.8544	1.8541	1.3218	1.854
1.2	1.4528	1.4533	1.8906	1.8904	1.4535	1.8904
2	1.6838	1.6828	1.9676	1.964	1.6828	1.9635

Table 3 Comparision of the skin friction coefficient and the local Nusselt number for $Pr = 1$ and $\delta = 0$ at different values of A obtained using ADM and MADM with previously published results.

A	Present Result				Elbashbeshy et al.[9]	
	$f''(0)$		$1/\theta(0)$		$f''(0)$	$1/\theta(0)$
	ADM-Padé of [6/6]	MADM-Padé of [6/6]	ADM-Padé of [6/6]	MADM-Padé of [6/6]		
0	1	1	1.0056	1	1	1
0.8	1.3219	1.3218	1.1352	1.1362	1.3218	1.136
1.2	1.4536	1.4535	1.2078	1.207	1.4535	1.207
2	1.6831	1.6828	1.3355	1.3345	1.6828	1.3345

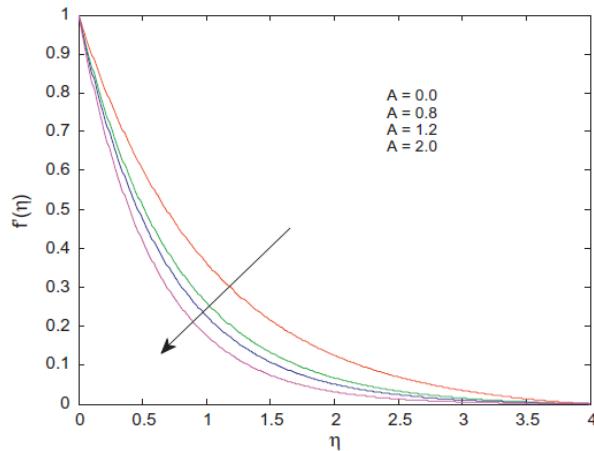


Fig. 1 Velocity profiles $f'(\eta)$ for various values of A when $Pr=1$ and $\delta = -2$ using $\varphi'_{15[10/10]}$.

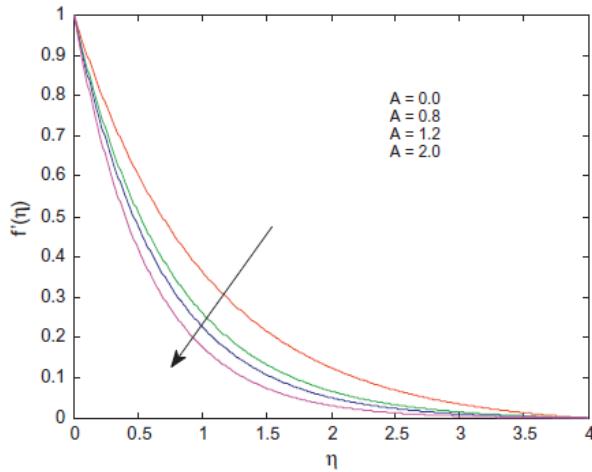


Fig. 2 Velocity profiles $f'(\eta)$ for various values of A at $Pr=1$, $\delta=0.1$ using $\varphi'_{15[10/10]}$.

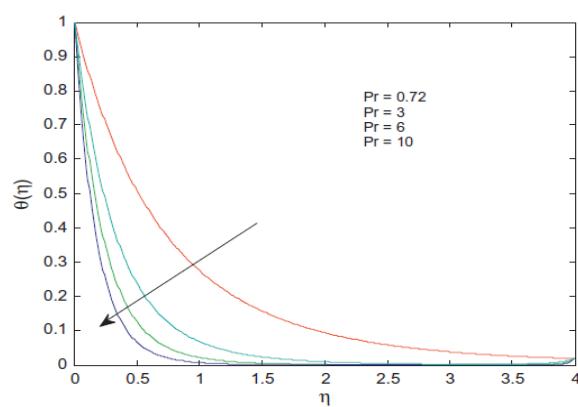


Fig. 3 Temperature profiles for various values of Pr at $A=1.2$ and $\delta = -1$ using $\varphi'_{15[9/9]}$.

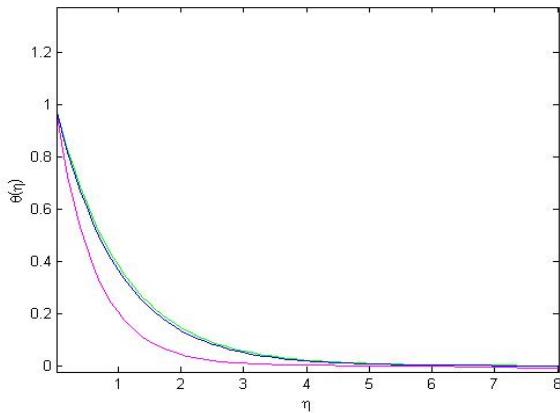


Fig. 4 Temperature profiles for various values of Pr at $A=0.8$ and $\delta=-0.1$ using $\omega_{15[8/8]}$.

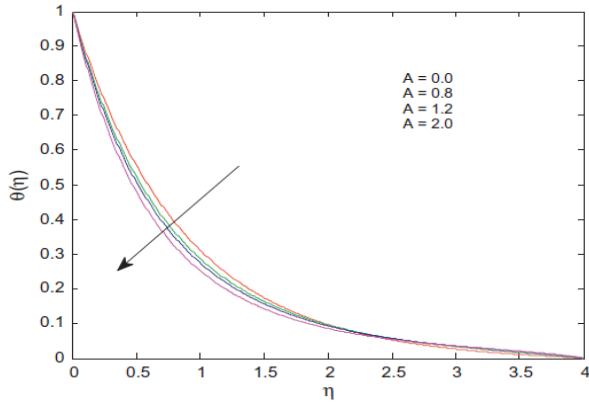


Fig. 5 Temperature profiles for various values of A at $\text{Pr}=1$ and $\delta=0.1$ using $\omega_{15[8/8]}$.

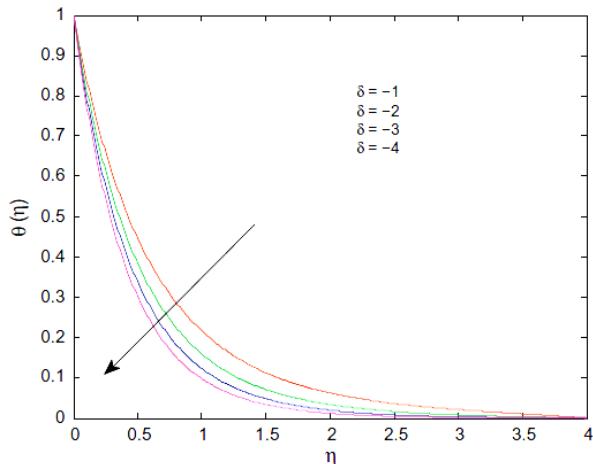


Fig. 6 Temperature profiles for various values of δ at $\text{Pr}=1$ and $A=1.2$ using $\omega_{15[10/10]}$.

From Figs. 1 and 2, we note that when unsteadiness parameter A increases, the velocity profiles decreases. This implies that the skin friction coefficient increases. In Figs. 3 and 4 we note that when Prandtl Number (Pr) increases the temperature decreases within the boundary layer for all values of the Prandtl number. This is consistent with the well-known fact that the thermal boundary layer thickness decreases with increasing Prandtl number. In Fig 5 we note that when unsteadiness parameter A increases the temperature Profiles is decreases. The distribution of temperature variation within the boundary layer for various values of the heat source or sink parameter are shown in Fig. 6.

5. CONCLUSION

The Adomian decomposition method and Modified Adomian decomposition method is applied to solve a system of two nonlinear ordinary differential equations with the specified boundary conditions that refers Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. The obtained solutions have matched with the existing numerical result. The Adomian decomposition method and Modified Adomian decomposition method techniques are very efficient alternative tools to solve nonlinear models with infinite boundary conditions.

Acknowledgement:

We express our sincere gratitude to Dr. A. Vanavkumar, NIT, Arunachal Pradesh and Dr. David Maxim Gururaj, VIT, Chennai for their comments and suggestions.

REFERENCES

- [1] Adomian, G. (1994) "Solving Frontier Problems of Physics":The Decomposition Method. Kluwer Academic Publication, Boston.
- [2] Ali, M. E. (1995)"On thermal boundary layer on a power law stretched surface with suction or injection, " Int. J. Heat Mass Flow, Vol. 16, pp. 280-290.
- [3] AwangKechil S.,Hashim I.,(2009)"Approximate analytical solution for MHD stagnation-point flow in porous media, "Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 2, pp. 1346-1354.
- [4] AwangKechil W. S.,Hashim I. (2007), "Non-perturbative solution of free-convective boundary layer equation by Adomian decomposition method, " Physics Letters A, Vol. 363, No. 1-2, pp. 110-114.
- [5] Banks, W. H. H. (1983) "Similarity solutions of the boundary layer equation for a stretching wall, " J. Mec. Theor.Appl. Vol. 2, pp. 375-392.
- [6] Boyd, J. P.,(1997). "Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain, "Comput. Phys. Vol. 11, pp. 299-303.

- [7] Crane, L. (1970). "Flow past a stretching plate". *Z. Angew. Mater.Phys.* Vol. 21, pp. 645-647.
- [8] Elbashbeshy, (1998) "Heat transfer over a stretching surface with variable heat flux, " *J. Phys. D: Appl. Phys.* Vol. 31, pp. 1951-1955.
- [9] Elsayed M. A. Elbashbeshy, Dalia A. Aldawody(2010), "Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink", *Computers & Mathematics with Applications*, Vol. 60, No. 10, pp. 2806-2811.
- [10] Grubka, L. J. and K. M. Bobba, (1985), "Heat transfer characteristics of a continuous stretching surface with variable temperature, " *J. Heat Transfer* Vol. 107, pp. 248-250.
- [11] Hayat T.,Hussain Q.,Javed T. (2009), "The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet, *Nonlinear Analysis Real World Applications*, " Vol. 10, No. 2, pp. 966-973.
- [12] Hashim I.,Noorani M. S. M.,Batiha B. (2006) "A note on the Adomian decomposition method for the generalized Huxley equation, " *Applied Mathematics and Computation*, Vol. 181, No. 2, pp. 1439-1445.
- [13] Ishak, A, R. Nazar, I. Pop, (2008) "Heat transfer over an unsteady stretching surface with prescribed heat flux, " *Can. J. Phys.* Vol. 86, pp. 853-855.
- [14] Sakiadis, B. C. (1961) "Boundary layer behaviour on continuous solid surfaces: I. Boundary layer equations for two dimensional and axisymmetric flow, *AIChE J.* Vol. 7. No. 1, pp. 26-28.
- [15] Sakiadis, B. C. (1961), "Boundary layer behaviour on continuous solid surfaces: II. Boundary layer equations on a continuous flat surface, " *AIChE J.* Vol. 7. No. 1, pp. 221-225.
- [16] Soundalgekar, V. M. T. V. Ramana, (1980), "Heat transfer past a continuous moving plate with variable temperature, " *Warme-Und Stoffubertragung*. Vol. 14, pp. 91-93.
- [17] Vleggaar, J. (1977), "Laminar boundary layer behaviour on continuous accelerating surfaces, " *Chem. Eng. Sci.* Vol. 32, pp. 1517-1525.
- [18] Wazwaz, A. M. (1997), "A study on a boundary-layer equation arising in an incompressible fluid, " *Appl. Math. Comput.*, Vol. 87, pp. 199-204.

